
Parallel Library-Centric Application Design by a
Generic Scientific Simulation Environment

René Heinzl, Philipp Schwaha, Franz Stimpfl, and SiegfriedSelberherr

Institute for Microelectronics, TU Wien, Gußhausstraße 27-29, Vienna, Austria

1 Introduction

The increasing complexity of physical models often brings also an increase of the com-
plexity and amount of source code, thereby essentially increasing the importance of
efficiently developing and maintaining source code. This issue can be addressed by
providing modular building blocks which can be tested and refined independently of
each other and seamlessly integrated into the desired applications. Hence, the concept
of library-centric application design [1, 2] and the availability of a set of high perfor-
mance libraries significantly eases the development of highly scalable applications.

To secure a further gain in computing performance the semiconductor industry
has shifted the upcoming processor upgrades to multi-core computer systems, where
the gain in processing power is obtained by using an increased number of processing
cores in the CPUs. Current single desktop computer systems can already handle a large
amount of scientific simulations locally. Nevertheless, industrial problems and settings
often require large scale simulations which have to be performed on supercomputers,
where the individual nodes of these supercomputers often donot differ in the execution
speed from the desktop computers anymore. Instead they are heavily parallelized with
a large amount of shared memory. Only for the final industrialsetting or final example,
the application has to run on a supercomputer, where the amount of CPUs is drastically
increased, as is the amount of available memory. This scaling also has to be reflected in
nowadays application design.

While scientific simulations have been among the first applications to embrace par-
allelization, still not all fields of scientific computing make use of it. Most related work
therefore focuses on parallel toolkits within their frameworks [3]. Our approach is based
on providing modular blocks which can be used on top of existing libraries, such as the
Boost graph library (BGL [4]) or CGAL [5]. Also utmost emphasis is placed on the
issues that already tested and stable code has to be parallelized without modification of
existing source code. We therefore present two approaches with our Generic Scientific
Simulation Environment (GSSE) [2, 6]:

- Various multi-threading libraries are used in conjunctionwith the topological parti-
tioning provided by GSSE to subdivide the amount of topological objects. Several
discretization schemes and the assembly times benefit greatly from this approach.

- Recent developments towards parallel STL [7, 8] techniquesor libraries can easily
be incorporated, which require a recompilation step, whereall STL algorithms and
our GSSE algorithms, which are built on top of these algorithms, are then executed
parallely. These techniques are already going to be incorporated into the GCC [9].

These approaches enable the utilization of several parallelization techniques without al-
tering the developed, tested, and calibrated applicationsby simple re-compilation steps.

2

2 The Parallel GSSE

Our approach deals with the identification and implementation of building blocks for an
easy specification of various types of discretized differential equations, reducing error
prone tasks such as index calculations or the evaluation of the elements of the Jacobian
matrix, while at the same time not sacrificing run-time performance [6, 10].

Several tasks in scientific computing can be considerably eased by the utilization
of functional programming. Unfortunately several tasks defy the nature of stateless de-
scription. All different types of storage mechanisms as well as streaming processes
cannot be easily described by functions. Here, the actuallystored elements are the im-
portant parts and not their functional description. So, ourapproach is a multi-paradigm
approach, where each paradigm is used, where it performs best. The object-oriented
paradigm is used, where hierarchies of data types are relevant, e.g., data type selec-
tions or additional properties of data. The functional programming paradigm is best at
describing functional expressions, in our case discretized and linearized projections of
the continuous function spaces. The generic programming paradigm couples the object-
oriented and functional paradigm. Generic programming excels at the abstract treatment
of objects, called concepts.

2.1 Topological Traversal and Functional Description

The C++ STL offers great mechanisms for sequential containers and the corresponding
algorithms, but for more complex data structures a common way of accessing data or
iteration is not available at the moment. Different developments, such as the BGL or
CGAL, offer their own mechanisms, derived from the STL. The GSSE offers a common
topological approach, the generic topology library (GTL [2]), where all data structures
are mapped to a cell complex and the corresponding mechanisms are derived from
algebraic topology. The generic functor library (GFL [2]) built on top of the topological
interface is then dimensionally and topologically independent. An example of these
two libraries is given next, where a finite volume discretization of a generic Poisson
equation is discretized:

equ = (sum<edge>()
[sum<vertex>() [equ_pot] * area / dist] + rho * vol
) (*v_it);

The functional body can be arbitrarily extended by other traversal operations, calcula-
tions, or assignments. This example is inherently fully parallelizable due to the func-
tional specification, wherev it represents a vertex iterator, an object from the traversal
space. The parallel version of the GSSE introduces additional mechanisms on top of the
already existing libraries in a non-intrusive way by partitioning the this traversal space:

for (vertex_iterator v_it = (iter_part).vertex_begin(threadID);
v_it != (iter_part).vertex_end(threadID); ++v_it)

The assembly algorithms remain unchanged for parallelization, only the topological
traversal is partitioned automatically, e.g., an environment variable changes the number
of parallel execution tasks.

3

2.2 Parallel STL

Various approaches extend the C++ STL by parallel executionpaths. The GSSE offers
the same concept but in a more general way which separates thediscrete topological
space (elements of a data structure) and the access to quantities. The following example
illustrates the calculation for all edge lengths of a more complex container structure.

traverse<edge>()
[dist = norm (sum<vertex>() [coord]))(container);

The implementations of these traversal mechanisms use the C++ STL algorithms in-
ternally and are thereby automatically parallelized by utilizing one of the parallel STL
approaches. A linear speed-up corresponding to the number of cores can be accom-
plished by just a recompilation step and adjusting a run-time environment variable.

