Synergies in Scientific Computing by
Combining Multi-Paradigmatic Languages

Philipp Schwaha, René Heinzl, Franz Stimpfl, and Siegffieliberherr

Institute for Microelectronics, TU Wien, GuRhausstrae297Vienna, Austria

Abstract. In recent years run-time languages such as Python haveeshpy
growing community of developers in several programmingsye.g., scientific
computing. The multi-paradigm approach of Python is celyadbne of the ma-

jor advantages as well as its simple syntax and semantigsd Reototyping is

thereby possible. As major deficiency remains, the low dveesformance, espe-
cially in the area of scientific computing. We therefore deped a link between
the multi-paradigm Python and a high performance multageym environment
in C++.

1 Introduction

Besides specifying the geometries of simulation domaiesathility to manipulate at-
tributes or quantities stored on such domains is cruciatferfield of scientific com-
puting. This should be provided by easy to use facilitiehwihich simulations can
be setup quickly. Furthermore the ability to use analytioaldels or to use virtually
arbitrary values for specification should also be included.

The Python programming language [1], which has enjoyed wiggbcommunity
of developers and users due to the easy availability of atd#ferent programming
paradigms within a single language and its, by design, srsyphtax and semantics has
many of the required features. However, Python lacks thengisd feature of consistent
and efficient traversal of simulation domains as well as tjtyastorage mechanisms.
By providing such mechanisms and filling this void, a very pdwl tool is obtained,
as numerous Python modules addressing many issues fromalsdixerse areas are
already available. A key feature of this approach is thetghio rapidly develop appli-
cations. Efficiency, however, is limited by the Python ipreter and the performance of
the individual modules. The absence of multi-threadingabéljties and parallelization
is another severe issue. While the efficiency of the intégpintinues to evolve, itis of
high importance to provide efficient modules in order insageeptable run-times. This
is especially true for the field of scientific computing, whierocessing of considerable
amounts of data is commonplace.

Therefore Python modules are often based on highly optiiibearies written in a
variety of compiled languages, which are made availablgthhdh by a wrapping layer.
The multi-paradigmatic nature of both C++ and Python makeslgnations of these
two languages very appealing. Not only does C++ offer séparadigms concurrently,
it also offers a high degree of run-time efficiency [2, 3]. Hower, the great multitude
of features and possibilities offered by C++ along with it®8g typing mechanisms
is often perceived as an obstacle, especially by beginoepsagramming, for rapid

implementations of prototypes. On the other hand Pythonbeasme known as an
easy to learn language suitable for rapid prototyping.

The field of scientific computing requires not only the togidal and geometrical
outlines of the simulation domain, but also requires thekjaind easy specification
of quantities within these domains to set parameters anddaoy conditions alike.
Python provides many such facilities but inherently lacKiient complex traversal
mechanisms. By providing these capabilities a powerful foothe setup and even
conduction of simulations is created.

2 Multi-Paradigm Development in C++

Our Generic Scientific Simulation Environment (GSSE) [4$ baen further enhanced
by various functional as well as generic modules to not onpyp®rt the close interac-
tion with Python, but also the interoperability with the C$¥L and parallel STL [5],
BGL [6], GrAL [7], and CGAL [8].

Basic data structures, such as the STL containers, can beleadaly a simple topo-
logical space and hence by a simple topological traversatofe complex data struc-
ture, e.g., a one-dimensional graph, can also be travesssiple traversal mecha-
nism, e.g., all vertices, all edges, vertex on edge, and edgertex. Here the differ-
entiation between so-called intrinsic traversal (vediagthin a container) and deduced
traversal (edge on vertex traversal) is becoming imporkdigher-dimensional topolog-
ical spaces, e.g., two- and three-dimensional meshes &fg]j grquire a more complex
combinatorial traversal hierarchy.

