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Abstract—Carbon nanotubes (CNTs) have been studied in
recent years due to their exceptional electronic, opto-electronic,
and mechanical properties. To explore the physics of carbon nan-
otube field-effect transistors (CNT-FETs) self-consistent quantum
mechanical simulations have been performed. The performance
of carbon nanotube-based transistors is analyzed numerically,
employing the non-equilibrium Green’s function formalism.
Electron-phonon interaction parameters, such as electron-phonon
coupling strength and phonon energy, strongly depend on the
chirality and the diameter of the carbon nanotube. The steady-
state and the dynamic response of carbon nanotube based
transistors are studied for a wide range of electron-phonon
interaction parameters.

I. INTRODUCTION

Novel structures and materials such as multiple gate MOS-

FETs, carbon nanotube field-effect transistors (CNT-FETs),

and molecular based transistors, are expected to be introduced

to meet the requirements for scaling [1]. CNTs can be consid-

ered as a graphene sheet which has been wrapped into a tube.

The way the graphene sheet is wrapped is represented by a

pair of indices (n,m) called the chiral vector. The integers n
and m denote the number of unit vectors along two directions

in the honeycomb crystal lattice of graphene. If m = 0, the

CNT is called zigzag. If n = m, the CNT is called armchair.

Otherwise, it is called chiral. CNTs with n−m = 3 are metals,

otherwise they are semiconductors [2]. Semiconducting CNTs

can be used as channels for transistors [3], and metallic CNTs

can serve as interconnect wires [4].

CNT-FETs have been considered in recent years as po-

tential alternatives to CMOS devices due to their excellent

electronic properties [5, 6]. Some of the interesting electronic

properties of CNTs are quasi-ballistic carrier transport [7],

suppression of short-channel effects due to one-dimensional

electron transport [8, 9], and nearly symmetric structure of the

conduction and valence bands [10], which is advantageous

for complementary circuits. Moreover, owing to excellent

optical properties of CNTs, an all-CNT electronic and opto-

electronic devices can be envisioned. The direct band-gap

and the tunability of the band-gap with the CNT diameter

renders them as suitable candidates for opto-electronic devices,

especially for infra-red (IR) applications [11, 12] due to the

relatively narrow band gap.

The non-equilibrium Green’s function (NEGF) method has

been successfully utilized to investigate the characteristics of

nano-scale silicon transistors [13–15], CNT-FETs [16–24], and

molecular devices [25–30]. In this work we discuss the NEGF

formalism to study quantum transport in CNT-FETs.

The outline of the paper is as follows. In Section II, the

NEGF formalism is briefly described. The implementation of

this method for CNT-FETs is presented in Section III. The

electron-phonon interaction parameters of a CNT depend on

the chiral vector, which implies that many different parameter

values exist. In Section IV the device response is studied for

a wide range of electron-phonon interaction parameters. After

a brief discussion in Section V conclusions are presented in

Section VI.

II. NON-EQUILIBRIUM GREEN’S FUNCTION FORMALISM

The NEGF formalism initiated by Schwinger, Kadanoff,

and Baym allows to study the time evolution of a many-

particle quantum system. Knowing the single-particle Green’s

functions of a given system, one may evaluate single-particle

quantities such as carrier density and current. The many-

particle information about the system is cast into self-energies,

which are part of the equations of motion for the Green’s

functions. A perturbation expansion of the Green’s functions

is the key to approximate the self-energies. Green’s functions

enable a powerful technique to evaluate the properties of a

many-body system both in thermodynamic equilibrium and

non-equilibrium situations.

Four types of Green’s functions are defined as the non-

equilibrium statistical ensemble averages of the single particle

correlation operator [31]. The greater Green’s function G>

and the lesser Green’s function G< deal with the statistics of

carriers. The retarded Green’s function GR and the advanced

Green’s function GA describe the dynamics of carriers.

