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ABSTRACT

The modification of the silicon conduction band under
uniaxial [110] stress is considered. Special attention is
paid to the stress dependence of the non-parabolicity
parameter. An analytical expression of the dependence
of the non-parabolicity parameter on shear stress is ob-
tained. At 3 GPa stress the non-parabolicity is shown
to increase by a factor of 1.7. The stress dependence of
the non-parabolicity parameter is verified by compar-
ing the corresponding analytical density-of-states to the
numerical density-of-states obtained from the empirical
pseudopotential method and good agreement is found.
The increase in the non-parabolicity parameter increases
the after-scattering density-of-states and the scattering
rates, which results in an almost 25% suppression of the
mobility enhancement due to the corresponding effec-
tive mass decrease in a 3 nm Si body thin FET at 3
GPa [110] stress.

INTRODUCTION

Stress-induced mobility engineering has become a key
technique to increase the performance of modern CMOS
devices. The reason for the mobility enhancement lies in
the band structure modification caused by stress. The
conduction band in Si is commonly approximated by
three pairs of equivalent valleys with their minima lo-
cated close to the X-points of the Brillouin zone. Close
to the minima the electron dispersion is well described
by the effective mass approximation. At higher elec-
tron energies the non-parabolicity parameter (typically
α = 0.5 eV−1) has to be introduced to describe devia-
tions from the density of states of the purely parabolic
dispersion.

The semiconductor industry is exploiting stress tech-
niques compatible with existing CMOS process technol-
ogy. Stress is generated by local stressors and/or ad-
ditional cap layers. The technologically relevant stress
along the [110] direction was systematically investigated
experimentally only recently [1]. Inherent to [110] uni-

axial stress is a shear distortion of the Si crystal lattice,
which induces pronounced modifications in the conduc-
tion band. Shear strain produces nonlinear shifts be-
tween the valleys [2, 3], and the degeneracy between
the six equivalent valleys is lifted. Shear strain also
modifies substantially both the longitudinal [2, 3] and
transversal [1, 2, 3, 4] effective masses. The transversal
mass determines the mobility in a FET with ultra-thin
Si body. In such FETs the electron mobility enhance-
ment induced by [110] tensile stress is therefore solely
due to a decrease of the conductivity mass in the stress
direction [1, 2, 3]. However, a possible stress dependence
of the non-parabolicity parameter has not yet been con-
sidered.

TWO-BAND k·p THEORY AND NON-

PARABOLICITY

We consider the valley along the [001] direction only,
other valleys are analyzed in a similar fashion. The clos-
est band to the first conduction band ∆1 (i = 1) is the
second conduction band ∆2′ (i = 2). The two bands be-
come degenerate exactly at the X points. Since the min-
imum of the conduction band is only k0 = 0.15 2π

a
away

from the X point, the dispersion around the minimum is
well described by degenerate perturbation theory, which
includes only these two bands. Diagonal elements of the
Hamiltonian Hiiat the X point, where i = 1, 2 are:
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where m0 is the free electron mass, mt is the transversal,
and ml is the longitudinal effective mass. The values of
kz are counted from the X point and are thus negative.
The coupling between the two bands is described by the
off-diagonal terms [4]:
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We use for M the value computed by the empirical
pseudo-potential method (EPM) at the kz = −k0 point,
where the numerical value is close (but not equal) to
M ≈ mt/(1−mt/m0) reported in [4]. With degenerate
perturbation theory we obtain the following dispersion
relation:
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Expanding (3) around the minimum kz = −k0 with re-
spect to pz = kz−k0, one obtains a simplified dispersion
relation [5]:
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where ∆ = 2h̄k0p/m0 = 2h̄2k2
0/ml is the gap between

the ∆1 and the ∆2′ conduction bands at kz = −k0. To
estimate the value of the non-parabolicity parameter,
we follow [5], Appendix B, and average out the angular
dependence in (4). Assuming αE(k) to be small and
recasting terms, one finally obtains:
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Substituting Si parameter values in (5), we estimate α =
0.6 eV−1, which is close to the phenomenological value
of α = 0.5 eV−1.
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Figure 1: Conduction band profile along [001] for differ-
ent strain values in [110] direction.
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Figure 2: Dependences of the transversal effective mass
on shear stress. The mass develops two branches.

