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Abstract—Carbon nanotubes have been considered in recent

years for future opto-electronic applications because of their

direct band-gap and the tunability of the band-gap with the CNT

diameter. The performance of infra-red photo-detectors based

on carbon nanotube field-effect transistors is analyzed, using

the non-equilibrium Green’s function formalism. The relatively

low ratio of the photo-current to the dark current limits the

performance of such devices. We show that by employing a double

gate structure this ratio can be significantly increased.

Carbon nanotubes (CNTs) have been extensively studied

in recent years due to their exceptional electronic, opto-

electronic, and mechanical properties. CNTs can be considered

as a graphene sheet which has been wrapped into a tube. The

way the graphene sheet is wrapped is represented by a pair

of indices (n,m) called the chiral vector. The integers n and

m denote the number of unit vectors along two directions

in the honeycomb crystal lattice of graphene. If m = 0, the

CNT is called zigzag. If n = m, the CNT is called armchair.

Otherwise, it is called chiral. CNTs with n−m = 3 are metals,

otherwise they are semiconductors. Semiconducting CNTs can

be used as channels for transistors. Depending on the work

function difference between the metal contact and the CNT,

carriers at the metal-CNT interface encounter different barrier

heights. Fabrication of devices with positive [1] and zero [2]

barrier heights for holes have been reported. In this work we

consider symmetric barrier heights for electrons and holes.

Some of the interesting electronic properties of CNTs

are quasi-ballistic carrier transport [2], suppression of short-

channel effects due to one-dimensional electron transport [3],

and a nearly symmetric structure of the conduction and

valence bands, which is advantageous for complementary

circuits. Moreover, owing to excellent optical properties of

CNTs, an all-CNT electronic and opto-electronic circuit can

be envisioned. The direct band-gap and the tunability of the

band-gap with the CNT diameter renders them as suitable

candidates for opto-electronic devices, especially for infra-red

(IR) applications [4, 5] due to the relatively narrow band gap.

IR photo detectors based on carbon nanotube field effect

transistors (CNT-FETs) have been reported in [5–7]. To ex-

plore the physics of such devices self-consistent quantum

mechanical simulations have been performed. The perfor-

mance of IR photo detectors based on CNT-FETs is analyzed

numerically, employing the non-equilibrium Green’s function

formalism (NEGF). This method has been successfully utilized

to investigate the characteristics of CNT-FETs [8–11]. To

extend our previous work [12], we employed the NEGF

method based on the tight-binding π-bond model to study

quantum transport in IR photo detectors based on CNT-FETs

and investigate methods to improve the performance of such

devices.

The outline of the paper is as follows. In Section I, the

NEGF formalism is briefly described. The implementation

of this method for CNT-FETs is presented in Section II. In

Section III single-gate and double-gate device responses are

studied. Finally, conclusions are drawn in Section IV.

I. NON-EQUILIBRIUM GREEN’S FUNCTION FORMALISM

The NEGF formalism initiated by Schwinger, Kadanoff,

and Baym allows to study the time evolution of a many-

particle quantum system. Knowing the single-particle Green’s

functions of a given system, one may evaluate single-particle

quantities such as carrier density and current. The many-

particle information about the system is cast into self-energies,

which are part of the equations of motion for the Green’s

functions. A perturbation expansion of the Green’s functions

is the key to approximate the self-energies. Green’s functions

enable a powerful technique to evaluate the properties of a

many-body system both in thermodynamic equilibrium and

non-equilibrium situations.

Four types of Green’s functions are defined as the non-

equilibrium statistical ensemble averages of the single particle

correlation operator. The greater Green’s function G> and the

lesser Green’s function G< deal with the statistics of carriers.

The retarded Green’s function GR and the advanced Green’s

function GA describe the dynamics of carriers.

Under steady-state condition the equation of motion for the

Green’s functions can be written as:

[E −H]GR,A(1, 2)−
∫

d3 ΣR,A(1, 3)Gr,a(3, 2) = δ1,2

(1)

G≶(1, 2) =
∫

d3
∫

d4 GR(1, 3)Σ≶(3, 4)GA(4, 2) (2)

The abbreviation 1 ≡ (r1, t1) is used. H is the single-particle

Hamiltonian operator, and ΣR, Σ<, and Σ> are the retarded,

lesser, and greater self-energies, respectively.
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II. IMPLEMENTATION

This section describes the implementation of the outlined

NEGF formalism for the numerical analysis of CNT-FETs.