G>(1, 2) = −i~−1〈ψ̂(1)ψ̂†(2)〉
G<(1, 2) = +i~−1〈ψ̂†(2)ψ̂(1)〉
GR(1, 2) = θ(t1 − t2)[G

>(1, 2) −G<(1, 2)]

GA(1, 2) = θ(t2 − t1)[G
<(1, 2) −G>(1, 2)]

(1)

The abbreviation 1 ≡ (r1, t1) is used, 〈. . .〉 is the statistical

average with respect to the density operator, θ(t) is the unit

step function, ψ̂†(r1, t1) and ψ̂(r1, t1) are the field operators

creating or destroying a particle at point (r1, t1) in space-

time, respectively. The Green’s functions are all correlation

functions. For example, G> relates the field operator ψ̂ of the

particle at point (r1, t1) in space-time to the conjugate field

operator ψ̂† at another point (r2, t2).
Under steady state condition the Green’s functions depend

only on time differences. One usually Fourier transforms the
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time difference coordinate, τ = t1−t2, to energy. For example,

the lesser Green’s function is transformed as G<(1, 2) ≡
G<(r1, r2;E) =

∫

(dτ/~)eiEτ/~G<(r1, r2; τ).
Under steady-state condition the equation of motion for the

Green’s functions can be written as [32]:

[E −H]GR,A(1, 2) −
∫

d3 ΣR,A(1, 3)Gr,a(3, 2) = δ1,2

(2)

G≶(1, 2) =

∫

d3

∫

d4 GR(1, 3)Σ≶(3, 4)GA(4, 2) (3)

where H is the single-particle Hamiltonian operator, and ΣR,

Σ<, and Σ> are the retarded, lesser, and greater self-energies,

respectively.

III. IMPLEMENTATION

This section describes the implementation of the outlined

NEGF formalism for the numerical analysis of CNT-FET.

Fig. 1 shows the structure of the simulated device. A tight-

Fig. 1. Cross section of the investigated CNT based transistor and the
band-edge profile at the source sided metal-CNT interface. Depending on
the work function difference between metal and CNT, a positive, zero, or
negative barrier height for electrons or holes can be achieved.

binding Hamiltonian is used to describe transport phenomena

in CNT-FETs. The self-energy due to electron-phonon inter-

actions are studied next.

A. Tight-Binding Hamiltonian

In Graphene three σ bonds hybridize in an sp2 configu-

ration, whereas the other 2pz orbital, which is perpendicular

to the graphene layer, forms π covalent bonds. The π energy

bands are predominantly determining the solid state properties

of graphene. Similar considerations hold for CNTs. We use

a nearest-neighbor tight-binding π-bond model [33]. Each

atom in an sp2-coordinated CNT has three nearest neighbors,

located acc = 1.42 Å away. The band-structure consists of

π-orbitals only, with the hopping parameter t = Vppπ ≈
−2.7 eV and zero on-site potential.

The tight-binding Hamiltonian matrix for a (n, 0) zigzag

CNT, shown in Fig. 2-a, can be written as [33]

H =













U1 t1

t1 U2 t2

t2
†

U3 t1

t1 U4 t2
†

t2 U5 .

. .













(4)

where the underlined quantities denote matrices. We assume

that the electrostatic potential shifts the on-site potential.

Fig. 2. Layer layout of a (n, 0) zigzag CNT. a) The coupling matrices
between layers are denoted by t1 and t2, where t1 is a diagonal matrix and t2
includes off-diagonal elements. b) The corresponding one-dimensional chain,
in mode space, with two sites per unit cell with hopping parameters t and
tν
2

= 2t cos(πν/n).

Therefore, Ui is a diagonal matrix which represents the

electrostatic potential energy in the ith circumferential ring

of carbon atoms. Equal electrostatic potential for all carbon

atoms within a ring is assumed, therefore Ui = UiI . The first

and second kind of interaction matrix between the neighboring

rings are denoted by t1 and t2. Only the nearest neighbor

interaction between carbon atoms is considered. The coupling

matrix between layer 2 and layer 3 is diagonal, t1 = t I , where

t is the hopping parameter. However, the coupling matrix

between layer 1 and layer 2 is given by

t2 =







t t

t t

t t

. .






(5)

The eigen vectors of the matrix t2 represent plane waves

around the circumference of the CNT with the quantized wave-

vectors kν = 2πν/
√

3accn, where ν = 1, 2, . . . n [33], and the

eigen values 2t cos (πν/n). By transforming from real space

into eigen mode space [34], the subbands become decoupled

and the Hamiltonian can be written as H =
∑

ν H
ν , where

Hν , the Hamiltonian of the subband ν, is given by

H
ν =













U
ν

1 t
ν

1

t
ν

1 U
ν

2 t
ν

2

t
ν

2 U
ν

3 t
ν

1

t
ν

1 U
ν

4 t
ν

2

t
ν

2 U
ν

5 .

. .