CONDUCTION BAND MODIFICATIONS

UNDER SHEAR STRAIN

Uniaxial stress along the [110] direction generates diago-
nal (εii) as well as off-diagonal (εxy) components of the
strain tensor in the principal coordinate system. The
diagonal components are added to the diagonal matrix
elements (1) of the [001] valley [6]:

Hii = H0

ii + δEC , (6)

where δEC = Ξd (εxx + εyy + εzz) + Ξu εzz, with Ξd

denoting the dilation and Ξu the uniaxial deformation
potentials for the conduction band. The off-diagonal
elements of the Hamiltonian are modified by the shear
strain components [4]:

Hij(k) = H0

ij − Dεxy, (7)

where D = 14 eV denotes the shear deformation poten-
tial.
The dispersion relation of the [001] valleys including the
shear strain component for the conduction band now
reads as:
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Valley shifts

The off-diagonal strain component lifts the degener-
acy between the two lowest conduction bands at the
X points along the [001] axis. Since the conduction
band minimum along the [001] axis is located near the
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Figure 3: Analytical expression for dependence of the
non-parabolicity parameter on stress. Inset: relation
between normalized stress and stress in GPa.

X point, the gap at the X point affects the position
of the minimum as illustrated in Fig. 1. The minimum
kmin moves closer to the X point. From (8) we obtain

kmin = −k0

√

1 − η2, |η| < 1 (9)

Here, the dimensionless off-diagonal strain η =
2Dεxy/∆ is introduced. For η ≥ 1 the valley minimum
stays exactly at the X point.
The minimum of the [001] valley moves down in energy
with respect to the remaining four fold degenerate val-
leys. For η ≤ 1 the strain dependence is quadratic, while
it is linear for η ≥ 1:
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The shifts predicted by (10) were compared with re-
sults from EPM calculations and excellent agreement
was found.

Stress-dependent effective masses

A shear strain component εxy modifies the effective
masses in the [001] valleys. Evaluating the second
derivatives of (8) at the band minimum (13), we ob-
tain two different branches for the effective mass across
(mt1) and along (mt2) the stress direction [110]:
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Figure 4: Numerical DOS in [001] valley normalized to
the DOS analytical expressions obtained without (dot-
ted lines) and with stress dependent nonarabolicity pa-
rameter (solid lines), for unstrained Si and Si under [110]
uniaxial stress.

Here, sgn(η) denotes the sign function. In Fig. 2 the
analytical expressions for the transversal masses (11)
and (12) are compared with the masses obtained from
EPM calculations. To improve the agreement at high
values of stress η ≈ 1, the deformation potential D is
set to be slightly stress dependent in the form D(η) =
D + βη2, with β = 0.7 eV.

Stress and non-parabolicity

Shear strain affects the value of the non-parabolicity
parameter α as well. In order to find the dependence,
we rewrite the dispersion relation (8) in the vicinity of
the valley minimum kmin, which in the case of kx, ky 6= 0
is equal to
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, (13)

and, therefore, depends on kxky. Expanding (8) around
the minimum (13) for small pz = kz −kmin, one obtains:
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Taking into account the shifts of the valley minima (13)
and the effective mass changes (11), (12), we rewrite
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(14) as
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where k̃x = (kx + ky)/
√

(2) and k̃y = (kx − ky)/
√

(2)
are the momentum projections in the rotated coordi-
nate system, where the new x axis is along the [110]
stress direction. The non-parabolic term written in the
original xy coordinate system is similar to the corre-
sponding term in (4). However, the parabolic term
contains the effective masses mt1(η),mt2(η), which are
modified due to [110] stress. Introducing new variables
x̃ = px/

√

mt2(η), ỹ = py/
√

mt1(η), we separate the
renormalization due to stress of the parabolic part of the
density-of-states (DOS) from the non-parabolic contri-
bution. One rewrites (4) at kz = −k0(η) as
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The last term gives the correction to the density of states
of the parabolic bands. Assuming the last term to be
small, we compute the correction to the DOS identifying
it with the isotropic non-parabolicity parameter α(η).
Taking into account the dependences (11) and (12) of
the masses mt1(η),mt2(η) on the stress η, we arrive at
an expression for the strain dependent non-parabolicity
parameter α(η):

α(η) = α0

1 + 2(ηmt/M)2

1 − (ηmt/M)2
(17)

Expression (17) is plotted in Fig. 3. The non-
parabolicity parameter depends on the square of the
stress value and therefore does not depend on whether
stress is tensile or compressive. This is expected, since
tensile stress in [110] direction produces compression
along [11̄1], thus α can not depend on the sign of stress.
Due to the quadratic dependence, the relative increase
of α(η) is more pronounced at relatively large stress val-
ues.

RESULTS AND DISCUSSION

Fig. 4 illustrates the density-of-states of the [001] valley
as a function of energy relative to the minimum, ob-
tained numerically from empirical pseudo-potential cal-
culations, for the unstressed case and stress equal to
3 GPa. The value of the non-parabolicity parameter
at 3GPa is 70% higher than the unstrained value α0,
according to (17). The DOS is normalized to the an-
alytical DOS corresponding to the parabolic dispersion

0 0.2 0.4 0.6 0.8 1
η

0

20

40

60

80

100

120

E
(X

) -
 E

m
in

 [m
eV

] numerical from DOS

(1-2η+η2)∆/4

Figure 5: Energy at the X point relative to the value
at the minimum. Solid line is a theoretical prediction
based on (8).

