
A Parallel Generic Scientific Simulation Environment

René Heinzl, Philipp Schwaha, Franz Stimpfl, and SiegfriedSelberherr

Institute for Microelectronics, TU Wien, Gußhausstraße 27-29, Vienna, Austria

Abstract. Upcoming parallelization with multi-core processors as well as the
availability of large networks with high-speed interconnects require a change in
the used programming paradigms and techniques to develop scalable applica-
tions. Techniques for library-centric application designhave already proven to
be very useful in the past and are of utmost importance in the field of parallel
and scalable application design. However, the utilizationof multi-core processors
places new difficulties in application design for scientificcomputing. A parallel
generic scientific simulation environment enables parallelization by facilitating
a suitable combination of multiple programming paradigms and by following
modern application design guidelines, which is necessary in order to keep de-
velopment on multi-core processors as simple as possible, while not forsaking
any of their computational power. Inherent parallel assembly mechanisms for
large equations systems and multi-dimensional topological traversal mechanism
are presented.

1 Introduction

To secure a further a gain in computing performance the semiconductor industry has
shifted the upcoming processor upgrades to multi-core computer systems where the
gain in processing power is obtained by using an increasing number of processing cores
in the CPUs. For application developers, especially in the field of scientific computing,
the additional complexity of developing software which performs well on a varying
number of available processing units is thereby introduced. This evolutionary shift of
how the computational power of systems increases also requires the adoption of new
programming methodologies and libraries. While these havealready been developed
for multiprocessing systems in supercomputers for severalyears, they have yet to find
widespread adoption. Only by applying the concepts of parallelism in everyday pro-
gramming can the full power of the new multi-core processorsbe unlocked.

In the field of scientific computing, the increasing complexity of underlying physi-
cal models often also brings an increase of the complexity and amount of source code.
Current single desktop computer systems can already handlea great amount of scientific
simulations locally. Development of new methods, new models, and new techniques is
thereby greatly eased due to local and fast execution. Industrial problems and settings
often require large scale simulations which have to be performed on supercomputers.
However, the individual nodes of these supercomputers often do not differ in the execu-
tion speed from the desktop computers anymore. Instead theyare heavily parallelized
with a great amount of shared memory and are based on a large number of CPUs, which
is going to further increase in the near future. This scalingalso has to be reflected in
nowadays application design. Most initial developments ofscientific applications do
not require more than a processor with, e.g., ten cores and 8 GByte of memory, and
can thereby be easily performed on a workstation. Only for the final industrial setting
or final example, the application has to run on a supercomputer, where the amount of
CPUs is drastically increased, as is the amount of availablememory.

2

The concept of library-centric application design and the availability of a set of high per-
formance libraries significantly eases the development of highly scalable applications.
While scientific simulations have been among the first applications to embrace paral-
lelization, still not all fields of scientific computing makeuse of it, as it is perceived as
an additional and often overly complex task. The efficiency of developing and main-
taining source code is an increasingly important issue. It can be addressed by providing
modular building blocks which can be tested and refined independently of each other
and seamlessly integrated into the desired applications. Asimple work-flow present in
most applications includes the time needed to calculate thedistribution of quantities of
interest in a given simulation domain, which is mostly allocated to the assembly of an
equation system and its subsequent solution. How the time requirement is allocated de-
pends on the complexity of the equations being assembled andthe respective numerical
condition.

Most related work focuses on parallel toolkits within theirframeworks [1]. Our
approach is based on providing modular blocks which can be used on top of existing
libraries, such as the Boost graph library (BGL [2]), CGAL [3], GrAL [4], to unify
these interfaces. Also utmost emphasis is placed on the issues that already tested and
stable code has to be parallelized without modification of existing code. This is not
only important to speed up the development of parallel executing applications, but also
to preserve the already invested time to develop, calibrate, and debug an application.
We therefore present two approaches with our Generic Scientific Simulation Environ-
ment (GSSE) [5, 6], which enables the use of several parallelization techniques without
altering the existing algorithms.

Firstly, various multi-threading libraries are used in conjunction with the topologi-
cal partitioning provided by GSSE to subdivide the amount oftopological objects. Sev-
eral discretization schemes and the assembly times benefit greatly from this approach.
Secondly, parallel STL [7–9] techniques or libraries can easily be incorporated, which
require just a recompilation step, where all STL algorithmsand our GSSE algorithms,
which are built on top of these algorithms, are then executedparallely. These techniques
are already going to be incorporated into the GCC [10]. Finally, several MPI [11] im-
plementations are also possible, e.g., the Trilinos MPI mechanisms [12].

