Synergies in Scientific Computing by
Combining Multi-Paradigmatic Languages
for High-Performance Applications

Philipp Schwaha, René Heinzl, Franz Stimpfl, and Siegf8ieliberherr

Institute for Microelectronics, TU Wien, GuBhausstralRe297Vienna, Austria

1 Introduction

High-performance application design for scientific conipgihas always been a chal-
lenge regarding the applied programming paradigms. Antiaddil development in
recent years regarding interpreted languages such asrPjtthmised the complexity
in application design, but also introduced new possib8itespecially concerning rapid
prototyping. The multi-paradigm approach of Python isaiety one of the major ad-
vantages as well as its simple syntax and semantics. A mefigiehcy remains, the low
overall performance, especially in the area of scientifibpoting. We therefore intro-
duce a link between the multi-paradigm Python and a higroperdnce multi-paradigm
environment in C++ suitable for scientific computing.

The Python programming language which has enjoyed a groeengmunity of
developers and users due to the easy availability of sewd#farent programming
paradigms within a single language and its, by design, sinphtax and semantics,
has many of the required features but lacks the essenti@iréeaf consistent and ef-
ficient traversal of simulation domains as well as quantilyagge mechanisms. A key
feature of Python is the ability to rapidly develop applioas, efficiency however is
limited by the interpreter, and the performance of the irtligal modules. The absence
of multi-threading capabilities and inherent paralldiiza is another severe issue cur-
rently not rigorously treated. Creating a high-perfornelirtk between the convenient
Python control and parallel execution paths is therefonetiwfost importance, as pre-
sented here [2]. While the capabilities of the interpretertimue to evolve, it is of high
importance to provide efficient modules in order to insureeptable run-times. This is
especially true for the field of scientific computing, wheregessing of considerable
amounts of data is commonplace.

Python modules are often based on highly optimized libsanigtten in a variety
of compiled languages, which are made available to Pythoa Wwyapping layer. The
multi-paradigmatic nature of both C++ and Python makes doatlons of these two
languages very appealing. Not only does C++ offer suppordueral paradigms con-
currently, it also provides meta-programming mechanisnasthogonally optimize and
even parallelize developed code without modification. Hmwvethe great multitude of
features and possibilities offered by C++ along with it®st typing mechanisms is
often perceived as an obstacle, especially by beginnenogrgmming, for rapid im-
plementations of prototypes. On the other hand Python hesnbe known as an easy
to learn language suitable for rapid prototyping also infidlel of scientific computing.

2

2 Multi-Paradigm Development in C++

The developed Generic Scientific Simulation Environmei8$E& [3]) incorporates var-
ious functional as well as generic modules to not only suftherclose interaction with
Python, but also the interoperability with the C++ STL andgfiael STL [4], BGL [5],
GrAL [6], and CGAL [7].

Basic data structures, such as the STL containers, alreadi¢lna simple topo-
logical space and hence provide elementary topologiceétsal mechanisms. More
complex data structures, e.g., a one-dimensional graptalea be traversed by simple
traversal mechanisms, e.g., all vertices, all edges, ¥emeedge, and edge on ver-
tex. Here the differentiation between so-called intrinsawersal (vertices within a con-
tainer) and deduced traversal (edge on vertex traversa@dsming important. Higher
dimensional topological spaces, e.g., two- and three-daoaal meshes and grids, re-
quire a more complex combinatorial traversal hierarchy.

By providing a formal and common traversal interface forfediént types of li-
braries, interoperability is significantly enhanced. Aaple of using STL data struc-
tures with GSSE [3, 8] concepts, e.g. an array, is preserdrd Higher dimensional
topological objects, such as edges, facets, or cells, aravailable directly in STL
containers.

traverse<vertex>() [quan = quan_gen(1l)] (container);

More complex traversal on a higher-dimensional space cdrabersed in the follow-
ing way for several libraries, in this case STL, CGAL, GrAlndaGSSE, where all
geometrical points with a special coordinate functor areken

traver se<segment >()

[

traverse<vertex>()
[

if _(coord[x] >5.3) [quan =1]
]

] (domai n);

This example can be executed on an arbitrary number of caredalthe functional
specification. Only a simple recompilation step with, etlye, parallel STL is required.

