A Parallel Generic Scientific Simulation Environment

René Heinzl, Philipp Schwaha, Franz Stimpfl, and Siegf8eliberherr

Institute for Microelectronics, TU Wien, GuRhausstrae297Vienna, Austria

Abstract. Upcoming parallelization with multi-core processors adlae the
availability of large networks with high-speed intercoaotserequire a change in
the used programming paradigms and techniques to develabse applica-
tions. Techniques for library-centric application deshave already proven to
be very useful in the past and are of utmost importance in tié &f parallel
and scalable application design. However, the utilizadfomulti-core processors
places new difficulties in application design for scientd@mputing. A parallel
generic scientific simulation environment enables pdiaditon by facilitating
a suitable combination of multiple programming paradigmd ay following
modern application design guidelines, which is necessamyrder to keep de-
velopment on multi-core processors as simple as possiltiide wot forsaking
any of their computational power. Inherent parallel asdgmtechanisms for
large equations systems and multi-dimensional topolbgiagersal mechanism
are presented.

1 Introduction

To secure a further a gain in computing performance the serdigctor industry has
shifted the upcoming processor upgrades to multi-core coensystems where the
gain in processing power is obtained by using an increasingaer of processing cores
in the CPUs. For application developers, especially in te Bf scientific computing,
the additional complexity of developing software whichfpems well on a varying
number of available processing units is thereby introdu@®ds evolutionary shift of
how the computational power of systems increases alsoresjtiie adoption of new
programming methodologies and libraries. While these feready been developed
for multiprocessing systems in supercomputers for seyeals, they have yet to find
widespread adoption. Only by applying the concepts of pisth in everyday pro-
gramming can the full power of the new multi-core procesgersinlocked.

In the field of scientific computing, the increasing compligxif underlying physi-
cal models often also brings an increase of the complexitlyaamount of source code.
Current single desktop computer systems can already haigaésat amount of scientific
simulations locally. Development of new methods, new msdmhd new techniques is
thereby greatly eased due to local and fast execution. tridugroblems and settings
often require large scale simulations which have to be peréd on supercomputers.
However, the individual nodes of these supercomputers oftenot differ in the execu-
tion speed from the desktop computers anymore. Insteadatteelgeavily parallelized
with a great amount of shared memory and are based on a lamnggemof CPUs, which
is going to further increase in the near future. This scatitsp has to be reflected in
nowadays application design. Most initial developments@éntific applications do
not require more than a processor with, e.g., ten cores anBye®f memory, and
can thereby be easily performed on a workstation. Only ferfital industrial setting
or final example, the application has to run on a supercomputesre the amount of
CPUs is drastically increased, as is the amount of availakelaory.

The concept of library-centric application design and traglability of a set of high per-
formance libraries significantly eases the developmenigiilir scalable applications.
While scientific simulations have been among the first aptibois to embrace paral-
lelization, still not all fields of scientific computing makse of it, as it is perceived as
an additional and often overly complex task. The efficienty@veloping and main-
taining source code is an increasingly important issuearitie addressed by providing
modular building blocks which can be tested and refined iaddpntly of each other
and seamlessly integrated into the desired applicatiorsémfsle work-flow present in
most applications includes the time needed to calculatdigtgbution of quantities of
interest in a given simulation domain, which is mostly aditerl to the assembly of an
equation system and its subsequent solution. How the tiuénement is allocated de-
pends on the complexity of the equations being assemblethandspective numerical
condition.

Most related work focuses on parallel toolkits within th&@®meworks [1]. Our
approach is based on providing modular blocks which can bd oa top of existing
libraries, such as the Boost graph library (BGL [2]), CGAL,[&rAL [4], to unify
these interfaces. Also utmost emphasis is placed on thedgbat already tested and
stable code has to be parallelized without modification a$terg code. This is not
only important to speed up the development of parallel etveg@applications, but also
to preserve the already invested time to develop, calipeaté debug an application.
We therefore present two approaches with our Generic $ige8imulation Environ-
ment (GSSE) [5, 6], which enables the use of several paeatein techniques without
altering the existing algorithms.

Firstly, various multi-threading libraries are used in gmetion with the topologi-
cal partitioning provided by GSSE to subdivide the amournibpblogical objects. Sev-
eral discretization schemes and the assembly times beneditygfrom this approach.
Secondly, parallel STL [7-9] techniques or libraries casilgde incorporated, which
require just a recompilation step, where all STL algorittand our GSSE algorithms,
which are built on top of these algorithms, are then execpiedllely. These techniques
are already going to be incorporated into the GCC [10]. Bmnaéveral MPI [11] im-
plementations are also possible, e.g., the Trilinos MPIraasms [12].