To present the application of the parallelization techniques we choose the area of
Technology Computer Aided Design (TCAD), which serves as the semiconductor in-
dustry’s branch of scientific computing. The increasing complexity of underlying phys-
ical models often brings an increase of the complexity and amount of source code.
Therefore, the efficiency of developing and maintaining source code is an increasingly
important issue. It can be addressed by providing modular building blocks which can
be tested and refined independently of each other and seamlessly integrated into the
desired applications.

2 The Parallel GSSE

As has already been demonstrated [5, 13], the goals of high run-time performance and
genericity do not have to be contradictory. Our approach deals with the identification
and implementation of building blocks for an easy specification of all different types of
discretized differential equations, reducing error pronetasks such as index calculations
or the evaluation of the elements of the Jacobian matrix, while at the same time not
sacrificing run-time performance. The most basic building block for the transition of
continuous function spaces to discrete spaces is the operation of topological traversal.

3

Several tasks in scientific computing can be greatly eased bythe utilization of functional
programming, e.g., using functional programming in the design of parallel applications.
Unfortunately several tasks defy the nature of stateless description, e.g., loading a file.
All different types of storage mechanisms as well as streaming processes cannot be
easily described by functions. Here, the actually stored elements are the important parts
and not their functional description. Therefore the whole application design cannot be
reduced to a purely functional description. However, most purely functional program-
ming languages, such as Haskell, ML [14] do not equally support other programming
paradigms, such as imperative or object-oriented programming. Due to these reasons,
our approach is based on a multi-paradigm approach, where each paradigm is used
where it performs best:

- The object-oriented paradigm is used where hierarchies of data types are relevant,
e.g., data type selections or additional properties of data. All containers or stor-
age mechanism can easily be covered by this paradigm becauseof the information
transportation between objects.

- The functional programming paradigm is best at describing functional expressions,
in our case discretized and linearized projections of the continuous function spaces.

- The generic programming paradigm couples the object-oriented and functional
paradigm by, e.g., the parametric polymorphism of C++. Generic programming
excels at the abstract treatment of objects, called concepts.

2.1 Topological Traversal

Topological traversal describes the iteration over elements of a data structure, e.g., a
doubly-linked list. The C++ STL offers great mechanisms forsequential containers and
the corresponding algorithms, but for more complex data structures a common way of
accessing data or iteration is not available at the moment. Different developments, such
as the BGL or CGAL, offer their own mechanisms, derived from the STL. The GSSE
offers a common topological approach, the generic topologylibrary (GTL [6]), where
all data structures are mapped to a cell complex and the corresponding mechanisms
derived from algebraic topology. Where the STL offers support for various simple data-
structures, the GSSE offers all different types of mesh and grid data-structures of all
dimensions. The generic functor library (GFL [6]) built on top of the topological inter-
face is then dimensionally and topologically independent.

For a parallel environment the most important issue for the transition of continuous
function spaces to discrete spaces is the operation of topological traversal. Most of
the parallelization is accomplished by accessing data structures in a parallel way. The
parallel version of the GSSE therefore introduces additional mechanisms on top of the
already existing libraries in a non-intrusive way. Next, a source snippet for C++ code is
given where a finite volume discretization of a generic Poission equation is discretized:

equ = (sum<edge>()
[

sum<vertex>() [phi] * area / dist
] + rho * vol
) (*v_it);

The functional body can be arbitrarily extended by other traversal operations, calcu-
lations, or assignments. This example is inherently fully parallelizable due to the func-
tional specification, wherev it represents a vertex iterator, an object from the traversal

4

space. An example is given next, where geometrical points are selected by a coordinate
functor:

for (vertex_iterator v_it = (iter_part).vertex_begin(threadID);
v_it != (iter_part).vertex_end(threadID); ++v_it)

// algorithm

The various discretization schemes differ with respect to which quantities they com-
pute and in which fashion. The crucial difference concerning assembly, however, is the
distinction of the required traversal operation. Actual access to quantities and insertion
into the matrix itself remains identical. The assembly of the Jacobian matrix is the final
crucial part, where the functional specification of the discretized equations is combined
with the required traversal operations. The clean separation of these two steps, guaran-
teed by our approach, also provides a clear interface for parallelization. The traversal
of the discretized simulation domain is responsible for theglobal assembly of the Jaco-
bian matrix, whereas the assembly module takes care of mapping the local operations
of each topological object to the global Jacobian matrix.

The assembly algorithms remain unchanged for parallelization, only the topological
traversal is partitioned automatically, e.g., an environment variable changes the number
of parallel execution tasks.

