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Abstract

The small dimensions of the on-chip interconnect structures provide the interesting op-
portunity of using the optimized model of dominant magneticfield even at very high
operating frequencies for inductance and resistance extraction. The parameters are ob-
tained from the field energy calculated from the magnetic field distribution in the sim-
ulation domain. Vector and scalar shape functions are used for finite element equation
system assembling. Series of simulations for an on-chip spiral inductor at frequencies
between 1 MHz and 100 GHz are performed to extract the parameters and to visualize
the field distributions in the simulation area.

1 Introduction

High frequencies in an integrated circuit (IC) affect both,the resistance and the induc-
tance of the on-chip interconnects [1, 2]. These often as parasitics treated parameters
cause longer signal rise, fall, and delay times and limit themaximum allowed frequency
of modern ICs. However, as the operating frequencies increase, small inductors of high
speed circuits can be also actively used. They can be even constructed on the chip. Thus
the inductance of an on-chip interconnect line can be a disadvantage or very useful de-
pending on the application. Of course the collateral resistance must also be considered.

2 The Theoretical Background

The Maxwell equations for the dominant magnetic field (DMF) and time independent
µ are given [3] by the expressions

~∇×~E = −µ∂ t ~H, ~∇·(µ~H) = 0, ρ(~∇×~H) = ~E. (1)

~E is the electric field intensity,~H is the magnetic field intensity,µ is the material’s
permeability, andρ is the material’s electric resistivity. The derivative with respect to
time is shortly notated as∂ t instead of∂/∂ t. Applying the rotor operator to the third
equation of (1) and substituting its right hand side by the first equation of (1) yields the
following second-order differential equation

~∇×(ρ~∇×~H)+ µ∂ t ~H = 0. (2)
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For the stationary case (∂t ~H = 0) the finite element analysis of (2) leads to an overde-
termined linear equation system [4]. The matrix of this system is positive semi-definite
and its zero eigenvalues correspond to the number of tree edges in the graph spanned
by the finite element mesh edges [5]. Since~∇×

~∇ϕ = 0, (2) may be written as

~∇×(ρ~∇×~H1)+ µ∂ t(~H1−~∇ϕ) = 0, (3)

where~H1=~H+~∇ϕ, ϕ is an arbitrary scalar field and~∇ϕ must exist. Equation (3) con-
tains two unknown functions – the vector field~H1 and the scalar fieldϕ. Thus an
additional independent criterion is needed. For numerically stable and unique calcula-
tion of ~H it is natural to impose the divergence condition given by thesecond equation
of (1), which has not been used till now

~∇·[µ(~H1−~∇ϕ)] = 0. (4)

Thus the unknown fields~H1 andϕ are the solution of the partial differential equation
system consisting of (3) and (4), which is a boundary value problem numerically cal-
culated by FEM in a simulation domainV enclosing the investigated structures.~H1 is
approximated by vector (edge) functions andϕ by scalar functions

~H1 =
n

∑
j=1

c j ~N j +
k

∑
j=m+1

c j ~N j, ϕ =
m

∑
j=n+1

c j λ j +
l

∑
j=k+1

c j λ j.

