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The most accurate way to describe carrier transport is to solve the Boltzmann transport equa-
tion (BTE), for instance with the very time consuming Monte-Carlo (MC) technique. On an en-
gineering level however macroscopic transport models are more efficient. Multiplication of the
BTE with weight functions, approximation of the scattering integral with a macroscopic relaxation
time and integration over k-space yields, for instance, the drift-diffusion model, the energy trans-
port model, and the six moments model [1]. As demonstrated in [2] and [3] for the bulk case,
a non-parabolic six moments model may be accurate down to 30 nm. The challenge is to model
higher-order transport parameters like the energy relaxation time τ1, the second-order relaxation
time τ2, the energy mobility µ1 and the second-order mobility µ2 (see Figure 2) with as few sim-
plifying assumptions as possible. A good choice is the use of tabulated. data extracted from MC
simulations [4]. So far, bulk data has been used to examine higher-order parameters in a device.
However, important effects like surface roughness scattering or the quantization in inversion layers
are not included in bulk MC-data.

In order to account for these effects, a selfconsistently coupled Subband-Monte-Carlo sim-
ulator (SMC) and a Schrödinger-Poisson (SP) solver (see Figure 1) are applied. The SP solves the
quantum confinement and the SMC simulates the 2D transport in each subband [5]. In order to be
consistent with the 2D-parameters the approach consistently, we have developed a 2D-higher-order-
transport model. The following equations yield the 2D and 3D transport model with D as the dimen-
sion of the system. With D0 = 1, D1 = 1, D2 = D/2, D3 = (2 + D)/2, D4 = (2 + D)D/24−D,
and D5 = (4 + D)(2 + D)/4 the model reads
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Here, φ denotes the moment of the equation. The even moments are the balance equations and the
odd ones are the fluxes. Hi are the non-parabolicity factors. For parabolic bands, Hi = 1. β is the
kurtosis and denotes the deviation from the Maxwellian distribution function (see Figure 4). For the
2D and the 3D case the kurtosis is defined as:
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In Figure 3 we show the output characteristics of the 2D drift-diffusion, energy transport, and the
six moments model of a SOI-MOSFET.

We introduce a 2D-nonparabolic-six-moments model for scaled devices. Due to the parame-
ter modeling based on MC-tables, important effects like quantization as well as surface roughness
scattering are inherently included.
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Figure 1: Transport parameters of a 2D-electron
gas in an inversion layer are extracted selfcon-
sistently and modeled through a whole device
with a device simulator.

Figure 2: Extracted second-order mobility as a
function of the driving field for different effec-
tive fields. The device simulator interpolates be-
tween these curves.
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Figure 3: The output characteristic of a UTB
SOI-Mosfet with a gate lenght of 40 nm calcu-
lated with the drift-diffusion model, the enery
transport model, and the six moments model.

Figure 4: The second-order temperature θ =
βT in comparison to the carrier temperature
T . With increasing drain voltage, the devia-
tion from the Maxwellian distribution (θ ≈ T ,
β ≈ 1) increases.
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