(dotted lines), with strain dependent transversal effec-
tive masses (11), (12) and strain dependent longitudinal
mass ml(η). The dependence of ml(η) on η is taken in
the form [2, 3]:

ml(η)/ml =







(1 − η2)−1 , |η| < 1

(1 − 1/|η|)−1 , |η| > 1

(18)

Without the non-parabolicity parameter included, con-
siderable deviations in the ratio of the numerical DOS
to its analytical value is observed at higher energies.
The ratio becomes much closer to unity, if the non-
parabolicity correction due to stress dependent α(η) is
taken into account in the analytical DOS (Fig. 4, solid
lines). However, a deviation of the numerical DOS from
the analytical model with the stress dependent non-
parabolicity parameter is observed for energies larger
than kBT at high stress value. This happens due to
the fact that the energy difference between the value at
the minimum and the value at the X point decreases
with stress (see Fig. 1). A pronounced peak in the nu-
merical DOS appears, which corresponds to the flat dis-
persion close to X. The energy value of the peak is
shown in Fig. 5 for different stress values and compared
with theoretical predictions based on (8). For stress
values larger than 3 GPa the energy difference from the
minimum to the value at the X point becomes smaller
than 2 × kBT , as seen from Fig. 5, and a full-band
description is required [2]. Through the modification
of the density of the after-scattering states, the non-
parabolicity parameter affects scattering rates and thus
the mobility of the system. As example we consider the
mobility in a double-gate FET sketched in Fig. 6. The
subband energies and corresponding wave functions are
calculated from the Schrödinger equation coupled self-
consistently with the Poisson equation, for each value
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Figure 6: Sketch of a double-gate MOSFET structure.
The contour plot shows the potential profile of the con-
duction band at the source-drain bias of 0.3 V and gate
voltage 0.0 V.

of the effective field. The wave functions are then used
to calculate the scattering rates. Our transport calcu-
lations account for electron-phonon interactions [5, 7]
and surface roughness scattering, which are the domi-
nant mechanisms determining the mobility in the region
of high effective fields. We use the original formulation
by Prange and Nee [8, 9, 10] of the surface roughness
scattering matrix elements.

Results of the mobility simulations in an ultra-thin body
FET with strain along the [110] direction, with and
without stress-dependence of the the non-parabolicity
parameter taken into account, are shown in Fig. 7 to-
gether with the mobility in an unstrained SOI FET.
Due to the stress dependence of the transversal mass
the mobility the in UTB FET under uniaxial stress is
significantly enhanced. However, when the stress depen-
dence of the non-parabolicity parameter is included, the
mobility enhancement is suppressed by almost 25% in a
3 nm thick SOI FET at a stress level of 3 GPa (Fig. 7).

CONCLUSION

The dependence of the non-parabolicity parameter on
shear strain is analyzed for the first time. An analytical
expression of the non-parabolicity parameter stress de-
pendence is obtained and verified by comparing the cor-
responding DOS to the numerical DOS obtained with
the empirical pseudo-potential method. The stress de-
pendence of the non-parabolicity parameter results in
almost 25% decrease of the mobility enhancement in a
3 nm thin SOI FET at high stress levels.
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Figure 7: Mobility in a 3 nm thick SOI FET at 3 GPa
[110] stress computed with and without stress depen-
dence of the non-parabolicity parameter.

ACKNOWLEDGMENT

This work, as part of the European Science Founda-
tion EUROCORES Programme FoNE, was supported
by funds from FWF (project I79-N16), CNR, EPSRC
and the EC Sixth Framework Programme, under Con-
tract N. ERAS-CT-2003-980409, and by the Austrian
Science Fund, project P19997-N14.

REFERENCES

[1] K. Uchida, T. Krishnamohan, K. C. Saraswat, and
Y. Nishi, in IEDM Techn. Dig. (2005), pp. 129–132.

[2] E. Ungersboeck et al., IEEE Trans.Electron De-
vices 54, 2183 (2007).

[3] V. Sverdlov, E. Ungersboeck, H. Kosina, and S. Sel-
berherr, in Proc. EUROSOI 2007 (January, 2007),
pp. 39–40.

[4] J. C. Hensel, H. Hasegawa, and M. Nakayama,
Physical Review 138, A225 (1965).

[5] C. Jacoboni and L. Reggiani, Reviews of Modern
Physics 55, 645 (1983).

[6] I. Balslev, Physical Review 143, 636 (1966).

[7] P. J. Price, Ann.Phys. 133, 217 (1981).

[8] R. E. Prange and T. W. Nee, Physical Review 168,
779 (1968).

[9] M. V. Fischetti et al., J.Appl.Phys. 94, 1079 (2003).

[10] D. Esseni, IEEE Trans.Electron Devices 51, 394
(2004).

224




