
Synergies in Scientific Computing by
Combining Multi-Paradigmatic Languages

Philipp Schwaha, René Heinzl, Franz Stimpfl, and SiegfriedSelberherr

Institute for Microelectronics, TU Wien, Gußhausstraße 27-29, Vienna, Austria

Abstract. In recent years run-time languages such as Python have enjoyed a
growing community of developers in several programming areas, e.g., scientific
computing. The multi-paradigm approach of Python is certainly one of the ma-
jor advantages as well as its simple syntax and semantics. Rapid prototyping is
thereby possible. As major deficiency remains, the low overall performance, espe-
cially in the area of scientific computing. We therefore developed a link between
the multi-paradigm Python and a high performance multi-paradigm environment
in C++.

1 Introduction

Besides specifying the geometries of simulation domains the ability to manipulate at-
tributes or quantities stored on such domains is crucial forthe field of scientific com-
puting. This should be provided by easy to use facilities with which simulations can
be setup quickly. Furthermore the ability to use analyticalmodels or to use virtually
arbitrary values for specification should also be included.

The Python programming language [1], which has enjoyed a growing community
of developers and users due to the easy availability of several different programming
paradigms within a single language and its, by design, simple syntax and semantics has
many of the required features. However, Python lacks the essential feature of consistent
and efficient traversal of simulation domains as well as quantity storage mechanisms.
By providing such mechanisms and filling this void, a very powerful tool is obtained,
as numerous Python modules addressing many issues from several diverse areas are
already available. A key feature of this approach is the ability to rapidly develop appli-
cations. Efficiency, however, is limited by the Python interpreter and the performance of
the individual modules. The absence of multi-threading capabilities and parallelization
is another severe issue. While the efficiency of the interpreter continues to evolve, it is of
high importance to provide efficient modules in order insureacceptable run-times. This
is especially true for the field of scientific computing, where processing of considerable
amounts of data is commonplace.

Therefore Python modules are often based on highly optimized libraries written in a
variety of compiled languages, which are made available to Python by a wrapping layer.
The multi-paradigmatic nature of both C++ and Python makes combinations of these
two languages very appealing. Not only does C++ offer several paradigms concurrently,
it also offers a high degree of run-time efficiency [2, 3]. However, the great multitude
of features and possibilities offered by C++ along with its strong typing mechanisms
is often perceived as an obstacle, especially by beginners to programming, for rapid

2

implementations of prototypes. On the other hand Python hasbecome known as an
easy to learn language suitable for rapid prototyping.

The field of scientific computing requires not only the topological and geometrical
outlines of the simulation domain, but also requires the quick and easy specification
of quantities within these domains to set parameters and boundary conditions alike.
Python provides many such facilities but inherently lacks efficient complex traversal
mechanisms. By providing these capabilities a powerful tool for the setup and even
conduction of simulations is created.

2 Multi-Paradigm Development in C++

Our Generic Scientific Simulation Environment (GSSE) [4] has been further enhanced
by various functional as well as generic modules to not only support the close interac-
tion with Python, but also the interoperability with the C++STL and parallel STL [5],
BGL [6], GrAL [7], and CGAL [8].

Basic data structures, such as the STL containers, can be modeled by a simple topo-
logical space and hence by a simple topological traversal. Amore complex data struc-
ture, e.g., a one-dimensional graph, can also be traversed by simple traversal mecha-
nism, e.g., all vertices, all edges, vertex on edge, and edgeon vertex. Here the differ-
entiation between so-called intrinsic traversal (vertices within a container) and deduced
traversal (edge on vertex traversal) is becoming important. Higher-dimensional topolog-
ical spaces, e.g., two- and three-dimensional meshes and grids, require a more complex
combinatorial traversal hierarchy.

