
Synergies in Scientific Computing by
Combining Multi-Paradigmatic Languages

for High-Performance Applications

Philipp Schwaha, René Heinzl, Franz Stimpfl, and SiegfriedSelberherr

Institute for Microelectronics, TU Wien, Gußhausstraße 27-29, Vienna, Austria

1 Introduction

High-performance application design for scientific computing has always been a chal-
lenge regarding the applied programming paradigms. An additional development in
recent years regarding interpreted languages such as Python [1] raised the complexity
in application design, but also introduced new possibilities, especially concerning rapid
prototyping. The multi-paradigm approach of Python is certainly one of the major ad-
vantages as well as its simple syntax and semantics. A major deficiency remains, the low
overall performance, especially in the area of scientific computing. We therefore intro-
duce a link between the multi-paradigm Python and a high performance multi-paradigm
environment in C++ suitable for scientific computing.

The Python programming language which has enjoyed a growingcommunity of
developers and users due to the easy availability of severaldifferent programming
paradigms within a single language and its, by design, simple syntax and semantics,
has many of the required features but lacks the essential feature of consistent and ef-
ficient traversal of simulation domains as well as quantity storage mechanisms. A key
feature of Python is the ability to rapidly develop applications, efficiency however is
limited by the interpreter, and the performance of the individual modules. The absence
of multi-threading capabilities and inherent parallelization is another severe issue cur-
rently not rigorously treated. Creating a high-performance link between the convenient
Python control and parallel execution paths is therefore ofutmost importance, as pre-
sented here [2]. While the capabilities of the interpreter continue to evolve, it is of high
importance to provide efficient modules in order to insure acceptable run-times. This is
especially true for the field of scientific computing, where processing of considerable
amounts of data is commonplace.

Python modules are often based on highly optimized libraries written in a variety
of compiled languages, which are made available to Python bya wrapping layer. The
multi-paradigmatic nature of both C++ and Python makes combinations of these two
languages very appealing. Not only does C++ offer support for several paradigms con-
currently, it also provides meta-programming mechanisms to orthogonally optimize and
even parallelize developed code without modification. However, the great multitude of
features and possibilities offered by C++ along with its strong typing mechanisms is
often perceived as an obstacle, especially by beginners to programming, for rapid im-
plementations of prototypes. On the other hand Python has become known as an easy
to learn language suitable for rapid prototyping also in thefield of scientific computing.

2

2 Multi-Paradigm Development in C++

The developed Generic Scientific Simulation Environment (GSSE [3]) incorporates var-
ious functional as well as generic modules to not only support the close interaction with
Python, but also the interoperability with the C++ STL and parallel STL [4], BGL [5],
GrAL [6], and CGAL [7].

Basic data structures, such as the STL containers, already model a simple topo-
logical space and hence provide elementary topological traversal mechanisms. More
complex data structures, e.g., a one-dimensional graph, can also be traversed by simple
traversal mechanisms, e.g., all vertices, all edges, vertex on edge, and edge on ver-
tex. Here the differentiation between so-called intrinsictraversal (vertices within a con-
tainer) and deduced traversal (edge on vertex traversal) isbecoming important. Higher
dimensional topological spaces, e.g., two- and three-dimensional meshes and grids, re-
quire a more complex combinatorial traversal hierarchy.

By providing a formal and common traversal interface for different types of li-
braries, interoperability is significantly enhanced. An example of using STL data struc-
tures with GSSE [3, 8] concepts, e.g. an array, is presented next. Higher dimensional
topological objects, such as edges, facets, or cells, are not available directly in STL
containers.

traverse<vertex>() [quan = quan_gen(1)] (container);

More complex traversal on a higher-dimensional space can betraversed in the follow-
ing way for several libraries, in this case STL, CGAL, GrAL, and GSSE, where all
geometrical points with a special coordinate functor are marked:

traverse<segment>()
[

traverse<vertex>()
[
if_(coord[x] > 5.3) [quan = 1]

]
](domain);

This example can be executed on an arbitrary number of cores due to the functional
specification. Only a simple recompilation step with, e.g.,the parallel STL is required.

