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Abstract— A two-band k·p model for the conduction band of
silicon is proposed and compared with other band structure
models, notably the nonlocal empirical pseudo-potential method
and the sp3d5s∗ nearest-neighbor tight-binding model. The two-
band k·p model is demonstrated to predict results consistent
with the empirical pseudo-potential method, and to accurately
describe the band structure around the valley minima, including
the effective masses and the band non-parabolicity. The tight-
binding model, on the other hand, overestimates the gap between
the two lowest conduction bands at the valley minima, which
results in an underestimation of the non-parabolicity effects.
When strain effects are included, the two-band k·p model
gives analytical expressions for the strain-dependence of band
structure parameters. Shear strain leads to profound changes
in the conduction band causing a shift of the valley minima in
momentum space and a modification of the effective masses. Also
in the strained case, predictions of the two-band k·p model are
in good agreement with those of the pseudo-potential method.

I. INTRODUCTION

The k·p theory allows to describe the band structure analyt-
ically. After the pioneering work by Luttinger and Kohn [1]
the six-band k·p method has become widely used to model
the valence band in silicon. The conduction band in silicon
is usually approximated by three pairs of equivalent minima
located near the X-points of the Brillouin zone. It is commonly
assumed that close to the minima the electron dispersion is
well described by the effective mass approximation. The non-
parabolicity parameter α is introduced to describe deviations
in the density of states from the purely parabolic expres-
sion, which become pronounced at higher electron energies.
In ultra-thin body (UTB) FETs, however, the band non-
parabolicity affects the subband energies substantially, and it
was recently indicated that anisotropic, direction-dependent
non-parabolicity could explain a peculiar mobility behavior
at high carrier concentrations in a FET with (110) UTB
orientation [2]. Therefore, a more refined description of the
conduction band minima beyond the usual single-band non-
parabolic approximation is needed. Another reason to chal-
lenge this standard approximation is its inability to address
properly the band structure modification under stress.

In biaxially stressed devices the electron mobility can be
nearly doubled [3]. The reason for the mobility enhance-
ment lies in the stress-induced band structure modification.
The degeneracy between the six equivalent valleys is lifted
due to stress-induced valley shifts. This reduces inter-valley
scattering. In case of tensile biaxial stress applied in the
{100} plane the four in-plane valleys move up in energy

and become de-populated. The two populated out-of-plane
valleys have favorable conductivity masses, which together
with reduced inter-valley scattering results in the observed
mobility increase [4]. Biaxial stress is introduced by growing
Si epitaxially on SiGe. This method, however, would require a
substantial modification of the CMOS fabrication process and
is not used in mass production. Instead, the semiconductor
industry is exploiting techniques compatible with existing
CMOS process technology. Stress in the channel is created by
local stressors and/or additional cap layers. Although already
successfully used in mass production, the technologically
relevant case of stress along [110] has received little atten-
tion within the research community. It was systematically
investigated experimentally just recently [5]. Inherent to [110]
uniaxial stress is a shear distortion of the Si crystal lattice,
which induces pronounced modifications in the conduction
band. The degeneracy between the six equivalent valleys is
lifted. Contrary to [100] uniaxial stress, the electron mobility
data for [110] stress suggest that the conductivity mass depends
on stress. This conclusion is also supported by recent results
of pseudo-potential band structure calculations [5], [6]. Shear
strain also modifies substantially both the longitudinal [7],
[8] and transversal [5], [7], [8], [9] effective masses. The
transversal mass determines the mobility in a FET with ultra-
thin Si body. In such FETs the electron mobility enhancement
induced by [110] tensile stress is therefore solely due to a
decrease of the conductivity mass in the stress direction [5],
[7], [8]. Any dependence of the effective masses on stress is
neglected within the single-band description of the conduction
band and can only be introduced phenomenologically. In order
to describe the dependence of the effective mass on stress a
single-band description is not sufficient, and coupling to other
bands has to be taken into account.

Recently, a 30 bands k·p theory was introduced [10].
Although universal, it cannot provide an explicit analytical
solution for the energy dispersion. In this work we present
an efficient two-band k·p theory. By comparing our results
with predictions of the empirical pseudo-potential method we
demonstrate that the theory accurately describes both the non-
parabolicty effects and the stress induced band structure mod-
ification for general stress conditions. It accurately reproduces
the stress dependence of the effective mass and of the non-
parabolicity parameter. The analytical two-band k·p model
allows to study the influence of the conduction band structure
on transport properties of stressed Si.
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Fig. 1. Band structure from the EPM (solid) and from the sp3d5s∗ model
(dashed).