3 Examples

To present the application of the parallelization techniques we choose the area of Tech-
nology Computer Aided Design (TCAD), which serves as the semiconductor industry’s
branch of scientific computing.

3.1 Discretization Schemes

The following source snippet presents the parallel GSSE approach for an implicit sur-
face evolution, finite-difference (levelset) simulation.Here the topological vertex traver-
sal space is partitioned automatically by the number of available CPUs or threads.

for (vertex_iterator vit = (iter_part).vertex_begin(threadID);
vit != (iter_part).vertex_end(threadID); ++vit)

updatePoint(domain, v_it, cfl_timestep, speed_function);

The result of the deposition simulation is not only calculated concurrently, but also
meshed parallely [11]. Due to the partitioned traversal space and the independence of
the levelset function, a linear performance gain related tothe number of available cores
can be achieved. Finite-volume schemes can also be traversed in parallel by a parti-
tioned traversal space due to the line-wise entries of the stencil matrix [2, 12].

3.2 Mesh Generation and Adaptation

Another example for the utilization of a parallel topological traversal is given by the
task of Delaunay mesh generation and adaptation. Here we present a parallel combined
Delaunay and advancing front mesh generation and adaptation approach. The com-
plete hull is pre-processed separately to comply with the Delaunay property [11]. This
guarantees a volume mesh generation approach, where each segment can be meshed
concurrently. The following snippet of code shows a centralpart of the mesh generation
application:

gsse::for_each(container.segment_begin(),
container.segment_end(),
generate_mesh(thread_id++));

A GSSE container is used as an interface for segments which are fed to a functional
meshing routine.

4

Figure 1 depicts a three-dimensional device structure (MOSFET), which can be cal-
culated on a workstation computer, whereas the full device is then simulated on four
AMD 4xDual-Core Opterons 8222 SE with 2x32 GByte and 2x16GByte RAM.

Fig. 1: A three-dimensional device structure for a MOSFET with an additional externally supplied
point cloud. The important part is the regularity of the elements in the channel region (thin layer
of mesh elements in the center). The different aspect ratiosare also an additional complication
for the mesh generation algorithm.

Example Sequential meshDual-coreQuad-coreNum. pointsNum. segments
MOSFET (industrial) 172 s 101s 101 s 1.7e6 7

MOSFET 70 s 42s 21 s 3.6e5 7

Table 1: Comparisons of the mesh generation and included mesh adaptation times (in seconds)
on AMD’s X2 6000 and AMD X4 Phenom 9600 (quad-core).

4 Conclusion

Library-centric design does not only ease the development of applications significantly
by providing building blocks centralized in a generic environment, the GSSE. Also the
evolution of single-processing applications into parallel applications suitable for multi-
core processors is significantly supported by parallel components, thereby simplifying
development, scalability, stabilization, further support, and parallelization. Only apply-
ing the concepts of parallelism in everyday programming canunlock the full power of
the new multi-core processors.

5 Acknowledgment

This work has been supported by the Austrian Science Fund FWF, project P19532-N13,
and the Intel Corporation.

5

References

1. Heinzl, R., Schwaha, P., Selberherr, S.: Modern Conceptsfor High-Perfomance Scientific
Computing. In: Proc. of the 2nd ICSOFT 2007, Barcelona, Spain (July 2007) 100–107

2. Heinzl, R.: Concepts for Scientific Computing. Dissertation, Technische Universität Wien,
Austria (2007)

3. Kagstrom, B., Elmroth, E., Dongarra, J., (ed.), J.W.: Applied Parallel Computing. State of
the Art in Scientific Computing. Berlin / Heidelberg (2007)

4. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley (2002)

5. Fabri, A.: CGAL - The Computational Geometry Algorithm Library. In: Proc. of the 10th
Intl. Meshing Roundtable, CA, USA (2001) 137–142

6. Heinzl, R., Schwaha, P., Selberherr, S.: A High Performance Generic Scientific Simulation
Environment. In B. Kaagström et al., ed.: Lecture Notes in Computer Science. Volume
4699/2007. Springer, Berlin (2007) 781–790

7. Putze, F., Sanders, P., Singler, J.: MCSTL: The Multi-Core Standard Template Library. In:
Proc. Symposium on Principles and Practice of Parallel Programming, New York, NY, USA,
ACM (2007) 144–145

8. Singler, J., Sanders, P., Putze, F.: The Multi-Core Standard Template Library. In: Lecture
Notes in Computer Science. Volume 4641/2007. Springer, Berlin (2007) 682–694

9. Singler, J., Kosnik, B.: The libstdc++ Parallel Mode: Software Engineering Considerations.
In: Proc. of IWMSE 2008. (2008)

10. Heinzl, R., Spevak, M., Schwaha, P., Selberherr, S.: A Generic Topology Library. In: Proc.
of the Object-Oriented Programming Systems, Languages, and Applications Conf., Portland,
OR, USA (October 2006) 85–93

11. Stimpfl, F., Heinzl, R., Schwaha, P., Selberherr, S.: High Performance Parallel Delaunay
Mesh Generation and Adaptation. In: Proc. of the PARA Conf.,Trondheim, Norway (May
2008)

12. Spevak, M.: On the Specification and the Assembly of Discretized Differential Equations.
Dissertation, Technische Universität Wien, Austria (2008)