3 The GSSE::Typhoon Module

Next to the developed traversal and quantity storage mechanism of the GSSE,Typhoon
links these mechanisms to the Python programming language,thereby enabling the
highly efficient and parallel multi-dimensional and multi-topological traversal of the
GSSE for the run-time scheme. TheTyphoon Python module has been implemented us-
ing Boost Python [9], which greatly simplifies the interfacing of C++ and Python. Care
has to be taken to correctly transfer the high flexibility awarded to the GSSE by em-
ploying several programming paradigms in concert with the ones available to Python.

3

A particular difficulty is the fact that the static polymorphism used in C++ for perfor-
mance and consistency reasons must be transferred to the dynamically typed world of
Python. While generic programming techniques are used to minimize the implemen-
tation effort, the resulting compile times cannot be neglected, as all desired facilities
for all required dimensions must be instantiated at compiletime in order to be avail-
able at run-time. In a C++ application, the correct dimension is automatically selected
at compile time, while in the case of Python applications of dimensions one through
three, the single code base results in three separate Pythonmodules, with their proper
selection automatically performed by Python’s dynamic type system and by function
overloading.

The following short code snippet demonstrates the application of the traversal mech-
anisms, where the same traversal mechanism is used as in the C++ example. First all
segments in a domain are traversed, followed by the traversal of the cells of the traversed
segment. A quantity is stored on all of the traversed cells using the identifier “quan1”.
Then a sample code is given to present, how the traversal mechanisms can be combined
with Python’s lambda function facilities to obtain a powerful selection mechanism. The
result of such a selection is again compatible withTyphoon’s facilities, as is shown in
the last two lines of code.

for segment in segments(domain):
for element in cells(segment):

store_cell_quan(domain,segment,element,"quan_1", 1.0)

selection = filter(lambda x:
filter (lambda y: coordinates(d,y)[0] > 5.3,

vertices(x)),
cells(segment))

for selected in selection:
sum = 0.0
for v in vertices(selected)

sum += retrieve_vertex_quan(domain, v,"quan_3")

store_cell_quan(domain,segment,selected,"quan_2",
sum / len(vertices(selected)))

Here the actual traversal is executed by the GSSE traversal library, where the control of
run-time selections is handled byTyphoon.

Deploying Typhoon

Using theTyphoon Python module it is possible to also rapidly develop application pro-
totypes by combining it with one of the numerous scientific packages already available
for Python. Figure 1 schematically shows the interaction ofthe GSSE,Typhoon, and
Python.

4

The availability of a wide variety of traversal mechanisms in conjunction with high per-
formance solver packages such as Trilinos [10], which is made available in Python by
PyTrilinos [11], is a particularly interesting combination, as it enables even complete
implementations of simulations directly in Python. Typically, the input is used to as-
semble an equation system which is subsequently solved to compute an approximate
solution of the problem under investigation. By using theTyphoon module, the Python
code remains unchanged even for different topologies and dimensions, as the underly-
ing GSSE takes care of equalizing the interfaces.

By traversing the vertices of the input structure the systemmatrix is assembled us-
ing Typhoon. The high level of abstraction provided by the GSSE is retained without
restrictions on the topology or dimension of the specified problem. In contrast to a
C++ implementation, where the, often time consuming, recompilation of the program
is required to obtain an executable from the source code, thePython implementation is
available immediately. A caveat, however, is that theTyphoon module had to be com-
piled including the appropriate dimension and topology, which is automatically taken
care of with C++ during compilation.
The following source code demonstrates the combination ofTyphoon’s traversal mecha-
nisms, which are used to assemble the matrix, and the PyTrilinos solver interface, which
is employed to calculate the solution:

for segment in segments(domain):
for element in vertices(segment):

assign_matrix_value(matrix_A, element) = calc(element)
assign_matrix_value(matrix_B, element) = calc_rhs(element)

Solver.SetMatrix(matrix_A)
Solver.SetVectors(X, matrix_B)
Solver.Solve()

GSSE

Python

PyTrilinos
Python

Typhoon

Module

Topology Traversal

Finite Volume Modules
Finite Element Modules

Levelset Modules

Prototype Application

Fig. 1: The Typhoon module brings the topology and traversalmechanisms of the GSSE to
Python. The combination with additional Python modules enables a rapid implementation of
prototype applications.