3 The GSSE::Typhoon Module

Next to the developed traversal and quantity storage mésmeaosf the GSSEJyphoon
links these mechanisms to the Python programming langubgesby enabling the
highly efficient and parallel multi-dimensional and muttpological traversal of the
GSSE for the run-time scheme. Thghoon Python module has been implemented us-
ing Boost Python [9], which greatly simplifies the interfagiof C++ and Python. Care
has to be taken to correctly transfer the high flexibility adeal to the GSSE by em-
ploying several programming paradigms in concert with thesoavailable to Python.

A particular difficulty is the fact that the static polymoipm used in C++ for perfor-
mance and consistency reasons must be transferred to thentbally typed world of
Python. While generic programming techniques are used témm#e the implemen-
tation effort, the resulting compile times cannot be neglécas all desired facilities
for all required dimensions must be instantiated at conpite in order to be avail-
able at run-time. In a C++ application, the correct dimemssoautomatically selected
at compile time, while in the case of Python applications iofiehsions one through
three, the single code base results in three separate Pythduales, with their proper
selection automatically performed by Python’s dynamicetgystem and by function
overloading.

The following short code snippet demonstrates the apmicaf the traversal mech-
anisms, where the same traversal mechanism is used as inrthexample. First all
segments in a domain are traversed, followed by the tralvefrsee cells of the traversed
segment. A quantity is stored on all of the traversed cellsguhe identifier “quant”.
Then a sample code is given to present, how the traversalanerhs can be combined
with Python’s lambda function facilities to obtain a poweédelection mechanism. The
result of such a selection is again compatible vilghhoon's facilities, as is shown in
the last two lines of code.

for segment in segments(domain):
for elenent in cells(segment):
store_cel | _quan(donain, segnent, el enent, "quan_1", 1.0)

selection = filter(lanbda x:
filter (lanbda y: coordinates(d,y)[0] > 5.3,
vertices(x)),
cel I s(segnent))

for selected in selection:
sum= 0.0
for v in vertices(selected)
sum += retrieve_vertex_quan(domain, v,"quan_3")

store_cel |l _quan(donain, segnent, sel ect ed, "quan_2",
sum/ len(vertices(selected)))

Here the actual traversal is executed by the GSSE travdyeaty, where the control of
run-time selections is handled Byphoon.

Deploying Typhoon

Using theTyphoon Python module it is possible to also rapidly develop appilicepro-
totypes by combining it with one of the numerous scientifickzaes already available
for Python. Figure 1 schematically shows the interactiothef GSSE;Typhoon, and
Python.

The availability of a wide variety of traversal mechanismsanjunction with high per-
formance solver packages such as Trilinos [10], which isereadilable in Python by
PyTrilinos [11], is a particularly interesting combinaticas it enables even complete
implementations of simulations directly in Python. Tygigathe input is used to as-
semble an equation system which is subsequently solvedmpuie an approximate
solution of the problem under investigation. By using Tgphoon module, the Python
code remains unchanged even for different topologies amémkions, as the underly-
ing GSSE takes care of equalizing the interfaces.

By traversing the vertices of the input structure the systestrix is assembled us-
ing Typhoon. The high level of abstraction provided by the GSSE is reiwithout
restrictions on the topology or dimension of the specifieobfgm. In contrast to a
C++ implementation, where the, often time consuming, reaitation of the program
is required to obtain an executable from the source coddytien implementation is
available immediately. A caveat, however, is that Tigghoon module had to be com-
piled including the appropriate dimension and topologyiclhs automatically taken
care of with C++ during compilation.

