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Abstract

The small dimensions of the on-chip interconnect strustprevide the interesting op-
portunity of using the optimized model of dominant magnégéd even at very high
operating frequencies for inductance and resistanceatitna The parameters are ob-
tained from the field energy calculated from the magnetid figtribution in the sim-
ulation domain. Vector and scalar shape functions are wgefthfte element equation
system assembling. Series of simulations for an on-chiglsipiductor at frequencies
between 1 MHz and 100 GHz are performed to extract the paessend to visualize
the field distributions in the simulation area.

1 Introduction

High frequencies in an integrated circuit (IC) affect bdtie resistance and the induc-
tance of the on-chip interconnects [1, 2]. These often aasitars treated parameters
cause longer signal rise, fall, and delay times and limittiaimum allowed frequency
of modern ICs. However, as the operating frequencies isereamall inductors of high
speed circuits can be also actively used. They can be eveitraoted on the chip. Thus
the inductance of an on-chip interconnect line can be a disadge or very useful de-
pending on the application. Of course the collateral rasist must also be considered.

2 TheTheoretical Background

The Maxwell equations for the dominant magnetic field (DMR)l dime independent
u are given [3] by the expressions

—

OxE = —udH, O-(uH) =0, p(0OxH)=E. (1)

E is the electric field intensity is the magnetic field intensityy is the material’s
permeability, ang is the material’s electric resistivity. The derivative vitespect to
time is shortly notated a&; instead ofd/dt. Applying the rotor operator to the third
equation of (1) and substituting its right hand side by thst fiquation of (1) yields the
following second-order differential equation

—

Ox (pOxH) + udH = 0. )
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For the stationary cas@f = 0) the finite element analysis of (2) leads to an overde-
termined linear equation system [4]. The matrix of this egsts positive semi-definite
and its zero eigenvalues correspond to the number of treesddghe graph spanned
by the finite element mesh edges [5]. SintelCl$ = 0, (2) may be written as

Ox (pOxHy) + pdy (H—0¢) =0, (3)

whereﬁlzﬁJrﬁtp, ¢ is an arbitrary scalar field arlfld) must exist. Equation (3) con-
tains two unknown functions — the vector figh} and the scalar fiel. Thus an
additional independent criterion is needed. For numdyicahble and unique calcula-
tion of H it is natural to impose the divergence condition given bystaeond equation
of (1), which has not been used till now

O [u(Fy—D¢)] = 0. 4)

Thus the unknown fieldsi; and¢ are the solution of the partial differential equation
system consisting of (3) and (4), which is a boundary valwblem numerically cal-
culated by FEM in a simulation domaifi enclosing the investigated structurés. is
approximated by vector (edge) functions andy scalar functions

n k m |
H1:ZCJ'NJ'+ Z Cj N;j, ¢ZZCJ)\J'+ Cj)\j.
=1 j=m+1 j=n+1 j=k+1

Due to the FEM domain discretization the region of interésand its surfac@?” are
subdivided into smaller mesh elements — tetrahedrons @ajtes consisting of edge
connected nodes. The boundary of the simulation dré&as divided into a Dirichlet
boundaryd¥p; and a Neumann boundag/#y, for H, and into a Dirichlet bound-
ary d7p2 and a Neumann boundad/\. for ¢, respectively § ¥'=397p1+0 1 and
07V =07p2+0d7\2). The edges and the nodes in the simulation area are labéled w
set of integers. The non-Dirichlet edges are indexed fromriand the non-Dirichlet
nodes are indexed from+1 to m (m>n). The non-Dirichlet edges are the edges which
do not belong t@ ¥p1, and the non-Dirichlet nodes are the nodes which do not gelon
to 07p2, respectively. The Dirichlet edges are labeled with intedgeom n+-1 to k
(k>m) and the Dirichlet nodes are labeled with numbers fiopi to| (1>k), respec-
tively. In a single mesh elemeﬁij the Whitney 1-Form vector basis function [6] is
associated with th¢-th edge and; is the Lagrange interpolation polynomial at vertex
j. Equation (3) is weighted by the vector functidisassociated with the non-Dirichlet
edges (€ [1;n]) and (4) is weighted by the scalar functiohsassociated with the
non-Dirichlet nodesi(e [n+ 1;m]) of the simulation domain. The inductance and the
resistance are calculated by the magnetic energy and byettteie power, respectively

in/ pH2 v, R:i/ (OxHy)-(pOxHFy) V.
Jv i

| is the total current in the inductor provided by the Diridtdeundary forH;.
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f[GHZ | LnH] | RIQ]
1 2.6516] 3.463
10 || 2.5501| 5.396
100 | 2.5458] 13.156

Table 1: The inductance and resistance at different frequencies

3 Examplesand Results

As example a typical on-chip spiral inductor structure igestigated. The inductor is
placed in an insulating rectangular brick with dimensio@84m x 400um x 200um.
The cross-section of the conductor isi2@ x 1.2 um. The horizontal distance between
the winding wires is 1im. The outer dimensions of the inductor are @< 300um.
The inductor is completely surrounded by the dielectridmmment, except of the two
small delimiting faces which lie directly in the boundanapés of the simulation do-
main. The conductor area and the dielectric area close tcath@uctor are discretized
much finer then the remaining simulation domain. This is shawFig. 1 where a
part of the dielectric environment is removed to visualizelétail the generated mesh
inside the simulation domain. The variation of the fieldsha finer discretized areas
is expected to be much higher than in the coarser discrediaedhin. This special dis-
cretization reduces the number of generated nodes and,esiggethe number of the
linear equations respectively, even for big simulationiemments which have to be
used to satisfy the assumption of the homogeneous Neumamuary condition. Of
coarse such a discretization is only possible, if an ungsirad mesh is used. The cur-
rent density distribution depends heavily on the operatiequency in the analyzed
frequency domain. It is unknown and a result of the simutatié\t the beginning
of the simulation only the total current in the inductor isolim. The resistance and
inductance values of the structure of interest are caledlatimerically at different fre-
quencies. The corresponding results are presented in Tab¥ghile the inductance
decreases slowly with increasing operating frequencyigbistance rises dramatically,
which matches well the observed current density distriloutind the skin effect, re-
spectively. A surface view of the current density distribatin the conductor is shown
in Fig. 2 and Fig. 3 for 100MHz and 10 GHz, respectively. At Mz the skin depth
is about gum and nearly the whole conductor cross-section is filled uthbycurrent.
At 10 GHz the skin depth is about@m and the current is concentrated at the vertical
side walls of the conductor. Fig. 4 depicts the correspandpatial distribution of the
magnetic field inside the dielectric environment arounditioieictor as directed cones
placed in the discretization nodes. The cones’ size andhdasgkare proportional to
the field strength. As the Q-factor of an inductor is inverqabportional to its resis-
tance, making the inductor wire thicker might decrease élsestance and increase the
Q-factor. However, as the examples show this is not the aaskidh frequencies at
which the skin effect is noticeable. In these cases the cufimvs only in the area very
close to the vertical surface and a wider transversal cdndacoss section would not
change the situation. For the visualization VTK [7] is used.
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Figure 1. The generated mesh. Figure 2: Surface view of the current
density[A/n?] distribution at 100 MHz.

Figure 3. Surface view of the current Figure 4: Magnetic field intensity
density[A/n?] distribution at 10GHz.  [A/m] at 1 GHz.
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