Due to the FEM domain discretization the region of interestV and its surface∂V are
subdivided into smaller mesh elements – tetrahedrons and triangles consisting of edge
connected nodes. The boundary of the simulation area∂V is divided into a Dirichlet
boundary∂VD1 and a Neumann boundary∂VN1 for ~H1 and into a Dirichlet bound-
ary ∂VD2 and a Neumann boundary∂VN2 for ϕ, respectively (∂V =∂VD1+∂VN1 and
∂V =∂VD2+∂VN2). The edges and the nodes in the simulation area are labeled with a
set of integers. The non-Dirichlet edges are indexed from 1 to n and the non-Dirichlet
nodes are indexed fromn+1 to m (m>n). The non-Dirichlet edges are the edges which
do not belong to∂VD1, and the non-Dirichlet nodes are the nodes which do not belong
to ∂VD2, respectively. The Dirichlet edges are labeled with integers from m+1 to k
(k>m) and the Dirichlet nodes are labeled with numbers fromk+1 to l (l>k), respec-
tively. In a single mesh element~N j the Whitney 1-Form vector basis function [6] is
associated with thej-th edge andλ j is the Lagrange interpolation polynomial at vertex
j. Equation (3) is weighted by the vector functions~Ni associated with the non-Dirichlet
edges (i ∈ [1;n]) and (4) is weighted by the scalar functionsλi associated with the
non-Dirichlet nodes (i ∈ [n + 1;m]) of the simulation domain. The inductance and the
resistance are calculated by the magnetic energy and by the electric power, respectively

L =
1
I2

∫

V
µH2 dV, R =

1
I2

∫

V
(~∇×~H1)·(ρ~∇×~H1)dV.

I is the total current in the inductor provided by the Dirichlet boundary for~H1.
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f [GHz] L [nH] R [Ω]

1 2.6516 3.463
10 2.5501 5.396
100 2.5458 13.156

Table 1: The inductance and resistance at different frequencies

3 Examples and Results

As example a typical on-chip spiral inductor structure is investigated. The inductor is
placed in an insulating rectangular brick with dimensions 400µm×400µm×200µm.
The cross-section of the conductor is 20µm×1.2µm. The horizontal distance between
the winding wires is 10µm. The outer dimensions of the inductor are 300µm×300µm.
The inductor is completely surrounded by the dielectric environment, except of the two
small delimiting faces which lie directly in the boundary planes of the simulation do-
main. The conductor area and the dielectric area close to theconductor are discretized
much finer then the remaining simulation domain. This is shown in Fig. 1 where a
part of the dielectric environment is removed to visualize in detail the generated mesh
inside the simulation domain. The variation of the fields in the finer discretized areas
is expected to be much higher than in the coarser discretizeddomain. This special dis-
cretization reduces the number of generated nodes and edges, and the number of the
linear equations respectively, even for big simulation environments which have to be
used to satisfy the assumption of the homogeneous Neumann boundary condition. Of
coarse such a discretization is only possible, if an unstructured mesh is used. The cur-
rent density distribution depends heavily on the operatingfrequency in the analyzed
frequency domain. It is unknown and a result of the simulation. At the beginning
of the simulation only the total current in the inductor is known. The resistance and
inductance values of the structure of interest are calculated numerically at different fre-
quencies. The corresponding results are presented in Table1. While the inductance
decreases slowly with increasing operating frequency, theresistance rises dramatically,
which matches well the observed current density distribution and the skin effect, re-
spectively. A surface view of the current density distribution in the conductor is shown
in Fig. 2 and Fig. 3 for 100MHz and 10GHz, respectively. At 100MHz the skin depth
is about 6µm and nearly the whole conductor cross-section is filled up bythe current.
At 10GHz the skin depth is about 0.6µm and the current is concentrated at the vertical
side walls of the conductor. Fig. 4 depicts the corresponding spatial distribution of the
magnetic field inside the dielectric environment around theinductor as directed cones
placed in the discretization nodes. The cones’ size and darkness are proportional to
the field strength. As the Q-factor of an inductor is inversely proportional to its resis-
tance, making the inductor wire thicker might decrease the resistance and increase the
Q-factor. However, as the examples show this is not the case for high frequencies at
which the skin effect is noticeable. In these cases the current flows only in the area very
close to the vertical surface and a wider transversal conductor cross section would not
change the situation. For the visualization VTK [7] is used.
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Figure 1: The generated mesh. Figure 2: Surface view of the current
density[A/m2] distribution at 100 MHz.

Figure 3: Surface view of the current
density[A/m2] distribution at 10 GHz.

Figure 4: Magnetic field intensity
[A/m] at 1 GHz.
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