By providing a formal and common traversal interface for different types of li-
braries, interoperability is greatly supported. An example for using STL data structures
with GSSE concepts, e.g. an array, is presented next. Higher-dimensional topological
objects, such as edges, facets, cells, are not available directly in STL containers.

traverse<vertex>() [quan = quan_gen(1)] (container);

A more complex traversal on a higher-dimensional space can be traversed in the fol-
lowing way for all different libraries, in this case STL, CGAL, GrAL,and GSSE [9]:

traverse<segment>()
[

traverse<cell>() [traverse<edge> [/* functor */]]
](domain);

Another example is given next, where all geometrical pointswith a special coordinate
functor are marked:

traverse<segment>()
[

traverse<vertex>()
[
if_(coord[x] > 5.3) [quan = 1]

]
](domain);

3

3 The GSSE::Typhoon Module

Next we present a package, calledTyphoon, which brings the efficient topological
traversal and quantity storage available in the GSSE [10] tothe Python programming
language. It introduces the multi-dimensional and multi-topological traversal of the
GSSE to the Python language.

TheTyphoon Python module has been implemented using Boost Python [11],which
greatly simplifies the interfacing of C++ and Python. Care has to be taken to correctly
transfer the high flexibility awarded to the GSSE by employing several programming
paradigms in concert with the ones available to Python. A particular difficulty is the fact
that the static polymorphism used in C++ for performance andconsistency reasons must
be transferred to the dynamically typed world of Python. While generic programming
techniques are used to minimize implementation effort, theresulting compile times
cannot to be neglected, as all desired facilities for all required dimensions must be in-
stantiated at compile time in order to be available at run-time. The proper selection is
performed automatically by Python’s dynamic type system and by function overload-
ing.

The following short code snippet demonstrates the application of the traversal mech-
anisms, where the same traversal mechanism is used as in the C++ example. First all
segments in a domain are traversed, followed by the traversal of the cells of the traversed
segment. A quantity is stored on all of the traversed cells using the identifier “quan1”.
The following sample code shows, how the traversal mechanisms can be combined with
Python’s lambda function facilities to obtain a powerful selection mechanism. The re-
sult of such a selection is again compatible withTyphoon’s facilities, as is shown in the
very last two lines of code.

for segment in segments(domain):
for element in cells(segment):

store_cell_quan(domain,segment,element,"quan_1", 1.0)

selection = filter(lambda x:
filter (lambda y: coordinates(d,y)[0] > 5.3,

vertices(x)),
cells(segment))

for selected in selection:
sum = 0.0
for v in vertices(selected)

sum += retrieve_vertex_quan(domain, v,"quan_3")

store_cell_quan(domain,segment,selected,"quan_2",
sum / len(vertices(selected)))

Here the actual traversal is executed by the GSSE traversal library, where the control of
run-time selections is handled byTyphoon.

4

3.1 Using Typhoon

Using theTyphoon Python module it is possible to also rapidly develop application
prototypes by combining it with one of the numerous scientific packages already avail-
able for Python. Figure 1 schematically how the interactionof the GSSE,Typhoon, and
Python.

The availability of a wide variety of traversal mechanisms in conjunction with high
performance solver packages such as Trilinos [12], which ismade available in Python
by PyTrilinos [13], is a particularly interesting combination, as it enables even complete
implementations of simulations directly in Python. Typically, the input is used to assem-
ble a system matrix which is subsequently solved to compute an approximate solution
of the problem under investigation. By using theTyphoon module the Python code re-
mains unchanged even for different topologies and dimensions, as the underlying GSSE
takes care of equalizing the interfaces.

By traversing the vertices of the input structure the systemmatrix is assembled us-
ing Typhoon. The high level of abstraction provided by the GSSE is retained without
restrictions on the topology or dimension of the specified problem. In contrast to a C++
implementation, where the, often time consuming, recompilation of the program is re-
quired to obtain obtain an executable from the source code, the Pyhton implementation
is available immediately. A caveat, however, is that theTyphoon module had to be com-
piled including the appropriate dimension and topology, which is automatically taken
care of in the case of C++ during compilation.

GSSE

Python

PyTrilinos
Python

Typhoon

Module

Topology Traversal

Finite Volume Modules
Finite Element Modules

Levelset Modules

Prototype Application

Fig. 1: The Typhoon module brings the topology and traversalmechanisms of the GSSE to
Python. The combination with additional Python modules makes the rapid implementation of
prototype application very simple.