2.2 Parallel STL

Various approaches extend the C++ STL by parallel executionpaths. The basic mecha-
nism of the STL’s algorithms is given next by a simple exampleof afor each.

std::for_each(container.begin(), container.end(), functor);

The GSSE offers the same concept but in a more general way which separates the
discrete topological space (elements of a data structure) and the access to quantities. The
following example traverses all vertices / nodes of an arbitrary container and assigns a
value.

traverse<vertex>() [quan = 0] (container);

Another example is given next, where all edge lengths of a more complex container
structure is calculated. Here, the container has to model the concept of a data structure
with dimension greater than zero, e.g., a graph or a triangulation.

traverse<edge>()
[

dist = norm (sum<vertex>() [coord])
](container);

Most of the implementations of these traversal mechanisms use the C++ STL algo-
rithms internally and are thereby automatically parallelized by utilizing one of the par-
allel STL approaches. A linear speed-up corresponding to the number of cores can be
accomplished by a recompilation step and adjusting a run-time environment variable.

5

3 Examples

3.1 Device Simulation

We present an example of TCAD’s device simulation applications, where the most ba-
sic model, the drift-diffusion model, is comprised of four coupled partial differential
equations which need to be assembled. In this case the assembly time is usually small
compared to the time spent on the solution of the equation system. More sophisticated
and complex models such as energy transport or higher transport models however spend
an increasing amount of time on equation assembly. Parallelism of not only the assem-
bly procedure but also the pre- and post-processing algorithms is therefore of increas-
ing importance to decrease computation times. To demonstrate not only the functional
equation specification mechanism of the GSSE, but also the parallel approach mech-
anism the following code snippet demonstrates the actual C++ code for the electron
temperaturen te for hydro-dynamic device simulation application. Equation 1 show
the energy flux equation for electrons which is solved self-consistently with Poisson’s
equation and the current relations [15].

div
(

αn grad(nT 2
n)+gradϕ n Tn

)

= −gradϕ ·Jn−βn n(Tn−TLattice) (1)

The following source code snippet reflects the functional specification for a finite vol-
ume discretization scheme in actual C++ code. Eachsum is automatically parallelized
by the parallel STL, where the full matrix line is assembled in parallel by a vertex
partitioning mechanisms executed by a multi-threading mechanism:

(sum<edge>()
[

let(_x = Bern(edge_log<vertex>(T_n)) / T_n *
sum<vertex>() [phi] +
sum<vertex>() [T_n]
)

[
alpha_n * T_n / Bern(edge_log<vertex>(T_n)) *
sum<vertex>() [Bern(_x) * n * T_n] *
area / dist

]
]
+ sum<edge>()
[

sum<vertex>() [phi] / dist * J_n
] * vol
+ beta_n * n * (T_n - T_lattice) * vol
) (vx);

A benchmark for a simple drift-diffusion and hydro-dynamicsimulation for a two-
dimensional pn-diode with different compiler (GCC 4.2) optimization levels and dif-
ferent numbers of concurrent threads is presented next.

6

ExampleSequentialDual-coreQuad-coreNum. elements
DD, O1 32 (s) 9 (s) 6 (s) 1e4
DD, O3 11 (s) 8 (s) 6 (s) 1e4
HD, O1 41 (s) 15 (s) 7 (s) 1e4
HD, O3 20 (s) 9 (s) 6 (s) 1e4

Table 1: Comparisons of the simulation times for drift-diffusion and hydro-dynamic simulation
of a pn-diode with different optimization level (GCC 4.2) onAMD X2 6000 CPU’s (dual-core)
and AMD X4 Phenom 9600 (quad-core).

3.2 Mesh Generation and Adaptation

Another example for the utilization of a parallel topological traversal is given by the
task of Delaunay mesh generation and adaptation. Here we present a parallel combined
Delaunay and advancing front mesh generation and adaptation approach. The complete
hull is pre-processed separately to comply with the Delaunay property [16, 17]. This
guarantees a volume mesh generation approach, where each segment can be meshed
concurrently. The following snippet of code shows a centralpart of the mesh generation
application, using a GSSE container, parametrized to a specific data type, as an interface
for segments which are fed to a functional meshing routine.

gsse::for_each(container.segment_begin(),
container.segment_end(),
generate_mesh(thread_id++));

Figure 1 depicts a three-dimensional device structure (MOSFET), which can be cal-
culated on a workstation computer, whereas the full device is then simulated on four
AMD 4xDual-Core Opterons 8222 SE with 2x32 GByte and 2x16GByte RAM.

