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SEMI-DISCRETE FORMULATION

The Wigner function (WF) approach to device
simulations is regarded as convenient, as it main-
tains many classical concepts describing evolution
and dissipation processes, as well as discouraging,
due to many open numerical and theoretical is-
sues: The approach has been applied to merely 1D
problems, an increase of the dimensions has been
considered impossible for computational reasons.
Recent theoretical studies [1] show that the con-
ventional WF formulation conflicts with the open
system boundary conditions giving rise to unphysi-
cal effects. The problem is avoided if (i) the plane
wave basis of the infinite Weyl-Wigner transform is
replaced by a generic basis set [1]; (ii) the coherence
integral of the transform is bounded inside the de-
vice by the assumption of vanishing correlation with
the states in the leads [2]. Otherwise the coherence
length becomes a free numerical parameter, which
affects the computed physical quantities.

We propose an approach for 2D WF simulations,
which fixes the above ambiguities and gives rise to
a semi-discrete formulation of the Wigner equation.
In particular the geometry of the conventional de-
vice in Fig. 1 leads to coherence integrals bounded
into a rectangle alongx and y. In the spirit of
(i) this allows to use the discrete Fourier basis
corresponding to the rectangle. The obtained WF
fw(r,m∆p) is continuous with respect to the posi-
tion and discrete with respect to momentum, where
m = (mx,my) andmx,y are integers. The equation
retains its usual form, but the momentum integral
is replaced by an infinite sum, which simplifies the
numerical treatment.

NUMERICAL ASPECTS

The numerical treatment is difficult, but feasible
in the framework of the developed Monte Carlo
(MC) method. It utilizes the particle generation-

annihilation algorithm [3], implemented on top of
a standard 2D MC simulator as follows: Particles
evolving in the classical way and equipped by a
sign, which carries the quantum information, inter-
act with the Wigner potentialVw. An interacting
particle gives rise to two novel particles, gener-
ated locally in r but having different momentum
and sign. Between the evolution steps particles
are stored in a mesh defined in the phase space.
Two particles with opposite sign annihilate in a
given mesh cell. The presented scheme explores
the convergence of the coherent task. First standard
simulations provide the self-consistent potential in
the device, Fig. 2. The potential gives the driving
force, which forms the classical density in Fig. 3.
Next the entire potential is used to obtainVw. The
driving force is zero, particles perform a free mo-
tion. In this case generation-annihilation processes
form the quantum density shown in Fig. 4 and
analyzed in the caption. The obtained averages for
the density and other quantities are qualitative and
mainly prove the convergence of the method. Many
issues like dependence on the numerical parameters,
the existence of alternative algorithms for boundary
injection and normalization must be explored by a
comparison with an independent quantum simulator.
This procedure is currently underway. Interaction
with phonons will be included on a next stage,
which, however is straightforward for the method.
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Fig. 1. A conventional 2D device structure: The Wigner
function at given positionr accounts for correlations in states
between points symmetrically placed with respect tor. The
correlation becomes zero if one of the points belongs to a region
with zero carrier density. It is due to the fact that the density
matrix ρ(r + s, r − s) vanishes if one of the coordinates is
outside the device boundaries(0, Lx; 0, Ly). This is the case
of no correlation with the states in the leads. If the correlation
is not vanishing, the segment inG is excluded along with
the corresponding counterpart in the device. Then the integrals
vanish outside the rectangle(0, Lx;−Ly , Ly).
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Fig. 2. Potential profile in a16 × 16nm device. The S/D
regions are of6nm width and depth, the substrate is10nm.
The 4nm thick and 6nm long barrier rapidly drops on both
sides of the0.45V peak and demonstrates strong asymmetry
in both directions. It is the central entity, selected to govern the
quantum effects into a particular pattern. For this reason arather
peculiar doping concentrations have been chosen, holes are
excluded from the simulations, and, as already noted, phonons
are switched off.
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Fig. 3. Surface plot of the classical density: The carriers
injected into the S/D regions from they = 0 boundary are
entirely separated by the high barrier and the potential in the
substrate.
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Fig. 4. Surface plot of the density obtained from the Wigner
function. A comparison with the classical density outlines
effects of tunneling and separation. The plot follows the pattern
imposed by the potential. In particular, the region below the
barrier peak is well pronounced by the lack of carriers; however
an increase of the density is seen on both sides of the peak.
The density is calculated on a regular,0.25nm mesh. The
corresponding Wigner function is comprised of more than
16× 106 phase space elements. This precludes the application
of the standard deterministic methods. The utilized Monte Carlo
method maintains the number of positive or negative particles
in each cell which is of a short integer datatype.
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