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Abstract— The performance of carbon nanotube field-effect
transistors is analyzed using the non-equilibrium Green’s func-
tion formalism. The role of the inelastic electron-phonon interac-
tion on both, on-current and gate delay time, is studied. For the
calculation of the gate delay time the quasi-static approximation
is assumed. The results confirm experimental data of carbon
nanotube transistors, where the on-current can be close to the
ballistic limit, but the gate delay time can be far below that limit.

I. INTRODUCTION

Carbon nanotube field-effect transistors (CNT-FETs) have

been considered in recent years as potential alternatives to

CMOS devices. A CNT can be viewed as a rolled-up sheet

of graphene with a diameter of a few nano-meters. The way

the graphene sheet is wrapped is represented by a pair of

indices (n,m) called the chiral vector. The integers n and

m denote the number of basis vectors along two directions

in the honeycomb crystal lattice of graphene. The CNT is

called zigzag, if m = 0, armchair, if n = m, and chiral

otherwise. CNTs with n − m = 3 are metals, otherwise they

are semiconductors. Semiconducting CNTs can be used as

channels for transistors which have been studied in recent

years.

Depending on the work function difference between the

metal contact and the CNT, carriers at the metal-CNT interface

encounter different barrier heights (see Fig. 1). Fabrication of

devices with positive (Schottky type) [1] and zero (Ohmic) [2]

barrier heights for holes have been reported. In this work we

consider devices with zero barrier heights for electrons.

The non-equilibrium Green’s function (NEGF) method has

been successfully utilized to investigate the characteristics of

nano-scale silicon transistors [3], CNT-FETs [4], and molec-

ular devices [5]. To extend our previous works [6, 7], the

NEGF formalism is employed to study the effect of inelastic

electron-phonon interaction on the on-current and gate delay

time of CNT-FETs in more detail.

Fig. 1: Sketch of the CNT-FET investigated. The insulating layer
is HfO2 with ǫr = 20 and a thickness of 2 nm. The geometry
parameters are LGS=LGD=4 nm and LCNT = 50 nm.

II. APPROACH

Using the NEGF formalism quantum phenomena like tun-

neling, and scattering processes can be rigorously modeled [8].

Based on the NEGF formalism we investigated the effect of

the electron-phonon interaction on the performance of CNT-

FETs.

The transport equations are solved on the surface of the

CNT. Due to quantum confinement along the tube circum-

ference, the wave-functions of carriers are bound around the

CNT and can propagate along the tube axis. We considered

an azimuthal symmetric structure, in which the gate fully

surrounds the CNT. Under the assumption that the potential

profile does not vary sharply along the CNT, sub-bands are

decoupled [9]. As a result, transport equations need to be

solved only along the CNT axis which is assumed to be the

z direction in cylindrical coordinates. In this work we assume

bias conditions for which the first sub-band contributes mostly

to the total current. In the mode-space approach the transport

equation for a sub-band can be written as [4]

Gr,a
r,r′(E) = [EI − Hr,r′(E) − Σr,a

r,r′(E)]−1 (1)

G
≷
r,r′(E) = Gr

r,r′(E)Σ
≷
r,r′(E)Ga

r,r′(E) (2)

In (1) an effective mass Hamiltonian was assumed. All our

calculations assume a CNT with a band gap of Eg = 0.6 eV
corresponding to a CNT with a diameter of dCNT = 1.6 nm,

and m∗ = 0.05m0 for both electrons and holes. A recursive

Green’s function method is used for solving (1) and (2) [3].

Using a perturbation expansion one can define the self-

energy Σ as an irreducible part of the Green’s function. An

exact evaluation of the self-energy is possible only for some

rather pathological models. For real systems one has to rely on

approximation schemes. The total self-energy in (1) consists of

the self-energies due to the source contact, drain contact, and

electron-phonon interaction, Σr = Σr
S +Σr

D +Σr
e−ph. In order

to solve the system of equations in a finite system, boundary

conditions have to be specified. The boundary conditions of (1)

have to model the contacts which act as a source or drain for

electrons and can be imposed by adding self-energies. These

are non-zero only at the boundaries and can be calculated

as [4].

In this work the first-order self-energy for electron-phonon

interaction within the self-consistent Born approximation is

applied [10]. The interaction of electrons with optical phonons

is inelastic. Assuming that the electron-phonon interaction
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occurs locally, Σr,r′(E) = 0 [11] for r 6= r
′, the self-energy

for inelastic electron-phonon interaction can be written as

Σ<
e−ph(E) =

∑
λ

Dλ(nB(~ωλ) +
1

2
±

1

2
)G<(E ± ~ωλ) (3)

where ~ωλ denotes the phonon energy of branch λ, n(~ωλ)
the average phonon occupation number, and Dλ the electron-

phonon coupling strength. The plus and minus signs in (3)

denote the phonon emission and absorption processes, respec-

tively. Assuming that the bath of phonons is maintained in

thermodynamic equilibrium, n(~ωλ) is given by the Bose-

Einstein distribution function. The electron-phonon interaction

strength of a (n, 0) zigzag CNT is given by

Dλ =
~|Mλ|

2

2nmcωλ

, (4)

where the matrix elements of the interaction Hamiltonian

Mλ depend on the diameter and the chirality of the CNT.