To present the application of the parallelization techagwe choose the area of
Technology Computer Aided Design (TCAD), which serves assmiconductor in-
dustry’s branch of scientific computing. The increasing ptaxity of underlying phys-
ical models often brings an increase of the complexity andwarhof source code.
Therefore, the efficiency of developing and maintainingreewcode is an increasingly
important issue. It can be addressed by providing modulédibg blocks which can
be tested and refined independently of each other and sedynileegrated into the
desired applications.

2 The Parallel GSSE

As has already been demonstrated [5, 13], the goals of highime performance and
genericity do not have to be contradictory. Our approachsdeih the identification
and implementation of building blocks for an easy specificedf all different types of
discretized differential equations, reducing error prtasks such as index calculations
or the evaluation of the elements of the Jacobian matrixjendti the same time not
sacrificing run-time performance. The most basic builditagk for the transition of
continuous function spaces to discrete spaces is the apeadttopological traversal.

Several tasks in scientific computing can be greatly easéuaytilization of functional
programming, e.g., using functional programming in thegtesf parallel applications.
Unfortunately several tasks defy the nature of statelesergion, e.g., loading a file.
All different types of storage mechanisms as well as stragrprocesses cannot be
easily described by functions. Here, the actually storethehts are the important parts
and not their functional description. Therefore the whalpleEation design cannot be
reduced to a purely functional description. However, masely functional program-
ming languages, such as Haskell, ML [14] do not equally suppber programming
paradigms, such as imperative or object-oriented progriagudue to these reasons,
our approach is based on a multi-paradigm approach, whete garadigm is used
where it performs best:

- The object-oriented paradigm is used where hierarchieataf tiypes are relevant,
e.g., data type selections or additional properties of.dallacontainers or stor-
age mechanism can easily be covered by this paradigm bechtlseinformation
transportation between objects.

- The functional programming paradigm is best at descrihimgfional expressions,
in our case discretized and linearized projections of ti¢icaous function spaces.

- The generic programming paradigm couples the object-tmitand functional
paradigm by, e.g., the parametric polymorphism of C++. Gen@ogramming
excels at the abstract treatment of objects, called coscept

2.1 Topological Traversal

Topological traversal describes the iteration over eldmeha data structure, e.g., a
doubly-linked list. The C++ STL offers great mechanismssdequential containers and
the corresponding algorithms, but for more complex datecsires a common way of
accessing data or iteration is not available at the momefierBnt developments, such
as the BGL or CGAL, offer their own mechanisms, derived fréve $TL. The GSSE
offers a common topological approach, the generic topoligsry (GTL [6]), where
all data structures are mapped to a cell complex and the spwneling mechanisms
derived from algebraic topology. Where the STL offers supfoy various simple data-
structures, the GSSE offers all different types of mesh aitldata-structures of all
dimensions. The generic functor library (GFL [6]) built aptof the topological inter-
face is then dimensionally and topologically independent.

For a parallel environment the most important issue for taesition of continuous
function spaces to discrete spaces is the operation ofdgjwall traversal. Most of
the parallelization is accomplished by accessing datatstres in a parallel way. The
parallel version of the GSSE therefore introduces addiliomechanisms on top of the
already existing libraries in a non-intrusive way. Nextparse snippet for C++ code is
given where a finite volume discretization of a generic Rorsequation is discretized:

equ = (sunxedge>()
[

sumkvertex>() [phi] * area | dist
] +rho * vol

) (rv_it);

The functional body can be arbitrarily extended by otherdrsal operations, calcu-
lations, or assignments. This example is inherently fullygtlelizable due to the func-
tional specification, where.i t represents a vertex iterator, an object from the traversal

space. An example is given next, where geometrical poietselected by a coordinate
functor:

for (vertex_iterator v_it = (iter_part).vertex_begin(threadlD);
v it = (iter_part).vertex_end(threadlD); ++v_it)
[l algorithm

The various discretization schemes differ with respect ictv quantities they com-
pute and in which fashion. The crucial difference concegrissembly, however, is the
distinction of the required traversal operation. Actualexs to quantities and insertion
into the matrix itself remains identical. The assembly ef dlacobian matrix is the final
crucial part, where the functional specification of the thized equations is combined
with the required traversal operations. The clean searafi these two steps, guaran-
teed by our approach, also provides a clear interface fallptization. The traversal
of the discretized simulation domain is responsible forglobal assembly of the Jaco-
bian matrix, whereas the assembly module takes care of mgyipé local operations
of each topological object to the global Jacobian matrix.

The assembly algorithms remain unchanged for parall@izabnly the topological
traversal is partitioned automatically, e.g., an envirenfrvariable changes the number
of parallel execution tasks.