The following source code demonstrates the combinatidgpfoon’s traversal mecha-
nisms, which are used to assemble the matrix, and the Rydsitiolver interface, which
is employed to calculate the solution:

for segment in segments(domain):
for elenment in vertices(segnent):
assign_matrix_value(matrix_A elenent) = calc(el ement)
assign_matrix_value(matrix_B, elenent) = calc_rhs(elenent)
Sol ver. Set Matri x(matrix_A)
Sol ver. Set Vectors(X, matrix_B)
Sol ver. Sol ve()

Python

GSSE
Topology Traversal Pvih
Finite Volume Module: G ython
Finite Element Modul PyTrIImOS Module

Levelset Modules

Y !

Prototype Application

Fig. 1: The Typhoon module brings the topology and travensathanisms of the GSSE to
Python. The combination with additional Python modulesbéss a rapid implementation of
prototype applications.

4 Benchmarks

To further compare the two different approaches contrdiie@yphoon, we give bench-
mark results for topological traversal. The benchmark®htained by simple traversal
of an array as equivalent data structures are availablethoRyandTyphoon. No quanti-
ties where stored on the traversed objects. It should bel ot memory consumption
was much higher in native Python than when usigghoon and even prohibited the
traversal of more than the given®6lements.

The second and third columns are for multi-dimensionalyarend show thaty-
phoonis always faster when traversing multi-dimensional stritest than Python. Again
Python’s native memory requirements surpassed tho$gobbon.

The memory issue is expected to become even more pronoumked,quantities
are to be stored on the traversed structure3yphoon inherently makes use of the
GSSE’s quantity handling capabilities.

#of elements 10 [10000x 10000 100x 1000x 100
Python [9m26g 3m35s 3m57s
Typhoon |2mA44s 1m18s 2m29s

Table 1: Comparisons of the traversal times of data strasttrom Python and Typhoon (times
obtained on an AMD Phenom 9600).

5 Application Example

We present an example of TCAD'’s device simulation appliceti{12], where the most
basic model, the drift-diffusion model, is comprised of feoupled partial differential
equations which need to be assembled. In this case the dgsimdis usually small

compared to the time spent on the solution of the equaticiesydMore sophisticated
and complex models such as energy transport or higher wanspdels, however,
spend an increasing amount of time on equation assembbllétem of not only the

assembly procedure but also the pre- and post-procesgingthms is therefore of
increasing importance to control computation times. To alesirate not only the func-
tional equation specification mechanism of the GSSE, but s parallel approach
mechanism the following code snippet demonstrates thebCttt+ code for the elec-
tron temperatur&_n for a hydro-dynamic device simulation application [13]u&tjon

1 shows the energy flux equation for electrons, which is sbiadf-consistently with

Poisson’s equation and the current relations [14].

div (an gradnT,?) +gradp n T,) = —gradp - Jn — Bn N(Tn — Tiattice) (1)

The following source code snippet reflects the functionatgfration for a finite vol-
ume discretization scheme in actual C++ code. Eamhis automatically parallelized
by the parallel STL, where the full matrix line is assembladcparallel by a vertex
partitioning mechanisms executed by a multi-threadinghmasm:

(sunmkedge>()
[
let(_x = Bern(edge_| og<vertex>(T_n)) / T_n *
sumkvertex>() [phi] +
sumkvertex>() [T.n]
)
[
alpha_n * T_n / Bern(edge_l og<vertex>(T_n)) *
sunkvertex>() [Bern(x) * n * Tn] *
area / dist
]
]
+ sunxedge>()
[
sumkvertex>() [phi] / dist * J.n
] * vol +
betan* n* (T.n- Tlattice) * vol
) (vx);
A benchmark for a simple drift-diffusion and hydro-dynarsimulation for a two-

dimensional pn-diode with different compiler (GCC 4.2)iaptation levels and dif-
ferent numbers of concurrent threads is presented next.