Example Sequential meshDual-coreQuad-coreNum. pointsNum. segments
MOSFET (industrial) 172 s 101s 101 s 1.7e6 7

MOSFET 70 s 42s 21 s 3.6e5 7

Table 2: Comparisons of the mesh generation and included mesh adaptation times (in seconds)
on AMD’s X2 6000 and AMD X4 Phenom 9600 (quad-core).

4 Conclusion

By using the concept of library-centric application designin the area of parallel envi-
ronments, it can be shown that the whole simulation process can be easily separated into
small building blocks. The appropriate realization of eachof these blocks guarantees not
only an impressive performance, but also eases development, scalability, stabilization,
further support, and parallelization.

5 Acknowledgment

This work has been supported by the Austrian Science Fund FWF, project P19532-N13,
and the Intel Corporation.

7

Fig. 1: A three-dimensional device structure for a MOSFET with an additional externally supplied
point cloud. The important part is the regularity of the elements in the channel region (red). The
different aspect ratios, e.g., the thin red oxide part and the large blue silicon part, are also an
additional complication for the mesh generation algorithm.

8

References

1. Kagstrom, B., Elmroth, E., Dongarra, J., (ed.), J.W.: Applied Parallel Computing. State of
the Art in Scientific Computing. Berlin / Heidelberg (2007)

2. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley (2002)

3. Fabri, A.: CGAL - The Computational Geometry Algorithm Library. In: Proc. of the 10th
Intl. Meshing Roundtable, CA, USA (2001) 137–142

4. Berti, G.: Generic Software Components for Scientific Computing. Dissertation, Technische
Universität Cottbus (2000)

5. Heinzl, R., Schwaha, P., Selberherr, S.: A High Performance Generic Scientific Simulation
Environment. In B. Kaagström et al., ed.: Lecture Notes in Computer Science. Volume
4699/2007. Springer, Berlin (2007) 996–1005

6. Heinzl, R.: Concepts for Scientific Computing. Dissertation, Technische Universität Wien,
Austria (2007)

7. Rauchwerger, L., Arzu, F., Ouchi, K.: Standard TemplatesAdaptive Parallel Library
(STAPL). In: Proc. Intl. Workshop on Languages, Compilers,and Run-Time Systems for
Scalable Computers, London, UK, Springer (1998) 402–409

8. Putze, F., Sanders, P., Singler, J.: MCSTL: The Multi-Core Standard Template Library. In:
Proc. Symposium on Principles and Practice of Parallel Programming, New York, NY, USA,
ACM (2007) 144–145

9. Singler, J., Sanders, P., Putze, F.: The Multi-Core Standard Template Library. In: Lecture
Notes in Computer Science. Volume 4641/2007. Springer, Berlin (2007) 682–694

10. Singler, J., Kosnik, B.: The libstdc++ Parallel Mode: Software Engineering Considerations.
In: Proc. of IWMSE 2008. (2008)

11. Squyres, J.M., Lumsdaine, A.: A Component Architecturefor LAM/MPI. In: Proc., 10th
European PVM/MPI Users’ Group Meeting. Number 2840 in Lecture Notes in Computer
Science, Venice, Italy, Springer (2003) 379–387

12. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., K., T.G., L., R.B., Long,
K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Wil-
lenbring, J.M., Williams, A., Stanley, K.S.: An Overview ofthe Trilinos Project. ACM
Transactions on Mathematical Software31(3) (2005) 397–423

13. Heinzl, R., Spevak, M., Schwaha, P., Selberherr, S.: A Generic Topology Library. In: Proc.
of the Object-Oriented Programming Systems, Languages, and Applications Conf., Portland,
OR, USA (2006) 85–93

14. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J., Willcock, J.: An Extended Comparative Study
of Language Support for Generic Programming. J. of Functional Programming17(2) (2007)
145–205

15. Schwaha, P., Schwaha, M., Heinzl, R., Ungersboeck, E., Selberherr, S.: Simulation Method-
ologies for Scientific Computing. In: Proc. of the 2nd ICSOFT2007, Barcelona, Spain
(2007) 270–276

16. Stimpfl, F., Heinzl, R., Schwaha, P., Selberherr, S.: A Multi-Mode Mesh Generation Ap-
proach for Scientific Computing. In: ESM 2007, St. Julians, Malta (2007) 506–513

17. Stimpfl, F., Heinzl, R., Schwaha, P., Selberherr, S.: High Performance Parallel Delaunay
Mesh Generation and Adaptation. In: Proc. of the PARA Conf.,Trondheim, Norway (2008)