2.2 Parallel STL

Various approaches extend the C++ STL by parallel execygié@ins. The basic mecha-
nism of the STL's algorithms is given next by a simple exangdlaf or _each.

std::for_each(container.begin(), container.end(), functor);

The GSSE offers the same concept but in a more general wayhvgeigarates the
discrete topological space (elements of a data structnohee access to quantities. The
following example traverses all vertices / nodes of an eabjtcontainer and assigns a
value.

traverse<vertex>() [quan =0] (container);

Another example is given next, where all edge lengths of aengomplex container
structure is calculated. Here, the container has to moéeatdncept of a data structure
with dimension greater than zero, e.g., a graph or a triatigun.

traver se<edge>()
[

dist = norm (sumxvertex>() [coord])
] (container);

Most of the implementations of these traversal mechanissestive C++ STL algo-

rithms internally and are thereby automatically paratkdi by utilizing one of the par-

allel STL approaches. A linear speed-up correspondingdaamtimber of cores can be
accomplished by a recompilation step and adjusting a me-&nvironment variable.

3 Examples

3.1 Device Simulation

We present an example of TCAD’s device simulation applicetj where the most ba-
sic model, the drift-diffusion model, is comprised of fowwupled partial differential
equations which need to be assembled. In this case the dgsmdis usually small
compared to the time spent on the solution of the equatiaiesysvore sophisticated
and complex models such as energy transport or higher waimapdels however spend
an increasing amount of time on equation assembly. Pasafief not only the assem-
bly procedure but also the pre- and post-processing afgosiis therefore of increas-
ing importance to decrease computation times. To demdasicd only the functional
equation specification mechanism of the GSSE, but also tredlglaapproach mech-
anism the following code snippet demonstrates the actual €tle for the electron
temperaturen_t e for hydro-dynamic device simulation application. Equatib show
the energy flux equation for electrons which is solved setfsistently with Poisson’s
equation and the current relations [15].

div (an gradnT,?) +gradp n T,) = —gradp - In — Bn N(Tn — Tiattice) 1)

The following source code snippet reflects the functionaktsjation for a finite vol-
ume discretization scheme in actual C++ code. Eachis automatically parallelized
by the parallel STL, where the full matrix line is assembladparallel by a vertex
partitioning mechanisms executed by a multi-threadinghmasm:

(sumxedge>()
[
let(_x = Bern(edge_| og<vertex>(T_n)) / T.n *
sunkvertex>() [phi] +
sunkvertex>() [T_n]

)

[
alpha_n * T n/ Bern(edge_| og<vertex>(T_n)) *
sunkvertex>() [Bern(x) *n* Tn] *
area / dist
]
]
+ sunxedge>()

sunkvertex>() [phi] / dist * J.n
] * vol
+ betan*n* (T.n- Tlattice) * vol
) (vx);

A benchmark for a simple drift-diffusion and hydro-dynarsiculation for a two-
dimensional pn-diode with different compiler (GCC 4.2)ioptation levels and dif-
ferent numbers of concurrent threads is presented next.

ExampléSequentigDual-corgéQuad-cor&Num. elements
DD, O1| 32(s) 9(s) 6 (s) le4d
DD, 03| 11(s) 8 (s) 6 (s) led
HD,O1| 41(s) | 15(3) | 7 (3) led
HD, O3] 20 (s) 9(s) 6 (s) le4d

Table 1: Comparisons of the simulation times for drift-déffon and hydro-dynamic simulation
of a pn-diode with different optimization level (GCC 4.2) 8iMD X2 6000 CPU’s (dual-core)
and AMD X4 Phenom 9600 (quad-core).

3.2 Mesh Generation and Adaptation

Another example for the utilization of a parallel topolagjitraversal is given by the
task of Delaunay mesh generation and adaptation. Here \germira parallel combined
Delaunay and advancing front mesh generation and adaptgijaoroach. The complete
hull is pre-processed separately to comply with the Delgupraperty [16, 17]. This
guarantees a volume mesh generation approach, where egokrgecan be meshed
concurrently. The following snippet of code shows a cemtaat of the mesh generation
application, using a GSSE container, parametrized to dfgpeéata type, as an interface
for segments which are fed to a functional meshing routine.

gsse:: for_each(contai ner. segnment _begin(),
cont ai ner. segnent _end(),
generate_nesh(thread_i d++));

Figure 1 depicts a three-dimensional device structure (M, which can be cal-
culated on a workstation computer, whereas the full dewdden simulated on four
AMD 4xDual-Core Opterons 8222 SE with 2x32 GByte and 2x16@BYAM.