, (6)

where Uν
i = Ui, t

ν
1 = t, and tν2 = 2t cos (πν/n) [23, 33].

The one-dimensional tight-binding Hamiltonian Hν describes

a chain with two sites per unit cell with on-site potential Uν
i

and hopping parameters t and tν2 , see Fig. 2-b.



B. Electron-Phonon Self-Energies

Because in the CNT two degrees of freedom are confined,

an electron can only be scattered forward or backward in

the axial direction, preserving or changing the sign of the

band-velocity, respectively. We assume bias conditions for

which the first subband predominantly contributes to the total

current and only intra-subband intra-valley transitions have to

be considered.

A linear dispersion relation for acoustic phonons is assumed,

ωq,λ ≈ υλ|q|, where υλ is the acoustic phonon velocity

and λ is the phonon polarization. For optical phonons the

energy is assumed to be independent of the phonon wave-

vector ωq,λ ≈ ωOP,λ = const. Similarly, the matrix elements

of electron-phonon interaction [35] can be approximated as

Mq,λ ≈ MAP
λ |q| for acoustic phonons and Mq,λ ≈ MOP

λ =
const for optical phonons. The interaction of electrons with

optical phonons is inelastic. Assuming that the electron-

phonon interaction occurs locally [36] the self-energies can

be written as

Σ<,ν
inel(E) =

∑

λDinel,λ

×[(Nλ + 1)G<,ν(E + ~ωλ) +NλG
<,ν(E − ~ωλ)]

(7)
Σ>,ν

inel(E) =
∑

λDinel,λ

×[(Nλ + 1)G>,ν(E − ~ωλ) +NλG
>,ν(E + ~ωλ)]

(8)

where Nλ is the phonon occupation number which is given by

the Bose-Einstein distribution function. The electron-phonon

interaction strength is given by

Dinel,λ =
~|MOP

λ |2

2nmcωλ
(9)

where mc is the mass of a carbon atom. The first term

in (7) corresponds to the emission of a phonon by the de-

excitation of an electron and the second term corresponds to

the excitation of an electron by the absorption of a phonon.

Interaction with acoustic phonons can be regarded as elastic

scattering, E ± ~ωλ ≈ E, and the approximation Nλ ≈
Nλ+1 ≈ kBT/~υλ can be used. Based on this approximation,

the self-energies for acoustic phonon interaction simplify to

Σ
≶,ν
el (E) = Dν

elG
≶,ν(E) (10)

Del,λ =
kBT |MAP

λ |2

nmcυλ
(11)

The self-energy due to electron-phonon interaction comprises

the contributions of elastic and inelastic scattering mecha-

nisms, Σν
e−ph = Σν

el + Σν
inel. The transport equations must be

iterated to achieve convergence of the electron-phonon self-

energies, resulting in a self-consistent Born approximation.

C. Self-Consistent Simulations

To solve transport equations numerically they need to be

discretized in both the spatial and the energy domain. The

carrier concentration at some node l of the spatial grid and

the current density at the edge between the nodes l and l+ 1
are given by

nl = −4i
∑

ν

∫

dE

2π
G<,ν

l,l (E) (12)

jl,l+1 =
4q

~

∑

ν

∫

dE

2π
2ℜe{G<,ν

l,l+1(E)tνl+1,l} (13)

where the factor 4 is due to the spin and band degeneracy.

For an accurate analysis it is essential to solve the coupled

system of transport equations and the Poisson equation self-

consistently [30]. The convergence of the self-consistent itera-

tion is a critical issue. To achieve convergence, fine resonances

at some energies in (12) have to be resolved accurately. For

that purpose an adaptive method for selecting the energy grid

is essential [37].

IV. THE EFFECT OF ELECTRON-PHONON INTERACTION

The electron-phonon coupling strength and the phonon en-

ergy depend on the chirality and the diameter of the CNT [35].

In this section the device response is studied for a wide range

of electron-phonon interaction parameters.

A. Electron-Phonon Coupling Strength

Fig. 3-a shows the ballisticity as a function of the electron-

phonon coupling strength. The ballisticity is defined as

ISc/IBl, the ratio of the on-current in the presence of electron-

phonon interaction to the current in the ballistic case [38].

The left part of Fig. 3-b illustrates an electron losing its

kinetic energy by emitting a phonon. The electron will be

scattered either forward or backward. In the case of backward

scattering the electron faces a thick barrier near the source

contact and will be reflected with high probability, such that

its momentum will again be directed towards the drain contact.

