Parallel Library-Centric Application Design by a
Generic Scientific Simulation Environment

René Heinzl, Philipp Schwaha, Franz Stimpfl, and Siegf@elberherr

Institute for Microelectronics, TU Wien, GuRhausstrale297Vienna, Austria

1 Introduction

The increasing complexity of physical models often brinigs an increase of the com-
plexity and amount of source code, thereby essentiallyeaing the importance of
efficiently developing and maintaining source code. Thisiéscan be addressed by
providing modular building blocks which can be tested arftheel independently of
each other and seamlessly integrated into the desiredcapiphis. Hence, the concept
of library-centric application design [1, 2] and the avhilay of a set of high perfor-
mance libraries significantly eases the development ofijnggalable applications.

To secure a further gain in computing performance the semiector industry
has shifted the upcoming processor upgrades to multi-comgater systems, where
the gain in processing power is obtained by using an incceasmber of processing
cores in the CPUs. Current single desktop computer systeamaleeady handle a large
amount of scientific simulations locally. Neverthelesslustrial problems and settings
often require large scale simulations which have to be peréd on supercomputers,
where the individual nodes of these supercomputers ofteroddiffer in the execution
speed from the desktop computers anymore. Instead theyeaw@yhparallelized with
a large amount of shared memory. Only for the final indussedting or final example,
the application has to run on a supercomputer, where the anodCPUs is drastically
increased, as is the amount of available memory. This gralso has to be reflected in
nowadays application design.

While scientific simulations have been among the first appibois to embrace par-
allelization, still not all fields of scientific computing kause of it. Most related work
therefore focuses on parallel toolkits within their franzelss [3]. Our approach is based
on providing modular blocks which can be used on top of exgdlibraries, such as the
Boost graph library (BGL [4]) or CGAL [5]. Also utmost emphssss placed on the
issues that already tested and stable code has to be paealieithout modification of
existing source code. We therefore present two approaciie®w Generic Scientific
Simulation Environment (GSSE) [2, 6]:

- Various multi-threading libraries are used in conjunctidth the topological parti-
tioning provided by GSSE to subdivide the amount of topatabobjects. Several
discretization schemes and the assembly times benefitygfean this approach.

- Recent developments towards parallel STL [7, 8] technigudibraries can easily
be incorporated, which require a recompilation step, wh#/8TL algorithms and
our GSSE algorithms, which are built on top of these algorghare then executed
parallely. These techniques are already going to be incated into the GCC [9].

These approaches enable the utilization of several pbzatien techniques without al-
tering the developed, tested, and calibrated applicabigisgmple re-compilation steps.

2 The Parallel GSSE

Our approach deals with the identification and implemeaitedi building blocks for an
easy specification of various types of discretized difféediequations, reducing error
prone tasks such as index calculations or the evaluatidreaflements of the Jacobian
matrix, while at the same time not sacrificing run-time perfance [6, 10].

Several tasks in scientific computing can be consideratdgaay the utilization
of functional programming. Unfortunately several taskfydiee nature of stateless de-
scription. All different types of storage mechanisms asl\asl streaming processes
cannot be easily described by functions. Here, the actstiled elements are the im-
portant parts and not their functional description. So,approach is a multi-paradigm
approach, where each paradigm is used, where it perforntsTies object-oriented
paradigm is used, where hierarchies of data types are releva., data type selec-
tions or additional properties of data. The functional pemgming paradigm is best at
describing functional expressions, in our case discreétarel linearized projections of
the continuous function spaces. The generic programmiraglgam couples the object-
oriented and functional paradigm. Generic programmingksat the abstract treatment
of objects, called concepts.

2.1 Topological Traversal and Functional Description

The C++ STL offers great mechanisms for sequential contaened the corresponding
algorithms, but for more complex data structures a commonafaccessing data or
iteration is not available at the moment. Different devetents, such as the BGL or
CGAL, offer their own mechanisms, derived from the STL. TI®SE offers a common
topological approach, the generic topology library (GTD[#here all data structures
are mapped to a cell complex and the corresponding mechsrasenderived from

algebraic topology. The generic functor library (GFL [2flilbon top of the topological

interface is then dimensionally and topologically indegemt. An example of these
two libraries is given next, where a finite volume discretiima of a generic Poisson
equation is discretized:

equ = (sunxedge>()
[sunxvertex>() [equ pot] * area/ dist] + rho * vol
) (Fv_it);

The functional body can be arbitrarily extended by otherdrsal operations, calcula-
tions, or assignments. This example is inherently fullyaializable due to the func-
tional specification, where.i t represents a vertex iterator, an object from the traversal
space. The parallel version of the GSSE introduces additrorchanisms on top of the
already existing libraries in a non-intrusive way by pastitng the this traversal space:

(iter_part).vertex_begin(threadl D);
(iter_part).vertex_end(threadl D); ++v_it)

for (vertex_iterator v_it
vit |

The assembly algorithms remain unchanged for parall@zabnly the topological
traversal is partitioned automatically, e.g., an envirenhvariable changes the number
of parallel execution tasks.

2.2 Parallel STL

Various approaches extend the C++ STL by parallel execptéths. The GSSE offers
the same concept but in a more general way which separatelisitrete topological

space (elements of a data structure) and the access tot@sarhe following example

illustrates the calculation for all edge lengths of a monmplex container structure.

traverse<edge>()
[dist = norm(sunxvertex>() [coord]))(container);

The implementations of these traversal mechanisms use+#teSTL algorithms in-
ternally and are thereby automatically parallelized biizitig one of the parallel STL
approaches. A linear speed-up corresponding to the nunftmores can be accom-
plished by just a recompilation step and adjusting a rure-tamvironment variable.