By providing a formal and common traversal interface forfediént types of li-
braries, interoperability is greatly supported. An exaefpk using STL data structures
with GSSE concepts, e.g. an array, is presented next. Hjlregnsional topological
objects, such as edges, facets, cells, are not availalgletlgim STL containers.

traverse<vertex>() [quan = quan_gen(1l)] (container);

A more complex traversal on a higher-dimensional space eamnaversed in the fol-
lowing way for all different libraries, in this case STL, CGAGrAL,and GSSE [9]:

traver se<segnent >()

[

traverse<cel I >() [traverse<edge> [[/* functor */]]
] (donai n);

Another example is given next, where all geometrical poivite a special coordinate
functor are marked:

traver se<segnent >()

[

traverse<vertex>()

[
]

] (domai n) ;

if (coord[x] >5.3) [quan =1]

3 The GSSE:: Typhoon Module

Next we present a package, call&gphoon, which brings the efficient topological
traversal and quantity storage available in the GSSE [1@fedPython programming
language. It introduces the multi-dimensional and mulgietiogical traversal of the
GSSE to the Python language.

TheTyphoon Python module has been implemented using Boost Pythonjhigh
greatly simplifies the interfacing of C++ and Python. Care twabe taken to correctly
transfer the high flexibility awarded to the GSSE by emplgyseveral programming
paradigms in concert with the ones available to Python. Ai@4ar difficulty is the fact
that the static polymorphism used in C++ for performanceamdistency reasons must
be transferred to the dynamically typed world of Python. M/lgeneric programming
techniques are used to minimize implementation effort, réulting compile times
cannot to be neglected, as all desired facilities for alumeggl dimensions must be in-
stantiated at compile time in order to be available at rametiThe proper selection is
performed automatically by Python’s dynamic type systeh layr function overload-
ing.

The following short code snippet demonstrates the appicaf the traversal mech-
anisms, where the same traversal mechanism is used as inrthex@ample. First all
segments in a domain are traversed, followed by the travefrgee cells of the traversed
segment. A quantity is stored on all of the traversed cellsguhe identifier “quanl”.
The following sample code shows, how the traversal mechanésin be combined with
Python’s lambda function facilities to obtain a powerfulestion mechanism. The re-
sult of such a selection is again compatible witiphoon's facilities, as is shown in the
very last two lines of code.

for segment in segments(domain):
for element in cells(segment):
store_cel | _quan(donsi n, segnent, el enent, "quan_1", 1.0)

selection = filter(lanmbda x:
filter (lanbda y: coordinates(d,y)[0] > 5.3,
vertices(x)),
cel I s(segnent))

for selected in selection:
sum= 0.0
for v in vertices(selected)
sum += retrieve_vertex_quan(domain, v,"quan_3")

store_cel |l _quan(donsi n, segnent, sel ect ed, "quan_2",
sum/ len(vertices(selected)))

Here the actual traversal is executed by the GSSE travéseayl, where the control of
run-time selections is handled Byphoon.

3.1 Using Typhoon

Using theTyphoon Python module it is possible to also rapidly develop apfilica
prototypes by combining it with one of the numerous scienpifickages already avail-
able for Python. Figure 1 schematically how the interactibthe GSSETyphoon, and
Python.

The availability of a wide variety of traversal mechanismsdnjunction with high
performance solver packages such as Trilinos [12], whichdde available in Python
by PyTrilinos [13], is a particularly interesting combiitat, as it enables even complete
implementations of simulations directly in Python. Typigahe inputis used to assem-
ble a system matrix which is subsequently solved to computgo@roximate solution
of the problem under investigation. By using fhghoon module the Python code re-
mains unchanged even for different topologies and dimessis the underlying GSSE
takes care of equalizing the interfaces.

By traversing the vertices of the input structure the systearix is assembled us-
ing Typhoon. The high level of abstraction provided by the GSSE is retghiwithout
restrictions on the topology or dimension of the specifiezbfgm. In contrast to a C++
implementation, where the, often time consuming, recaatipih of the program is re-
quired to obtain obtain an executable from the source cbgeRyhton implementation
is available immediately. A caveat, however, is thatTiyghoon module had to be com-
piled including the appropriate dimension and topologyichtis automatically taken
care of in the case of C++ during compilation.

Python

GSSE
Topology Traversal Pvth
5 | - thon
|:.|n.|te Volume Module PyTrllanS y
Finite Element Module Module

Levelset Modules

Y Y

Prototype Application

Fig. 1: The Typhoon module brings the topology and travensathanisms of the GSSE to
Python. The combination with additional Python modules esathe rapid implementation of
prototype application very simple.

