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Abstract— We present an efficient two-band k-p theory which
accurately describes the six lowest conduction band valleys in
silicon. By comparing the model with full band pseudo-potential
calculations we demonstrate that the model captures both the
nonparabolicty effects and the stress-induced band structure
modification for general stress conditions. It reproduces the
stress dependence of the effective masses and the nonparabolicity
parameter. Analytical expressions for the valley shifts and the
transversal and longitudinal effective mass modifications induced
by uniaxial [110] stress are obtained and analyzed. The low-field
mobility enhancement in the direction of tensile [110] stress in
{001} SOI FETs with arbitrary small body thickness is due to a
modification of the conductivity mass and is shown to be partly
hampered by an increase in nonparabolicity at high stress value.

I. INTRODUCTION

The k-p theory is a well established tool to describe the band
structure analytically. After the pioneering work by Luttinger
and Kohn [1] the six-band k-p method has become a standard
approach to model the valence band in Si. However, the
conduction band in Si is usually approximated by three pairs
of equivalent minima located close to the X -points of the Bril-
louin zone. It is commonly assumed that close to the minima
the electron dispersion is well described by the effective mass
approximation. The nonparabolicity parameter o = 0.5 eV}
is introduced to describe deviations in the density of states
from the purely parabolic expression, which become pro-
nounced at higher electron energies. In ultra-thin body (UTB)
FETs, however, the band nonparabolicity affects the subband
quantization energies substantially, and it was recently indi-
cated that anisotropic, direction-dependent nonparabolicity can
explain the mobility behavior at high carrier concentrations in
a FET with (110) UTB orientation [2]. Therefore, a more
refined description of the conduction band minima beyond the
usual nonparabolic approximation is needed. Another reason
to challenge the standard description of the conduction band
based on a single-band nonparabolic approximation is its
inability to properly address the band structure modification
under stress.

Stress-induced mobility enhancement in Si has become a
key technique to increase performance of modern CMOS
devices. In biaxially stressed devices the electron mobility
can be nearly doubled. The reason for the mobility enhance-
ment lies in the stress-induced band structure modification.
The degeneracy between the six equivalent valleys is lifted
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due to stress-induced valley shifts. This reduces inter-valley
scattering. In case of tensile biaxial stress applied in the
{100} plane the four in-plane valleys move up in energy
and become de-populated. The two populated out-of-plane
valleys have favorable conductivity masses, which together
with reduced inter-valley scattering results in the observed
mobility increase [3]. Biaxial stress is naturally introduced
by growing Si epitaxially on SiGe. This method, however,
requires a substantial modification of the CMOS fabrication
process and is not used in mass production. Instead, semi-
conductor industry is exploiting techniques compatible with
existing CMOS process technology. Stress in the channel
is created by local stressors and/or additional cap layers.
Although already successfully used in mass production, the
technologically relevant case of stress along [110] has received
little attention within the research community. Only recently
a systematic experimental study of the mobility modification
due to [110] stress was performed [4]. It was shown that,
contrary to [100] uniaxial stress, the electron mobility data
for [110] stress suggest that the conductivity mass depends on
stress. This conclusion was also supported by recent results
of pseudo-potential band structure calculations [4], [5]. Any
dependence of the effective masses on stress is neglected
within the standard description of the conduction band and can
only be introduced phenomenologically. In order to describe
the dependence of the effective mass on stress a single-band
description is not sufficient, and coupling to other bands has
to be taken into account.

Recently, a 30 bands k-p theory was introduced [6]. Al-
though universal, it cannot provide an explicit analytical
solution for the energy dispersion. In this work we present an
efficient two-band Kk-p theory. By comparing our results with
predictions of the pseudo-potential band structure calculations
we demonstrate that the theory accurately describes both the
nonparabolicty effects and the stress induced band structure
modification for general stress conditions. It accurately re-
produces the stress dependence of the effective mass and of
the nonparabolicity parameter. The analytical two-band k-p
model allows one to study the influence of the conduction
band structure on transport properties of stressed FETs for
general UTB orientations.

II. THEORY

We consider the pair of equivalent conduction band valleys
along the [001] direction. Other valleys can be analyzed
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Fig. 1. [001] valley band structure obtained from EPM calculations (lines)
and the analytical expression (3) (dotted lines) at kK, = —ko. The distance

between contour lines is 50 meV. Nonparabolicity is strongly direction
dependent.

analogously.