3 Examples

To present the application of the parallelization techa&we choose the area of Tech-
nology Computer Aided Design (TCAD), which serves as theisenauctor industry’s
branch of scientific computing.

3.1 Discretization Schemes

The following source snippet presents the parallel GSSEaggh for an implicit sur-
face evolution, finite-difference (levelset) simulatibtere the topological vertex traver-
sal space is partitioned automatically by the number oflalvls CPUs or threads.

for (vertex_iterator vit = (iter_part).vertex_begin(threadlD);
vit != (iter_part).vertex_end(threadlD); ++vit)
updat ePoi nt (domain, v_it, cfl_timestep, speed_function);

The result of the deposition simulation is not only calce¢atoncurrently, but also
meshed parallely [11]. Due to the partitioned traversatepnd the independence of
the levelset function, a linear performance gain relatedlénumber of available cores
can be achieved. Finite-volume schemes can also be travergmrallel by a parti-
tioned traversal space due to the line-wise entries of #necétmatrix [2, 12].

3.2 Mesh Generation and Adaptation

Another example for the utilization of a parallel topolagjitraversal is given by the
task of Delaunay mesh generation and adaptation. Here wemtra parallel combined
Delaunay and advancing front mesh generation and adaptagiproach. The com-
plete hull is pre-processed separately to comply with thialey property [11]. This

guarantees a volume mesh generation approach, where egokrgecan be meshed
concurrently. The following shippet of code shows a cemtaat of the mesh generation
application:

gsse: : for_each(contai ner. segment _begin(),
cont ai ner. segment _end(),
generate_nesh(thread_i d++));

A GSSE container is used as an interface for segments whécfedrto a functional
meshing routine.

Figure 1 depicts a three-dimensional device structure (MBI, which can be cal-
culated on a workstation computer, whereas the full dewdden simulated on four
AMD 4xDual-Core Opterons 8222 SE with 2x32 GByte and 2x16@&ByAM.

Fig. 1: A three-dimensional device structure for a MOSFE#hwih additional externally supplied
point cloud. The important part is the regularity of the edets in the channel region (thin layer
of mesh elements in the center). The different aspect ratiesilso an additional complication
for the mesh generation algorithm.

Example [Sequential megbual-corgQuad-corgNum. point$Num. segmentis
MOSFET (industrial) 172s 101s 101s 1.7e6 7
MOSFET | 70s 42s 21s 3.6e5 7

Table 1: Comparisons of the mesh generation and includeti adsptation times (in seconds)
on AMD’s X2 6000 and AMD X4 Phenom 9600 (quad-core).

4 Conclusion

Library-centric design does not only ease the developmfaaqtplications significantly
by providing building blocks centralized in a generic eoniment, the GSSE. Also the
evolution of single-processing applications into patalf@lications suitable for multi-
core processors is significantly supported by parallel comepts, thereby simplifying
development, scalability, stabilization, further sugpand parallelization. Only apply-
ing the concepts of parallelism in everyday programminguw@nck the full power of
the new multi-core processors.

5 Acknowledgment

This work has been supported by the Austrian Science Fund pxfect P19532-N13,
and the Intel Corporation.

References

10.

11.

12.

. Heinzl, R., Schwaha, P., Selberherr, S.: Modern Condeptsigh-Perfomance Scientific

Computing. In: Proc. of the 2nd ICSOFT 2007, Barcelona, I5f&ily 2007) 100-107

. Heinzl, R.: Concepts for Scientific Computing. Disséotat Technische Universitat Wien,

Austria (2007)

. Kagstrom, B., Elmroth, E., Dongarra, J., (ed.), J.W.: WgzpParallel Computing. State of

the Art in Scientific Computing. Berlin / Heidelberg (2007)

. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Ligratser Guide and Reference

Manual. Addison-Wesley (2002)

. Fabri, A.: CGAL - The Computational Geometry Algorithmbkary. In: Proc. of the 10th

Intl. Meshing Roundtable, CA, USA (2001) 137-142

. Heinzl, R., Schwaha, P., Selberherr, S.: A High PerfomaaBeneric Scientific Simulation

Environment. In B. Kaagstrom et al., ed.: Lecture Notes amPuter Science. Volume
4699/2007. Springer, Berlin (2007) 781-790

. Putze, F., Sanders, P., Singler, J.. MCSTL: The MultieC8tandard Template Library. In:

Proc. Symposium on Principles and Practice of Parallelfaragning, New York, NY, USA,
ACM (2007) 144-145

. Singler, J., Sanders, P., Putze, F.: The Multi-Core Stahd@iemplate Library. In: Lecture

Notes in Computer Science. Volume 4641/2007. SpringelirB@007) 682—694

. Singler, J., Kosnik, B.: The libstdc++ Parallel Mode: 8@fre Engineering Considerations.

In: Proc. of IWMSE 2008. (2008)

Heinzl, R., Spevak, M., Schwaha, P., Selberherr, S.: Ae@e Topology Library. In: Proc.
of the Object-Oriented Programming Systems, LanguagesApplications Conf., Portland,
OR, USA (October 2006) 85-93

Stimpfl, F., Heinzl, R., Schwaha, P., Selberherr, S.: hHtgrformance Parallel Delaunay
Mesh Generation and Adaptation. In: Proc. of the PARA Canbndheim, Norway (May
2008)

Spevak, M.: On the Specification and the Assembly of Bisted Differential Equations.
Dissertation, Technische Universitat Wien, Austria 200