The following source code demonstrates the combinatidgmifoon’s traversal mecha-
nisms, which are used to assemble the matrix, and the RydsiBolver interface which
is employed to calculate a solution of the matrix.

for segment in segments(domain):
for element in vertices(segnent):
assign_matrix_value(matrix_A, elenment) = calc(el enent)
assign_matrix_value(matrix_B, element) = calc_rhs(el ement)

Sol ver. SetMatrix(matrix_A)
Sol ver. Set Vectors(X, matrix_B)
Sol ver. Sol ve()

4 Benchmarks

To further compare the two different approaches contrdie@yphoon we give bench-
mark results for topological traversal. The results giverehare obtained by simple
traversal of an array as equivalent data structures artablain Python andyphoon.
No quantities where stored on the traversed objects. Itldhmei noted that memory
consumption was much higher in native Python than when uBipigoon. With native
Python the traversal of more than the give® @ments was not possible.

The second and third columns are for multi-dimensionalygrend show thaty-
phoon traversing multidimensional structures is always fasteemthan Python. Again
Python’s native memory requirements surpassed tho$gobbon.

The memory issue is expected to become even more pronouhegtuantities are
stored on the traversed structures, simigeghoon inherently makes use of the GSSE’s
guantity handling capabilities.

#of elements 10 [10000x 10000100 1000x 100
Python [9m269 3m35s 3m57s
Typhoon |2m44g 1m18s 2m29s

Table 1: Comparisons of the traversal times of data strastfrom Python and Typhoon (times
obtained on an AMD Phenom 9600).

5 Conclusion

The field of scientific computing requires in addition to tlpdlogical and geomet-
rical outlines of the simulation domain, a comprehensiviecpavenient specification
of quantities within these domains to set parameters anddaoy conditions alike.
Python offers many such facilities but inherently lacks ptewr traversal mechanisms
and performance. By providing these capabilities with G&SE: : Typhoon module a
powerful tool for the setup and conduction of simulationsh$ained.

6

References

I

11.
12.

13.

. Python Software Foundation: Python Programming Languiattp://www.python.org/.
. Gregor, D., Jarvi, J., Kulkarni, M., Lumsdaine, A., MegsD., Schupp, S.: Generic Pro-

gramming and High-Performance Libraries. Intl. J. of Hat&rog.33(2) (2005)

. Heinzl, R., Spevak, M., Schwaha, P.: Concepts for HigHdPmance Generic Scientific

Computing. In: Proc. EEICT 2006. Volume 4., Brno, Czech R2p06) 446-450

. Heinzl, R., Schwaha, P., Selberherr, S.: A High Perfoceddeneric Scientific Simulation

Environment. In B. Kaagstrom et al., ed.: Lecture Notes omPuter Science. Volume
4699/2007. Springer, Berlin (2007) 996—1005

. Singler, J., Sanders, P., Putze, F.: The Multi-Core Stah@iemplate Library. In: Lecture

Notes in Computer Science. Volume 4641/2007. SpringetirB@007) 682—694

. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Ligralser Guide and Reference

Manual. Addison-Wesley (2002)

. Berti, G.: GrAL - The Grid Algorithms Library. In: Proc. @wutational Science ICCS.

Volume 2331., London, UK, Springer (2002) 745-754

. Fabri, A.: CGAL - The Computational Geometry Algorithmbkary. In: Proc. of the 10th

Intl. Meshing Roundtable, CA, USA (2001) 137-142

. Heinzl, R., Schwaha, P.: GSSE. (2007) http://www.g$5e.a
. Heinzl, R., Spevak, M., Schwaha, P., Grasser, T.: A HigtidPmance Generic Scientific

Simulation Environment. In: Proc. of the PARA Conf., Umewje8len (2006) 61

Boost: Boost Python. (2006) http://www.boost.org/.

Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra,JR.Hu, J.J., K., T.G., L., R.B., Long,
K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thyprist, H.K., Tuminaro, R.S., Wil-
lenbring, J.M., Williams, A., Stanley, K.S.: An Overview tfe Trilinos Project. ACM

Transactions on Mathematical Softw&¥3) (2005) 397-423

Sala, M., Spotz, W., Heroux, M.: PyTrilinos: High-Perfance Distributed-Memory
Solvers for Python. ACM Transactions on Mathematical Safe84(2) (2008) 1-33