A. Two-band K-p theory

The closest band to the first conduction band A; (7 = 1),
which we take into account, is the second conduction band A
(¢ = 2). These two bands become degenerate exactly at the
X point. Since the minimum of the conduction band is only
ko = 0.1527” away from the X point, the dispersion around
the minimum can be well described by degenerate perturbation
theory, which only includes the two bands degenerate at the
X point. Diagonal elements of the Hamiltonian H;;,7 = 1,2
can be easily obtained using the standard k-p theory:

21.2 21.2 27.2
mo 2my 2my 2my
where mg is the free electron mass, m; is the transversal,
and m; is the longitudinal effective mass. Here we took into
account that the matrix elements (p,);; are different only in
sign, which is positive for the lower band: p = (p,)11 =
—(pz)22. The values of k, are negative since they are counted
from the X point. In contrast to the 30 bands k-p theory,
which is developed around the I'" point far away from the
conduction band minimum [6], our perturbation analysis at
the X point allows to get excellent results with only two
bands. Taking into account the diagonal elements (1), we
recover the commonly used dispersion for the conduction band
(the linear term vanishes at the minimum k, = —kg). The
coupling between the bands is described by the off-diagonal
terms which up to the second order are:
_ W2k, ky

HY, (k) = VA (2

The parameter M is obtained from k-p perturbation theory [7]:

Hii(k) = (1)
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[001] valley band structure obtained from EPM calculations (lines)
and the analytical expression (6) (dotted lines) at k» = kmin, for tensile [110]
uniaxial stress of 3 GPa. The distance between the contour lines is 50 meV.
Strong stress-induced anisotropy in the transversal mass is observed.

Fig. 2.

Using degenerate perturbation theory, we find the following

dispersion relation close to the minimum at k, = —kq:
_ R2(0k.)? | RP(k2AKD)
Eo(k) - 2my + 2my -

, 1/2 (3)
_a ([1 + (—2’3;3’%)1 - 1> :

where 0k, = k. + ko, A = 2hkop/my is the gap between the
A; and the Ay conduction bands at k, = —kq. In Fig. 1 this
analytical expression (dotted contour lines) is compared to the
numerical band structure obtained from the empirical pseudo-
potential method (EPM) for k., = —ky. Excellent agreement
is found up to an energy of 0.5 eV. Fig. 1 demonstrates strong
anisotropy in the nonparabolicity parameter, as anticipated
in [2].

B. Stress

In order to account for stress in our model we consider
again the valley along the [001] direction. For general stress
conditions the following shift in energy is added to the
diagonal matrix elements (1) [8]:

H; = H) + 0Ec, 4

where 6Ec = E4 (€g0+6yy+€22) + 20 €22, With 24 denoting
the dilation and =,, the uniaxial deformation potentials for the
conduction band. The ¢;;,1 = z,y, z are the diagonal compo-
nents of the strain tensor expressed in the principal coordinate
system. The off-diagonal elements of the Hamiltonian are also
modified by strain [7]:

Hij(k) = H}; — Deyy, 6)

where D > 0 denotes the deformation potential for the off-
diagonal strain component. When the off-diagonal components
in the Hamiltonian are ignored, the influence of the shear stress
component is completely lost. The off-diagonal elements of the
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strain tensor are, however, generated by [110] uniaxial stress.
Since this is exactly the stress direction used to enhance the
performance of modern MOSFETs, shear strain must be taken
into consideration. The dispersion relation of the [001] valleys
including the shear strain component for the conduction band
now reads as:
2,92 B2 (k2 L k2

Bl = G+ R

_ |:<miokzp)2 + (Dgzy _ 1‘12;]1,;,%)11/27 (6)

where the value of €., is positive for tensile stress in [110]
direction. In Fig. 2 the analytical band structure (6) is com-
pared with the results of the EPM calculations for uniaxial
[110] tensile stress of 3 GPa. Even for such large stress values
the agreement between the analytical model and the numerical
EPM results is excellent up to 200 meV. The band structure
shown in Fig. 2 suggests a strong effective mass modification,
which is analyzed in more details in the next section.

+0Ec

III. CONDUCTION BAND MODIFICATION DUE TO SHEAR
STRAIN

The usually ignored off-diagonal strain component lifts the
degeneracy between the two lowest conduction bands at the
X points along the [001] axis in the Brillouin zone [7]. This
lifting of degeneracy has a strong effect on the band structure.
We investigate the shifts of the valley minima, changes in the
effective masses and in the nonparabolicity parameter.