II. EMPIRICAL NONLOCAL PSEUDO-POTENTIAL AND
TIGHT-BINDING BAND STRUCTURE CALCULATIONS

We use the empirical nonlocal pseudo-potential method
(EPM) for numerical band structure calculations. The param-
eters of the EPM method are adjusted in order to reproduce
the measurable quantities of semiconductors related to the
band structure: energy gap and effective masses. The method
includes spin-orbit coupling. In our calculations of the silicon
band structure we used the parameters from the work [11].

Recently, empirical tight-binding methods for band structure
calculations became popular. Already the sp3s∗ tight-binding
model allows to reproduce reasonably well the valence band
structure of silicon [12]. Recent development and calibration
of a more sophisticated sp3d5s∗ model [13] has improved
the reproducibility of the silicon conduction band. Agreement
between the band structures obtained from the EPM and the
sp3d5s∗ model with the parameters from [13] is good as
shown in Fig. 1. However, the conduction band minimum in
the sp3d5s∗ model is further away from the X point than in
EPM, where the valley minimum is located at the distance
k0 = 0.15 2π

a
from the X point (0.85 2π

a
from the Γ point).

This leads to an almost two times higher gap between the
two lowest conduction bands at the valley minimua (Fig. 2)
compared to ∆ = 0.53 eV found from the EPM. The increase
in the gap ∆ reduces the coupling between the conduction
bands. Since the non-parabolicity of the lowest conduction
band is determined by the coupling with other bands, as shown
below, the higher gap predicted by the tight-binding method
results in a substantially lower band non-parabolicty. It also
results in a different shape of the constant energy lines in
the kx, ky plane at kz = 0.85 2π

a
. Fig. 3 shows that the EPM

gives a more pronounced band warping than the sp3d5s∗ tight-
binding model does.
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Fig. 2. Conduction bands close to the valley minimum. The EPM (solid
lines) reproduces the band structure accurately.

III. TWO-BAND k·p MODEL

We consider the valley pair along the [001] direction.
Other valleys can be analyzed in a similar fashion. The
band closest to the first conduction band ∆1 (i = 1) is the
second conduction band ∆2′ (i = 2). The two bands become
degenerate exactly at the X points. Since the minimum of
the conduction band is only k0 = 0.15 2π

a
away from the X

point, the dispersion around the minimum is well described
by degenerate perturbation theory, which includes only these
two bands. Diagonal elements of the Hamiltonian Hii at the
X point are:

H0

ii(k) = (−1)i−1
h̄

m0

kzp +
h̄2k2

z

2ml

+
h̄2k2

x

2mt

+
h̄2k2

y

2mt

, (1)

where i = 1, 2, m0 is the free electron mass, mt is the
transversal and ml the longitudinal effective mass. The values
of kz are counted from the X point and are thus negative.
The coupling between the two bands is described by the off-
diagonal terms [9]:
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12
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M
. (2)

The parameter M is obtained from the k·p perturbation theory:
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We use for M the value computed by the EPM at the point
kz = −k0, where the numerical value is close (but not equal)
to M ≈ mt/(1 − mt/m0) reported in [9]. With degenerate
perturbation theory we obtain the following dispersion relation
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Fig. 3. Comparison between the kx, ky energy dispersion relations at
the minimum k0. The contour lines are spaced every 50 meV. Soild lines
correspond to the EPM and the dashed lines to the sp3d5s∗ model.

for the lowest band:
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h̄2k2

z
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+
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−
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(3)

Expanding (3) around the minimum kz = −k0 with respect to
qz = kz−k0, one obtains a simplified dispersion relation [14]:

E(k) =
h̄2q2

z

2ml

+
h̄2(k2

x + k2

y)

2mt

−

(

h̄2kxky

)2
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4
,

(4)

where ∆ = 2h̄k0p/m0 = 2h̄2k2

0
/ml is the gap between the

∆1 and the ∆2′ conduction bands at kz = −k0. To estimate
the value of the non-parabolicity parameter, we follow [14],
Appendix B, and average out the angular dependence in (4).
Assuming αE(k) to be small and recasting terms, one finally
obtains:

h̄2(k2

x + k2

y)

2mt

= E(k) (1 + αE(k)) ,

with
α =

1

2∆

(mt

M

)2

. (5)

Substituting the parameter values for Si in (5), we estimate
α = 0.6 eV−1, which is close to the empirical value of α =
0.5 eV−1.