The calculation of these parameters is presented in [12, 13].

Phonons with q ≈ 0 are referred to as Γ-point phonons, and

can belong to the twisting acoustic (TW), the longitudinal

acoustic (LA), the radial breathing mode (RBM), the out-of-

phase out-of-plane optical (ZO), the transverse optical (TO),

or the longitudinal optical (LO) phonon branch. Phonons

inducing inter-valley transitions have a wave-vector of |q| ≈
qK, where qK corresponds to the wave-vector of the K-point of

the Brillouin zone of graphene. K-point phonons, also referred

to as zone boundary phonons, are a mixture of fundamental

polarizations.

The greater self-energy is calculated similar to (3) and the

retarded self-energy is given by

Σr
e−ph(E) = −

i

2
Γe−ph(E) + P

∫
dE′

2π

Γe−ph(E′)

E − E′
, (5)

where Γe−ph ≡ i(Σ>
e−ph − Σ<

e−ph) defines the broadening,

and P
∫

represents the principal part of the integration. The

imaginary part of the retarded self-energy broadens the density

of states, whereas the real part shifts it in energy.

The transport equations (1) and (2) are iterated to achieve

convergence of the electron-phonon self-energies, resulting in

a self-consistent Born approximation. Then the coupled system

of transport and Poisson equation is solved iteratively. To solve

the transport equations numerically, they need to be discretized

in both the spatial and the energy domain. Uniform spatial

grids have been employed. The carrier concentration at some

node l and the current density between the nodes l and l + 1
of the device are given by

nl = −4i

∫
dE

2π
G<

l,l(E) , (6)

jl,l+1 =
4q

~

∫
dE

2π
2ℜe{G<

l,l+1(E)Hl+1,l} , (7)

where the factor 4 is due to the spin and band degeneracy.

In the Poisson equation carriers are treated as a sheet charge

distributed over the surface of the CNT [14, 15]. The energy

grid, however, has to be non-uniform, since an adaptive

integration method is generally required to evaluate quantities

such as (6) with sufficient accuracy.

The coupled system of the transport and Poisson equations

has to be solved self-consistently [5], where the convergence

of the self-consistent iteration is a critical issue. To achieve

convergence, fine resonances at some energies in (6) have to be

resolved accurately [15]. For that purpose an adaptive method

for selecting the energy grid is essential [16].

III. THE EFFECT OF THE ELECTRON-PHONON

INTERACTION ON THE ON-CURRENT

Fig. 2 shows the dependence of the ballisticity on the

phonon energy. The ballisticity is defined as ISc/IBl, the

ratio of the on-current in the presence of electron-phonon

interaction to the current in the ballistic case [17]. With

increasing phonon energy ballisticity increases. The left part

of Fig. 3 illustrates an electron losing its kinetic energy

by emitting a phonon. The electron will be scattered either

forward or backward. In the case of backward scattering the

electron faces a thick barrier near the source contact and will

be reflected with high probability, such that its momentum will

again be directed towards the drain contact. With increasing

phonon energy the effect of phonon scattering on the current is

reduced, because scattered electrons lose more kinetic energy

and the probability for traveling back to the source contact

decreases.

The considerable decrease of ballisticity for low energy

phonons is due to the phonon absorption process. The right

part of Fig. 3 shows an electron absorbing energy from a

phonon and scattering into a higher energy state. In this case,

the probability for arriving at the source contact increases. This

process can severely reduce the total current. As the phonon

energy decreases, the phonon occupation number increases

exponentially, and the contribution of both phonon emission

and absorption processes increases. However, due to the higher

probability for back-scattering of electrons in the case of
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Fig. 2: Ballisticity versus phonon energy for a CNT of 50 nm

length. Results for inelastic scattering with different electron-phonon
couplings are shown for VG = VD = 1 V.
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Fig. 3: Sketch of phonon emission and absorption processes in the
channel.

phonon absorption, this component reduces the total current

more effectively than the phonon emission process does.

IV. THE EFFECT OF THE ELECTRON-PHONON

INTERACTION ON THE GATE DELAY TIME

To investigate the dynamic response of the device we

consider the gate delay time defined as:

τ =
CGVDD

Ion

(8)

Here, CG = CIns
−1 + CQ

−1. The quantum capacitance is

given by CQ = 8q2/hυF ≈ 400aF/µm, including the twofold

band and spin degeneracy. If thin and high-κ insulators are

used, then CIns ≫ CQ and CG ≈ CQ, implying that the

potential on the tube becomes equal to the gate potential

(perfect coupling). This regime is called quantum capacitance

limit in which the device is potential-controlled rather than

charge-controlled [18]. The insulator capacitance, occurring

between the tube and a cylindrical gate, is given by

CIns =
2πκǫ0

ln(TIns/RCNT + 1)
(9)

For the geometry parameters given in Fig. 1

CIns≈ 1500aF/µm, satisfying the condition of the quantum

capacitance limit [19] (CQ ≪ CIns). Therefore, one gets

CGVD ≈ QCh, where QCh is the total charge in the CNT

channel. The gate delay time can be written as τ ≈ QCh/ID.