A. Valley shifts

Since the conduction band minimum along the [001] axis
is located near the X point, the gap opening at the X point
affects the position of the minimum. First, the conduction band
minimum k,;, moves closer to the X point. From (6) we

obtain
kmin = _kO V 1- 772- (7)

Here, the dimensionless off-diagonal strain 7 = 2De,,, /A is
introduced. For 7 > 1 the conduction band minimum is located
exactly at the X point.
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Fig. 3. [001] valley energy shift as function of the dimensionless off-diagonal
component of the strain tensor, as predicted by (8) and by EPM calculations.

Inset: conduction band profile along the [001] direction for different stress
values.
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Fig. 4.  Dependence of the [001] valley transversal effective mass on
the dimensionless [110] uniaxial strain as predicted by (9,10) (lines) and
EPM calculations (symbols). Shear stress generates strong anisotropy in the
transversal masses
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Fig. 5. Stress dependence of longitudinal effective mass in the [001] valleys
due to [110] stress. Effective mass diverges at n = 1 suggesting that full-band
theory must be used for such stress values.

The minima of the two [001] valleys move down in energy
with respect to the remaining four fold degenerate valleys. For
n < 1 the strain dependence is quadratic, while it is linear for
n=>1

A2
—2N > n < 1
Ala‘shear = : | | (8)
—2nl-DAMA - n[>1

In Fig. 3 the shifts predicted by (8) are compared with results
from EPM calculations. Excellent agreement is found.

B. Stress dependent effective masses

Shear strain modifies the effective masses in the [001]
valleys. Evaluating the corresponding second derivatives of (6)
at the band minimum (7), we obtain two different branches
for the effective mass across (my1) and along (m;2) the stress
direction:
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Fig. 6. Nonparabolicity parameter in the [001] valleys increases as function
of [110] tensile stress. Inset: Relation between dimensionless strain 7 and
stress in GPa.

(1—nge)! , nl <1

p— 9

my1(n)/my (1= sgn() )t L gl >1 9)
(T4+n5E)! . Inl<1

mea(n)/me = 1 (10)
(I+segn(m)3r)~" » Inl>1

Here, sgn denotes the sign function. The analytical expressions
for the transversal masses (9) and (10) are compared with
the masses obtained from EPM calculations in Fig. 4. Strong
anisotropy in the transversal masses generated by shear strain
is predicted by the analytical model.

For the longitudinal effective mass one obtains the following
expression from (6):

T=m)=t <1
my(n)/mi = . (an
A =1/[)= [l >1
Eq.(11) is compared with EPM results in Fig. 5. The longi-
tudinal mass diverges at 7 = 1 suggesting that a full-band
description is necessary for such high stress values [9].

C. Stress and nonparabolicity

Shear strain affects the value of the nonparabolicity param-
eter a.. Proceeding as in [10], we arrive at an expression for
the strain dependence of a:

1+ 2(nmy/M)>
O1— (nme/M)?

Expression (12) is plotted in Fig. 6. The relative increase
of a(n) is important at large stress values. Results of the
mobility simulations in a strained ultra-thin body FET along
the [110] stress direction, with and without stress dependence
of the the nonparabiolicity parameter taken into account, are
shown in Fig. 7. The stress dependence of the nonparabolicity
parameter results in an almost 25% decrease to the mobility
enhancement in a 3 nm thick SOI FET at a stress level of 3
GPa (Fig. 7). For stress values larger than 3 GPa the energy
difference from the minimum to the value at the X point
becomes smaller than kg7, and a full-band description is
required [9].

an) = (12)
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Fig. 7. [110] channel mobility in a 3 nm thick UTB FET at 3 GPa tensile
stress along the channel. Mobility is computed with & = ag and o = a(n).

IV. CONCLUSION

An efficient two-band k-p model is presented, which accu-
rately describes the conduction band minima in strained sili-
con. The model accurately describes stress dependences of the
effective mass and of the nonparabolicity parameter. Analytical
dependences of the valley shifts, transversal and longitudinal
effective masses, and the nonparabolicity parameter on shear
strain are obtained and analyzed. It is demonstrated that the
enhancement of low-field mobility in uniaxially stressed UTB
FETs is partly hampered by an increase in nonparabolicity at
higher stress.
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