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Abstract

A master equation model is developed for dark injection froma metallic electrode into
a random hopping system, representing a conjugated polymeror a molecularly doped
polymer. A master equation allows for the inclusion of the image force effect on the
charge injection process and for a separate analysis of the forward hopping and back-
flow components. This model yields the injection current as afunction of electric field,
temperature, energy barrier between metal and organic layer, and energetic width of the
distribution of hopping sites. Good agreement with experimental data is found.

1 Introduction

Over the past decade, the interest in organic semiconductors has increased dramati-
cally. Devices such as organic light emitting diodes (OLED)and organic field effect
transistors have been realized. In spite of these successful applications, the physical
processes underlying the charge injection in OLED are not well understood. Com-
monly the injection-limited condition is described eitherby the Fowler-Nordheim (FN)
model for tunneling or by the Richardson-Schottky (RS) model for thermionic emis-
sion [1]. However, these two models were developed for semiconductor materials with
perfect band structure, and cannot directly be applied to disordered organic materials,
where charge carriers are localized and transport involvesdiscrete hopping within a dis-
tribution of energy states. Arkhipov presented an analytical model based on hopping
theory [2]. However, this model neglected the backflow current from the semiconductor
towards the electrode, which can play an important role for the injection current. In this
work we develop an analytical master equation model to describe the injection process
in OLED including the backflow current.

2 Model Theory

The system to be considered here is an energetically and positionally random hopping
system in contact with a metallic electrode. At an arbitrarydistancex away from the
metal-organic layer interface, located atx = 0, the electrostatic potential is given by the
sum of the image charge potential and the applied potential described by electric field
F as [3]

E = ∆−

e
16πεε0x

−Fx (1)
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wheree is the elementary charge,∆ is the difference between the workfunction of the
metal and the electron affinity of the organic semiconductor, andεε0 is the dielectric
permittivity. Since the rapid variation of potential (1) takes place in front of the cathode,
and space-charge effects can be ignored altogether in the calculation of the cathode
characteristics [2,4], the fieldF may be regarded as being nearly constant.
Assuming no correlations between the occupation probabilities of different localized
sates, the net electron flow between two states is given as

Ii j = fi (1− f j)ωi j − f j (1− fi)ω ji (2)

with fi denoting the occupation probability of sitei andωi j the electron transition rate
of the hopping process between the occupied statei to the empty statej. The probabil-
ities (2) are then employed in a master equation for describing charge transport. With
the electrochemical potentialµ ′

i at the position of statei the occupation probability is
described by a Fermi-Dirac distribution as

fi =
1

1+exp
(

E ′

i−µ ′

i
kBT

) . (3)

For the metal electrode we assume a fixed electron concentration P0 and a Fermi-level
of zero. All injected carriers are hopping from the metal Fermi-level. Under the effect
of a constant electric fieldF and the Coulomb field binding the carrier with its image
charge on the electrode the energy and the electrochemical potential of a localized state
are given by

E ′

j = E j + ∆− eϕ (R j,θ ) ,

µ ′

j = ∆− eϕ (R j,θ )

ϕ (R j,θ ) = FR j cosθ +
e

16πεR j cosθ

whereR j denotes the distance of statej from the interface,θ the angle betweenF and
R j, ∆ the barrier height, andE j the energy at statej without electric field. According to
Mott’s formalism [5], the transition rateω j from the metal Fermi-level to statej reads
as

ω j ∝







exp
[

−2γR j −
E ′

j
kBT

]

: E ′

j ≥ 0

exp(−2γR j) : E ′

j ≤ 0
(4)

whereγ is the localization parameter of the states. We assume a Gaussian density of
states.

g(E j) =
Nt

√

2πσ
exp

(

−

E2
j

2σ2

)

(5)

Nt denotes the total concentration of localized states andσ the width of the distribution.
The net current across the metal-organic contact can be written as

I = Iinj − Irec = eν0 (I1 + I2− I3− I4) (6)
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whereν0 is the attempt-to-jump frequency and

I1 =
∫ +∞

1
dr
∫ ∞

α
dR j

∫ 0

−∞
dE j

P0(1− f j)
√

2πσ
exp

(

−2γR j −
(E j − (∆− eϕ (R j,r)))

2

2σ2

)

I2 =
∫ +∞

1
dr
∫ ∞

α
dR j

∫ ∞

0
dE j

P0 (1− f j)
√

2πσ
exp

(

−2γR j −E j −
(E j − (∆− eϕ (R j,r)))

2

2σ2

)

I3 =
∫ +∞

1
dr
∫ ∞

α
dR j

∫ ∞

0
dE j

Nt f j
√

2πσ
exp

(

−2γR j −
(E j − (∆− eϕ (R j,r)))

2

2σ2

)

I4 =
∫ +∞

1
dr
∫ ∞

α
dR j

∫ 0

−∞
dE j

Nt f j
√

2πσ
exp

(

E j −2γR j −
(E j − (∆− eϕ (R j,r)))

2

2σ2

)

wherer = 1/cosθ and f j =
(

1+exp
(

E j−µ j
kBT

))

−1
. I1 andI2 describe the charge in-

jection downwards and upwards from the electrode, respectively. I3 andI4 describe the
backflow of charge to the electrode. The net current can be calculated by evaluatingI1,
I2, I3 andI4 numerically.
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Figure 1: Field dependence of the net, injec-
tion, and backflow currents.
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Figure 2: Relation between injection current
andF1/2.

3 Results and Discussion

With the model presented we calculate the field dependence ofthe net, injection and
backflow current. The parameters are∆ = 0.3eV,Nt = 1×1022cm−3, T = 300K,ε=3,
α = 0.6nm,γ = 2×108cm−1, σ = 0.08eV andν0 = 1×1011s−1. Fig. 1 shows that
with electric field the injection current increases and the backflow current decreases, as
intuitively expected. As a result, the net current increases with electric field quickly in
the low field regime.
Fig. 2 shows the semilogarithmic plots of the current versusF1/2 with the same pa-
rameters as used in Fig. 1. This presentation is appropriatefor testing RS behavior as
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j ∝ exp
(

√

eF/4πεε0

)

. Since the dependence of logj versusF1/2 is not linear, a devi-
ation from the RS characteristics is observed. Fig. 3 shows current-field characteristics
at different∆ andNt = 9×1022cm−3, the other parameters are the same as in Fig. 1.
The injection current increases with decreasing barrier height ∆ and with electric field.
The comparison between calculation and experimental data of DASMB sandwiched
between ITO and Al electrodes [2] is given in Fig. 4. The parameters are∆ = 0.4eV
andT = 123K, the other parameters are the same as in Fig.1. The agreements is quite
good at low electric fields. The discrepancy between calculation and experimental data
comes from the resistance of the ITO contact at high electricfield [2].
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Figure 3: Barrier height dependence of the in-
jection current.
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Figure 4: Comparison between calculation
and experimental data atT = 123K.
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