5

The following source code demonstrates the combination ofTyphoon’s traversal mecha-
nisms, which are used to assemble the matrix, and the PyTrilinos solver interface which
is employed to calculate a solution of the matrix.

for segment in segments(domain):
for element in vertices(segment):

assign_matrix_value(matrix_A, element) = calc(element)
assign_matrix_value(matrix_B, element) = calc_rhs(element)

Solver.SetMatrix(matrix_A)
Solver.SetVectors(X, matrix_B)
Solver.Solve()

4 Benchmarks

To further compare the two different approaches controlledby Typhoon we give bench-
mark results for topological traversal. The results given here are obtained by simple
traversal of an array as equivalent data structures are available in Python andTyphoon.
No quantities where stored on the traversed objects. It should be noted that memory
consumption was much higher in native Python than when usingTyphoon. With native
Python the traversal of more than the given 108 elements was not possible.

The second and third columns are for multi-dimensional arrays and show thatTy-
phoon traversing multidimensional structures is always faster when than Python. Again
Python’s native memory requirements surpassed those ofTyphoon.

The memory issue is expected to become even more pronounced when quantities are
stored on the traversed structures, sinceTyphoon inherently makes use of the GSSE’s
quantity handling capabilities.

#of elements 108 10000×10000100×1000×1000
Python 9m26s 3m35s 3m57s

Typhoon 2m44s 1m18s 2m29s

Table 1: Comparisons of the traversal times of data structures from Python and Typhoon (times
obtained on an AMD Phenom 9600).

5 Conclusion

The field of scientific computing requires in addition to the topological and geomet-
rical outlines of the simulation domain, a comprehensive yet convenient specification
of quantities within these domains to set parameters and boundary conditions alike.
Python offers many such facilities but inherently lacks complex traversal mechanisms
and performance. By providing these capabilities with ourGSSE::Typhoon module a
powerful tool for the setup and conduction of simulations isobtained.

6

References

1. Python Software Foundation: Python Programming Language. http://www.python.org/.
2. Gregor, D., Järvi, J., Kulkarni, M., Lumsdaine, A., Musser, D., Schupp, S.: Generic Pro-

gramming and High-Performance Libraries. Intl. J. of Parallel Prog.33(2) (2005)
3. Heinzl, R., Spevak, M., Schwaha, P.: Concepts for High Performance Generic Scientific

Computing. In: Proc. EEICT 2006. Volume 4., Brno, Czech Rep.(2006) 446–450
4. Heinzl, R., Schwaha, P., Selberherr, S.: A High Performance Generic Scientific Simulation

Environment. In B. Kaagström et al., ed.: Lecture Notes in Computer Science. Volume
4699/2007. Springer, Berlin (2007) 996–1005

5. Singler, J., Sanders, P., Putze, F.: The Multi-Core Standard Template Library. In: Lecture
Notes in Computer Science. Volume 4641/2007. Springer, Berlin (2007) 682–694

6. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley (2002)

7. Berti, G.: GrAL - The Grid Algorithms Library. In: Proc. Computational Science ICCS.
Volume 2331., London, UK, Springer (2002) 745–754

8. Fabri, A.: CGAL - The Computational Geometry Algorithm Library. In: Proc. of the 10th
Intl. Meshing Roundtable, CA, USA (2001) 137–142

9. Heinzl, R., Schwaha, P.: GSSE. (2007) http://www.gsse.at/.
10. Heinzl, R., Spevak, M., Schwaha, P., Grasser, T.: A High Performance Generic Scientific

Simulation Environment. In: Proc. of the PARA Conf., Umea, Sweden (2006) 61
11. Boost: Boost Python. (2006) http://www.boost.org/.
12. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., K., T.G., L., R.B., Long,

K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Wil-
lenbring, J.M., Williams, A., Stanley, K.S.: An Overview ofthe Trilinos Project. ACM
Transactions on Mathematical Software31(3) (2005) 397–423

13. Sala, M., Spotz, W., Heroux, M.: PyTrilinos: High-Performance Distributed-Memory
Solvers for Python. ACM Transactions on Mathematical Software34(2) (2008) 1–33