A tight-binding Hamiltonian is used to describe transport

phenomena in CNT-FETs. The self-energy due to electron-

photon interactions are studied next.

A. Tight-Binding Hamiltonian

In graphene three σ bonds hybridize in an sp2 configuration,

whereas the other 2pz orbital which is perpendicular to the

graphene layer, forms π covalent bonds. The π energy bands

are predominantly determining the solid state properties of

graphene. Similar considerations hold for CNTs. We use a

nearest-neighbor tight-binding π-bond model [8]. Each atom in

an sp2-coordinated CNT has three nearest neighbors, located

acc = 1.42 Å away. The band-structure consists of π-orbitals

only, with the hopping parameter t = Vppπ ≈ −2.7 eV and

zero on-site potential.

The tight-binding Hamiltonian matrix for a (n, 0) zigzag

CNT, shown in Fig. 1-a, can be written as [8]

H =


U1 t1
t1 U2 t2

t2
† U3 t1

t1 U4 .
. .

 (3)

where the underlined quantities denote matrices. We assume

that the electrostatic potential shifts the on-site potential.

Therefore, Ui is a diagonal matrix which represents the

electrostatic potential energy in the ith circumferential ring

of carbon atoms. Equal electrostatic potential for all carbon

atoms within a ring is assumed, therefore Ui = UiI . The first

and second kind of interaction matrix between the neighboring

rings are denoted by t1 and t2. Only the nearest neighbor

interaction between carbon atoms is considered. The coupling

matrix between layer 2 and layer 3 is diagonal, t1 = t I , where

t is the hopping parameter. However, the coupling matrix

between layer 1 and layer 2 is given by

t2 =

 t t
t t

t t
. .

 (4)

The eigen vectors of the matrix t2 represent plane waves

around the circumference of the CNT with the quantized wave-

vectors kν = 2πν/
√

3accn, where ν = 1, 2, . . . n [8], and the

eigen values 2t cos (πν/n). By transforming from real space

into eigen mode space [13], the subbands become decoupled

and the Hamiltonian can be written as H =
∑

ν Hν , where

Hν , the Hamiltonian of the subband ν is non-diagonal, given

by

Hν =


Uν

1 tν
1

tν
1 Uν

2 tν
2

tν
2 Uν

3 tν
1

tν
1 Uν

4 .
. .

 (5)

Fig. 1: Layer layout of a (n, 0) zigzag CNT. a) The coupling
matrices between layers are denoted by t1 and t2, where t1 is
a diagonal matrix and t2 includes off-diagonal elements. b) The
corresponding one-dimensional chain, in mode space, with two sites
per unit cell with hopping parameters t and tν

2 = 2t cos(πν/n).

Here Uν
i = Ui, tν1 = t, and tν2 = 2t cos (πν/n) [8, 9]. The one-

dimensional tight-binding Hamiltonian Hν describes a chain

with two sites per unit cell with on-site potential Uν
i and

hopping parameters t and tν2 , see Fig. 1-b.

B. Electron-Photon Self-Energies

The Hamiltonian of the electron-photon interaction can be

written as [14, 15]:

Ĥe−ph =
∑
l,m

Ml,m

(
b̂e−iωt + b̂†e+iωt

)
â†l âm (6)

Ml,m = (zm − zl)
ie
~

√
~Iω

2Nωǫc
〈l|Ĥ0|m〉 (7)

where zm denotes the position of the carbon atom at site m
(Fig. 1-a), Iω is the flux of photons with the frequency ω,

and N is the photon population number. The incident light

is assumed to be monochromatic, with polarization along the

CNT axis, see Fig. 2-a.

We employed the lowest order self-energy of the electron-

photon interaction based on the self-consistent Born approxi-

mation [16]:

Σ<,ν
l,m (E) =

∑
p,q Ml,pMq,m

× [
NG<,ν

p,q (E − ~ω) + (N + 1)G<,ν
p,q (E + ~ω)

] (8)

where the first term corresponds to the excitation of an electron

by the absorption of a photon and the second term corresponds

to the emission of a photon by de-excitation of an electron. The

transport equations must be iterated to achieve convergence of

the electron-phonon self-energies, resulting in a self-consistent

Born approximation.