Elastic scattering conserves the energy of carriers, but

the current decreases due to elastic back-scattering of carri-

ers. Fig. 4-a shows that for elastic scattering the source and

drain current spectra are symmetric. As the electron-phonon

coupling strength increases, resonances in the current spectrum

are washed out and the total current decreases due to elastic

back-scattering. In the case of inelastic scattering, carriers

acquiring enough kinetic energy can emit a phonon and scatter

Fig. 3. a) Ballisticity versus electron-phonon coupling strength for a CNT of
50 nm length. Results for both elastic and inelastic scattering with different
phonon energies are shown. The operating point is VG = VD = 1 V. b)
Sketch of phonon emission and absorption processes in the channel.
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Fig. 4. The spectra of the source and drain currents. a) The effect of elastic
phonon scattering with different coupling strengths is shown. b) The effect
of inelastic phonon scattering with different coupling strengths is shown. The
phonon energy is ~ω = 100 meV.

into lower energy states. Therefore, as shown in Fig. 4-b, the

source and drain current spectra are not symmetric. As the

coupling strength increases more electrons are scattered into

lower energy states.

B. Phonon Energy

Figure 5-a shows the dependence of the ballisticity with re-

spect to the phonon energy. With increasing phonon energy the

effect of phonon scattering on the current is reduced, because

scattered electrons lose more kinetic energy and the proba-

bility for traveling back to the source contact decreases. The

considerable decrease of ballisticity for low energy phonons

is due to the phonon absorption process. The right part of

Fig. 3-b shows an electron absorbing energy from a phonon

and scattering into a higher energy state. In this case, the

probability for arriving at the source contact increases. This

process can severely reduce the total current.

Fig. 5-b separately shows the effects of the phonon emission

and absorption processes on the ballisticity. As the phonon

energy decreases, the phonon occupation number increases

exponentially, and the self-energy contributions of these two

components increase. However, due to the higher probability

for back-scattering of electrons in the case of phonon absorp-

tion, this component reduces the total current more effectively

than the phonon emission process does.

Fig. 5. a) Ballisticity versus phonon energy for a CNT of 50 nm length.
Results for inelastic scattering with different electron-phonon couplings are
shown. VG = VD = 1 V. b) Ballisticity versus phonon energy with D =
10−1 eV2 at the bias point VG = VD = 1 V. The contributions due to
phonon absorption and emission are shown.

Fig. 6. a) The ratio of the gate-delay time in the ballistic case to that in the
presence of electron-phonon interaction. For comparison, the ratio ISc/IBl

is also shown. b) The spectra of the source and drain currents. The effect
of inelastic scattering with different phonon energies is shown. The electron-
phonon coupling strength is D = 2 × 10−1 eV2. A considerable increase
of the electron population close to the conduction band-edge as the phonon
energy increases is visible.

C. Switching Response

To illustrate the effect of electron-phonon interaction on the

dynamic response of the device, the gate-delay time defined

as τ = (Qon −Qoff) /Ion [39] is considered, where the

quasi static approximation is assumed. It has been shown that

the quasi static approximation for CNT based transistors is

justified for frequencies below THz [40].

Fig. 6-a shows the ratio of the gate-delay time in the

ballistic case to that in the presence of electron-phonon

interaction, τBl/τSc, as a function of the electron-phonon

coupling strength. As the phonon energy increases the gate-

delay time increases. This behavior can be attributed to the

average electron velocity in the channel, which is high for

ballistic electrons and low for electrons scattered to lower

energy states.

Fig. 6-b shows the spectra of the source and drain currents

for different inelastic phonon energies. Electrons can emit a

single phonon or a couple of phonons to reach lower energy

states. The probability of multiple phonon emissions decreases

as the number of interactions increases. Therefore, as the

phonon energy increases, the occupation of electrons at lower

energy states increases.

As shown in Fig. 6-b, the electron population close to the

conduction band-edge considerably increases as the phonon

energy increases. Therefore, as the phonon energy increases

the mean velocity of electrons decreases and the carrier

concentration in the channel increases (Fig. 7). The increased

charge in the channel results in an increased gate-delay time.