Here, the quasi-static approximation is assumed. It has been

shown that for CNT based transistors this approximation is

justified for frequencies below THz [20].

Fig. 4 shows the ratio of the gate delay time in the

presence of electron-phonon interaction to that in the ballistic

case, τSc/τBl, as a function of the electron-phonon coupling

strength. As the phonon energy increases the gate delay time

increases. This behavior can be attributed to the electron

group velocity in the channel, which is high for ballistic

electrons and low for electrons scattered to lower energy states.

Fig. 5 shows the spectra of the source and drain currents
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Fig. 4: The ratio of the gate delay time in the presence of electron-
phonon interaction to that in the ballistic case, τSc/τBl, as a function
of the electron-phonon coupling strength. For comparison, the ratio
ISc/IBl is also shown. As the phonon energy increases the gate delay
time increases.

for different phonon energies. Electrons can emit a single

phonon or a couple of phonons to reach lower energy states.

The probability of n sequential electron-phonon interactions

decreases as n increases. Therefore, as the phonon energy

increases, the occupation of electrons at lower energy states

increases. Fig. 5 shows a considerable increase of the electron

population close to the conduction band-edge as the phonon

energy increases. Therefore, the mean velocity of electrons

decreases and the carrier concentration in the channel increases

(Fig. 6). The increased charge in the channel results in an

increased gate delay time.

V. DISCUSSION

Considering the CNTs with diameters in the range

dCNT = 1 − 2 nm, the energies of important inelas-
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Fig. 5: The spectra of the source and drain currents. The effect
of inelastic scattering with different phonon energies is shown. The
electron-phonon coupling strength is D = 2 × 10

−1
eV

2. The figure
shows a considerable increase of the electron population close to the
conduction band-edge as the phonon energy increases.

241



0 5 10 15 20 25
Position [nm]

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

E
le

ct
ro

n
 v

el
o
ci

ty
 [

m
/S

]
a)

Ballistic

hω = 50   meV

hω = 100 meV

hω = 200 meV

0 10 20 30 40 50
Position [nm]

10
8

10
9

E
le

ct
ro

n
 c

o
n
ce

n
tr

at
io

n
 [

m
-1

]

Ballistic

hω = 200 meV

hω = 100 meV

hω = 50   meV

b)

Fig. 6: a) The profile of the electron velocity near the source
contact. b) The profile of the electron concentration along the device.
The results for the ballistic case and for electron-phonon interaction
are shown. As the phonon energy increases the electrons scatter to
lower energy states. Therefore, the electron velocity decreases and
the carrier concentration increases. The electron-phonon coupling
strength is D = 10

−1
eV

2 and the bias point VG = VD = 1 V.

tic phonons are ~ωOP ≈ 200 meV, ~ωRBM ≈ 30 meV, and

~ωK ≈ 160 and 180 meV [17, 21]. The corresponding cou-

pling coefficients are DOP ≈ 40 × 10−3 eV2, DRBM ≈
10−3 eV2, and DK ≈ 10−4 and 50 × 10−3 eV2 [12, 17].

As discussed, high energy phonons such as OP and K-

point phonons reduce the on-current only weakly, but can

increase the gate delay time considerably due to charge pileup

in the channel. Low energy phonons such as the RBM phonon

can reduce the on-current more effectively, but have a weaker

effect on the gate delay time. However, due to strong coupling,

scattering processes are mostly due to electron-phonon inter-

action with high energy phonons. Therefore, the on-current

of short CNT-FETs can be close to the ballistic limit [22]

(see Fig. 7), whereas the gate-delay time can be significantly

below that limit.

The gate delay time for the ballistic case can be ap-

proximated as τ ≈ 1.7 ps/µm, or equivalently fT ≈
100 GHz/µm [23]. The highest reported cut-off frequency for

a device with a length of less than 1µm is fT ≈ 10 GHz [24],

which is far below the ballistic limit. Apart from parasitic
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Fig. 7: Comparison of the simulation results and experimental
data [22] for the output characteristics. The results for the bias point
VG = −1.3 V are compared with the ballistic limit.

capacitances, inelastic electron-phonon interaction with high

energy phonon has to be considered to explain the results.

VI. CONCLUSION

The effect of the electron-phonon interaction parameters on

the performance of CNT based transistors was studied, using

the NEGF formalism. Inelastic scattering with high energy

phonons reduces the on-current only weakly, whereas it can

increase the gate delay time considerably. The results explain

the reason why the measured on-currents of short CNT-FETs

can be close to the ballistic limit, whereas the highest achieved

cutoff frequency is significantly below that limit.
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