C. Current

The current density at the edge between the nodes l and

l + 1 is given by

jl,l+1 =
4q
~

∑
ν

∫
dE

2π
2ℜe{G<,ν

l,l+1(E)tνl+1,l} (9)
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Fig. 2: a) The sketch of a single gate (SG) CNT-FET. Parameters are toxide = 2 nm and LCNT = 30 nm. A bottom gate geometry is
assumed. b) The spectrum of the current in the channel of a SG CNT-FET. Incident photons generate electron-hole pairs and the electric
field drives electrons and holes towards the drain and source contacts, respectively. EG = 0.6 eV, ~ω = 0.65 eV, and VG = VD/2 = 0.2 V.
c) The spectrum of the current at the source contact. The red-solid line shows the photo-current spectrum and the black-dashed line the
dark-current spectrum which is scaled by a factor of 10.

where the factor 4 is due to the spin and band degeneracy.

An adaptive method for selecting the energy grid has to be

used to accurately resolve fine resonances at some energies in

(9) [17].

III. SIMULATION RESULTS

First we consider a single gate (SG) CNT-FET IR photo-

detector (Fig. 2-a). The spectrum of the current is shown

in Fig. 2-b. Incident photons generate electron-hole pairs and

the electric field drives electrons and holes to the drain and

source contacts, respectively. The photo-current at the source

contact is mostly due to the drift of the photo-generated holes

towards the source contact. However, there is a small reverse

electron current due to tunneling of photo-generated electrons

back to the source contact, see Fig. 2-c.

Apart from the photo-current there is a non-wanted dark

current due to thermionic emission and tunneling of carri-

ers from the contacts to the channel. For a SG device the

maximum ratio of the photo-current to the dark-current can

reach Iphoto/Idark ≈ 20, which may not be sufficient for

many applications. To reduce the dark-current we suggest a

double gate (DG) structure (Fig. 3-a). We have previously

shown that by employing a DG design, carrier injection at the

source and drain contacts of an CNT-FET can be separately

controlled [12]. Here, we extend our previous work and study

a DG device for the detection of IR photons.

In a DG CNT-FET the band-edge profile near the contacts

can be controlled by the gate voltages [12]. We consider the

bias condition VG1 = VS −∆V and VG2 = VD + ∆V , where

∆V is some offset voltage. In a DG device, similar to a

SG one, the electric field along the channel drives electrons

towards the drain and holes towards the source contact. How-

ever, if ∆V > 0 the local electric field close to the contacts

reverses the sign, see Fig. 3-b. Under this condition the

parasitic thermionic emission and tunneling of carriers from

the contacts to the channel is strongly suppressed. As shown

in Fig. 4, the parasitic dark-current decreases as ∆V increases.

However, the dark-current increases again for ∆V > 0.1 V
because of the increase of the band to band tunneling current

due to the increase of the electric field.

If ∆V > 0 the local electric field drives photo-generated

electrons and holes towards the source and drain contacts,

respectively, which increases the reverse photo-current. As

a result, as shown in Fig. 4, by increasing ∆V the total

photo-current is slightly reduced, whereas the dark current

is strongly reduced. Our results indicate that for the given

structure and drain voltage at ∆V ≈ 0.07 V the ratio of

the photo-current to the dark-current can reach a maximum

value of Iphoto/Idark ≈ 2×105, which implies a considerable

improvement of the device characteristics.

IV. CONCLUSIONS

The performance of IR photo detectors based on CNT-FETs

was investigated. The coupled system of transport and Poisson

equations was solved self-consistently. A tight-binding Hamil-

tonian is used to describe transport phenomena in CNT-FETs.

In agreement with experimental data, our results indicate that

the ratio of the photo-current to the dark-current is relatively

low. However, we suggest that by employing a DG structure

the dark-current can be significantly decreased, whereas the

photo-current remains nearly unchanged. Our results show that

by appropriate selection of the two gate voltages the ratio of

the photo-current to the dark-current can be maximized.
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Fig. 3: a) The sketch of a double gate (DG) CNT-FET. LG1 = LG2 = 10 nm. b) The spectrum of the current along the channel of a DG
CNT-FET. ∆V = 0.07 V and VD = 0.4 V. c) The spectrum of the current at the source contact. The solid line shows the photo-current
spectrum and the dashed line the dark-current spectrum which is scaled by a factor of 105.
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Fig. 4: The effect of the gate voltage offset ∆V on the photo-current
and dark-current of a DG CNT-FET IR detector. Both the photo-
current and the dark-current of a SG devices is shown for comparison.
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