D. Diffusive Limit

All the above discussed results were obtained for a device

with a CNT length of 50 nm. In the case of ballistic trans-

port the current is independent of the device length, but in

the presence of scattering it decreases as the device length

increases. Fig. 8-a shows the ballisticity as a function of the

CNT length in the presence of elastic and inelastic electron-

phonon interaction. An artificially large value for the electron-

phonon coupling strength and a small value for the phonon



s

Fig. 7. a) The profile of the electron velocity near the source contact. b)
The profile of the electron concentration along the device. The results for the
ballistic case and for electron-phonon interaction are shown. As the phonon
energy increases the electrons scatter to lower energy states. Therefore,
the electron velocity decreases and the carrier concentration increases. The
electron-phonon coupling strength is D = 10−1 eV2 and the bias point is
VG = VD = 1 V.

energy is chosen to simulate the diffusive limit (see Fig. 8-b).

In this case the current is expected to be inversely proportional

to the device length according to Ohm’s law.
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Fig. 8. a) Ballisticity versus CNT length. The electron-phonon coupling
strength for both elastic and inelastic scattering is D = 10−1 eV2, and
~ω = 25 meV for inelastic scattering. These scattering parameters simulate
the diffusive regime. In this case the ballisticity is inversely proportional to the
device length [41]. b) Ballisticity as a function of the electron-phonon coupling
strength and phonon energy for inelastic scattering. The scale of the ballisticity
is shown in the side bar. The regions of ballistic and diffusive transport are
shown. As the strength of the electron-phonon interaction increases transport
of carriers deviates from the ballistic limit and becomes more diffusive.

V. DISCUSSION

In general the electron-phonon interaction parameters de-

pend on the diameter and the chirality of the CNT [35]. CNTs

with a diameter dCNT > 2 nm have a band gap EG < 0.4 eV,

which render them unsuitable as channel for transistors. Since

the fabrication of devices with a diameter dCNT < 1 nm
is very difficult, we limit our study to zigzag CNTs with

diameters in the range of dCNT = 1 − 2 nm.

Scattering with acoustic phonons is treated as an elas-

tic process. The electron-phonon coupling is also weak

for acoustic phonons (DAP < 10−3 eV2), which im-

plies that elastic back-scattering of carriers is weak. In-

elastic scattering is induced by optical (OP), radial breath-

ing mode (RBM), and K-point phonons [10, 43]. Con-

sidering the class of CNTs discussed above, energies of

these phonons are ~ωOP ≈ 200 meV, ~ωRBM ≈ 25 meV, and
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Fig. 9. Comparison of the simulation results and experimental data for the a)
output and b) transfer characteristics. Lines show the simulation results and
symbols show experimental data. The result for VG = −1.3 V is compared
with the ballistic limit. Experimental data have been adopted from [42].

~ωK1
≈ 160 meV and ~ωK2

≈ 180 meV [38, 43]. The corre-

sponding coupling coefficients are DOP ≈ 40 × 10−3 eV2,

DRBM ≈ 10−3 eV2, and DK1
≈ 10−4 eV2, and DK2

≈
10−3 eV2 [38].

As discussed in Section IV-B, high energy phonons such as

OP and K-point phonons reduce the on-current only weakly,

but can increase the gate-delay time considerably due to charge

pileup in the channel. Low energy phonons such as the RBM

phonon can reduce the on-current more effectively, but have a

weaker effect on the gate-delay time. However, due to strong

coupling, scattering processes are mostly due to electron-

phonon interaction with high energy phonons. Therefore, at

room temperature the on-current of short CNT-FETs can be

close to the ballistic limit [42] (see Fig. 9), whereas the gate-

delay time can be significantly below that limit [44–46].

The intrinsic (without parasitic capacitances) gate-delay

time for the ballistic case can be approximated as τ ≈
1.7 ps/µm, or equivalently fT ≈ 100 GHz/µm [39]. The

highest reported intrinsic cutoff frequency for a device with a

length of 300 nm is fT ≈ 30 GHz [47], which is far below the

ballistic limit. Inelastic electron-phonon interaction with high

energy phonon has to be considered to explain the results.

VI. CONCLUSION

The coupled system of transport and Poisson equations was

solved self-consistently. A tight-binding Hamiltonian is used

to describe transport phenomena in CNT-FETs. Employing

the described model, both the static and dynamic response

of CNT-FETs was investigated. The effect of electron-phonon

interaction on the device characteristics is discussed in detail.

In agreement with experimental data, our results indicate

that at room temperature electron phonon interaction affects

the steady-state current of CNT-FETs only weakly, whereas

the switching response of such devices can be significantly

affected.
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