ExampleSequentigDual-coreQuad-coreNum. elements
DD, 01| 32(s) 9(s) 6 (s) le4d
DD, O3| 11(s) 8(s) 6 (s) le4d
HD, O1| 41(s) 15(s) 7 (s) led
HD, O3| 20 (s) 9(s) 6 (s) le4d

Table 2: Comparisons of the simulation times for drift-ddffon and hydro-dynamic simulation
of a pn-diode with different optimization levels (GCC 4.2) AMD X2 6000 CPU'’s (dual-core)
and AMD X4 Phenom 9600 (quad-core).

By making these efficient C++ implementation available tohey via Typhoon even
complicated applications and simulation flows can be askshguickly. Not only can
the efficiency of C++ be carried over to Python, Python’s slwnings regarding multi-
threading can also be addressed by udiyghoon. The sections intended to be paral-
lelized are implemented in C++ using GSSE and stored in & t&uurce code of this
procedure is given in the following:

thread _count = 4
for segment in segnments(donain):
paral | el _apply_to(segment, thread count, hydro_assenbl e)

The single Python thread is used to control the applicatieferencing the available
functions with Python remaining oblivious to the parallature of the underlying im-
plementation.

6 Conclusion

The field of scientific computing requires in addition to tbpdlogical and geometri-
cal outlines of the simulation domain, a comprehensive gavenient specification of
quantities within these domains to set parameters and laoyndnditions alike. Python
offers many such facilities but inherently lacks complewvarsal mechanisms, perfor-
mance, and parallelization. By providing these capaéditivith ourGSSE:: Typhoon
module a powerful tool for the setup and conduction of sirtioites is obtained.

References

A

. Python Software Foundation: Python Programming Langulattp://www.python.org/.

2. Heinzl, R., Schwaha, P., Stimpfl, F., Selberherr, S.: IRAdaibrary-Centric Application
Design by a Generic Scientific Simulation Environment. Inod® of the POOSC Conf.,
Paphos, Cyprus (July 2008) Submitted

3. Heinzl, R., Schwaha, P., Selberherr, S.: A High PerfomeaBeneric Scientific Simulation
Environment. In B. Kaagstrom et al., ed.: Lecture Notes amputer Science. Volume
4699/2007. Springer, Berlin (2007) 781-790

4. Singler, J., Sanders, P., Putze, F.: The Multi-Core Stah@emplate Library. In: Lecture
Notes in Computer Science. Volume 4641/2007. SpringelirB@007) 682—694

5. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Ligrarser Guide and Reference
Manual. Addison-Wesley (2002)

6. Berti, G.: GrAL - The Grid Algorithms Library. In: Proc. @uputational Science ICCS.
Volume 2331., London, UK, Springer (2002) 745754

7. Fabri, A.: CGAL - The Computational Geometry Algorithmbkary. In: Proc. of the 10th
Intl. Meshing Roundtable, CA, USA (2001) 137-142

8. Heinzl, R., Schwaha, P.: GSSE. (2007) http://www.gsse.a

9. Boost: Boost Python. (2006) http://www.boost.org/.

10. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra,JR.Hu, J.J., K., T.G,, L., R.B., Long,
K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thyprist, H.K., Tuminaro, R.S., Wil-
lenbring, J.M., Williams, A., Stanley, K.S.: An Overview tfe Trilinos Project. ACM
Transactions on Mathematical Softwa&¥3) (2005) 397-423

11. Sala, M., Spotz, W., Heroux, M.: PyTrilinos: High-Perfance Distributed-Memory
Solvers for Python. ACM Transactions on Mathematical Safe84(2) (March 2008) 1-33

12. Grasser, T.: Advanced Device Modeling and SimulatiorarléVScientific Publishing Co.
(2003)

13. Grasser, T., Tang, T., Kosina, H., Selberherr, S.: A &ewf Hydrodynamic and Energy-
Transport Models for Semiconductor Device Simulation.cPlBEE91(2) (2003) 251-274

14. Schwaha, P., Schwaha, M., Heinzl, R., Ungersboeck dhegherr, S.: Simulation Method-

ologies for Scientific Computing — Modern Application Desidn: Proc. of the 2nd ICSOFT

2007, Barcelona, Spain (July 2007) 270-276