Example [Sequential megbual-coréQuad-corgNum. point$Num. segmentis
MOSFET (industrial) 172s 101s 101s 1.7e6 7
MOSFET | 70s 42s 21s 3.6e5 7

Table 2: Comparisons of the mesh generation and includeti edsptation times (in seconds)
on AMD’s X2 6000 and AMD X4 Phenom 9600 (quad-core).

4 Conclusion

By using the concept of library-centric application desigrhe area of parallel envi-
ronments, it can be shown that the whole simulation procasde easily separated into
small building blocks. The appropriate realization of eaftinese blocks guarantees not
only an impressive performance, but also eases developseahability, stabilization,
further support, and parallelization.

5 Acknowledgment

This work has been supported by the Austrian Science Fund pWject P19532-N13,
and the Intel Corporation.

Fig. 1: A three-dimensional device structure for a MOSFE#hwih additional externally supplied
point cloud. The important part is the regularity of the edeits in the channel region (red). The
different aspect ratios, e.g., the thin red oxide part amdlaénge blue silicon part, are also an
additional complication for the mesh generation algorithm

8

References

=

10.

11.

12.

13.

14.

15.

16.

17.

Kagstrom, B., Elmroth, E., Dongarra, J., (ed.), J.W.: WggpParallel Computing. State of
the Art in Scientific Computing. Berlin / Heidelberg (2007)

. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Liaréiser Guide and Reference

Manual. Addison-Wesley (2002)

. Fabri, A.: CGAL - The Computational Geometry Algorithnbkary. In: Proc. of the 10th

Intl. Meshing Roundtable, CA, USA (2001) 137-142

. Berti, G.: Generic Software Components for Scientific @ating. Dissertation, Technische

Universitat Cottbus (2000)

. Heinzl, R., Schwaha, P., Selberherr, S.: A High PerfomaaBeneric Scientific Simulation

Environment. In B. Kaagstrom et al., ed.: Lecture Notes omputer Science. Volume
4699/2007. Springer, Berlin (2007) 996-1005

. Heinzl, R.: Concepts for Scientific Computing. Disséotat Technische Universitat Wien,

Austria (2007)

. Rauchwerger, L., Arzu, F., Ouchi, K.: Standard Templaiesptive Parallel Library

(STAPL). In: Proc. Intl. Workshop on Languages, Compilensd Run-Time Systems for
Scalable Computers, London, UK, Springer (1998) 402—-409

. Putze, F., Sanders, P., Singler, J.: MCSTL: The MultieC8tandard Template Library. In:

Proc. Symposium on Principles and Practice of Parallelfaragning, New York, NY, USA,
ACM (2007) 144-145

. Singler, J., Sanders, P., Putze, F.: The Multi-Core Stah@iemplate Library. In: Lecture

Notes in Computer Science. Volume 4641/2007. SpringetirB@007) 682—694

Singler, J., Kosnik, B.: The libstdc++ Parallel Modeft®are Engineering Considerations.
In: Proc. of IWMSE 2008. (2008)

Squyres, J.M., Lumsdaine, A.. A Component ArchitecforetAM/MPI. In: Proc., 10th
European PVM/MPI Users’ Group Meeting. Number 2840 in LextNotes in Computer
Science, Venice, Italy, Springer (2003) 379-387

Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra,JJR.Hu, J.J., K., T.G., L., R.B., Long,
K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thprist, H.K., Tuminaro, R.S., Wil-
lenbring, J.M., Williams, A., Stanley, K.S.: An Overview tfe Trilinos Project. ACM
Transactions on Mathematical Softw&H3) (2005) 397-423

Heinzl, R., Spevak, M., Schwaha, P., Selberherr, S.: Ae@e Topology Library. In: Proc.
of the Object-Oriented Programming Systems, Languagesipplications Conf., Portland,
OR, USA (2006) 85-93

Garcia, R., Jarvi, J., Lumsdaine, A., Siek, J., Willcak: An Extended Comparative Study
of Language Support for Generic Programming. J. of FunatiBnogrammind.7(2) (2007)
145-205

Schwaha, P., Schwaha, M., Heinzl, R., Ungersboeck dhegherr, S.: Simulation Method-
ologies for Scientific Computing. In: Proc. of the 2nd ICSOEI07, Barcelona, Spain
(2007) 270-276

Stimpfl, F., Heinzl, R., Schwaha, P., Selberherr, S.: AtiMdode Mesh Generation Ap-
proach for Scientific Computing. In: ESM 2007, St. Julians|tel (2007) 506-513

Stimpfl, F., Heinzl, R., Schwaha, P., Selberherr, S.: hHigrformance Parallel Delaunay
Mesh Generation and Adaptation. In: Proc. of the PARA Canmbndheim, Norway (2008)