In Fig. 4 the analytical expression is compared to the
numerical band structure obtained from the EPM at kz = −k0.
Excellent agreement is found up to an energy of 0.5 eV.
Fig. 4 demonstrates strong anisotropy which results in the
pronounced warping of the conduction band at higher energies.
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Fig. 4. Comparison of the dispersion relation (3) at the valley minimum
(dashed-dotted contour lines) with the EPM results (solid lines). The distance
between the equi-energy contour lines is 50 meV.

Fig. 5 shows that the sp3d5s∗ model predicts less anisotropy
(dashed contour lines). As indicated in Fig. 2, the gap between
the two lowest conduction bands predicted by the sp3d5s∗

model is unrealistically large. This results in a smaller coupling
between the bands. The solid contour lines shown in Fig. 5
obtained from (3) with an unrealistic value of ∆=1.2 eV
reproduce the results of the tight-binding model. This confirms
the observation that the larger gap between the two bands at
the valley minimum results in less anisotropy of the conduction
band.

IV. SHEAR STRAIN

In the principal coordinate system uniaxial stress along
the [110] direction generates diagonal (εii) as well as off-
diagonal (εxy) components of the strain tensor. The diagonal
components are added to the diagonal matrix elements (1) of
the [001] valley [15]:

Hii = H0

ii + δEC , (6)

where δEC = Ξd (εxx+εyy+εzz)+Ξu εzz , with Ξd denoting
the dilation and Ξu the uniaxial deformation potentials for the
conduction band. The off-diagonal elements of the Hamilto-
nian are modified by the shear strain components [9]:

Hij(k) = H0

ij − Dεxy, (7)

where D = 14 eV denotes the shear deformation potential.
The dispersion relation of the [001] valleys including the

shear strain component for the conduction band now reads:
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(8)
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Fig. 5. Dispersion at the valley minimum obtained from the sp3d5s∗ model
(dashed contour lines), from (3) with the correct EPM value ∆=0.53 eV
(dotted-dashed contours), and from (3) with ∆=1.2 eV (solid lines). The
distance between the equi-energy contour lines is 50 meV.

Because of shear strain the minimum kmin moves closer to
the X point. From (8) we obtain

kmin = −k0

√

1 − η2, |η| < 1 (9)

Here, the dimensionless off-diagonal strain η = 2Dεxy/∆
is introduced. Interestingly, for η ≥ 1 the valley minimum
rests exactly at the X point. In Fig. 6 we compare the results
of the EPM calculations with the analytical model (8) at the
minimum kz = −kmin for εxy= 1%. The agreement between
the two-band k·p model and the EPM calculations is excellent.
In contrast to the unstrained case shown in Fig. 4 the dispersion
relation at small kx and ky becomes anisotropic displaying the
dependence of the transversal effective mass on shear strain.
Evaluating the second derivatives of (8) at the band minimum
(9), we obtain two different branches for the effective mass
across (mt1) and along (mt2) the stress direction [110]:

mt

mt1(η)
=










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M
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(10)
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M
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(
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M

)
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(11)

Here, sgn(η) denotes the sign function.

V. CONCLUSION

An efficient two-band k·p model for the conduction band in
silicon is proposed. Predictions of the two-band k·p model are
compared with the results of the empirical nonlocal pseudo-
potential method and the sp3d5s∗ nearest-neighbor tight-
binding model. It is demonstrated that the two-band k·p model
is consistent with the results of the empirical pseudo-potential
method. The model accurately describes the whole band
structure around the valley minimum, including the effective
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Fig. 6. Comparison between the EPM band structure calculations and (8) at
the minimum kmin for shear strain εxy= 1%. The analytical model predicts
the anisotropic dependences of the transversal effective mass on shear strain.
The Contours are spaced at 50 meV.

masses and the band non-parabolicity. It is shown that the
sp3d5s∗ model overestimates the gap between the two lowest
conduction bands at the valley minimum and consequently
underestimates the anisotropy due to non-parabolic effects.
The two-band k·p model allows to account for shear stain,
which leads to profound changes in the conduction band
causing the valley minima to shift and the effective masses
to change. Predictions of the the two-band k·p method are
in good agreement with the results of the pseudo-potential
method.
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