5

4 Benchmarks

To further compare the two different approaches controlledby Typhoon, we give bench-
mark results for topological traversal. The benchmarks areobtained by simple traversal
of an array as equivalent data structures are available in Python andTyphoon. No quanti-
ties where stored on the traversed objects. It should be noted that memory consumption
was much higher in native Python than when usingTyphoon and even prohibited the
traversal of more than the given 108 elements.

The second and third columns are for multi-dimensional arrays and show thatTy-
phoon is always faster when traversing multi-dimensional structures than Python. Again
Python’s native memory requirements surpassed those ofTyphoon.

The memory issue is expected to become even more pronounced,when quantities
are to be stored on the traversed structures asTyphoon inherently makes use of the
GSSE’s quantity handling capabilities.

#of elements 108 10000×10000100×1000×1000
Python 9m26s 3m35s 3m57s

Typhoon 2m44s 1m18s 2m29s

Table 1: Comparisons of the traversal times of data structures from Python and Typhoon (times
obtained on an AMD Phenom 9600).

5 Application Example

We present an example of TCAD’s device simulation applications [12], where the most
basic model, the drift-diffusion model, is comprised of four coupled partial differential
equations which need to be assembled. In this case the assembly time is usually small
compared to the time spent on the solution of the equation system. More sophisticated
and complex models such as energy transport or higher transport models, however,
spend an increasing amount of time on equation assembly. Parallelism of not only the
assembly procedure but also the pre- and post-processing algorithms is therefore of
increasing importance to control computation times. To demonstrate not only the func-
tional equation specification mechanism of the GSSE, but also the parallel approach
mechanism the following code snippet demonstrates the actual C++ code for the elec-
tron temperatureT n for a hydro-dynamic device simulation application [13]. Equation
1 shows the energy flux equation for electrons, which is solved self-consistently with
Poisson’s equation and the current relations [14].

div
(

αn grad(nT 2
n)+gradϕ n Tn

)

= −gradϕ ·Jn−βn n(Tn−TLattice) (1)

The following source code snippet reflects the functional specification for a finite vol-
ume discretization scheme in actual C++ code. Eachsum is automatically parallelized
by the parallel STL, where the full matrix line is assembled in parallel by a vertex
partitioning mechanisms executed by a multi-threading mechanism:

6

(sum<edge>()
[

let(_x = Bern(edge_log<vertex>(T_n)) / T_n *
sum<vertex>() [phi] +
sum<vertex>() [T_n]
)

[
alpha_n * T_n / Bern(edge_log<vertex>(T_n)) *
sum<vertex>() [Bern(_x) * n * T_n] *
area / dist

]
]
+ sum<edge>()
[

sum<vertex>() [phi] / dist * J_n
] * vol +

beta_n * n * (T_n - T_lattice) * vol
) (vx);

A benchmark for a simple drift-diffusion and hydro-dynamicsimulation for a two-
dimensional pn-diode with different compiler (GCC 4.2) optimization levels and dif-
ferent numbers of concurrent threads is presented next.

ExampleSequentialDual-coreQuad-coreNum. elements
DD, O1 32 (s) 9 (s) 6 (s) 1e4
DD, O3 11 (s) 8 (s) 6 (s) 1e4
HD, O1 41 (s) 15 (s) 7 (s) 1e4
HD, O3 20 (s) 9 (s) 6 (s) 1e4

Table 2: Comparisons of the simulation times for drift-diffusion and hydro-dynamic simulation
of a pn-diode with different optimization levels (GCC 4.2) on AMD X2 6000 CPU’s (dual-core)
and AMD X4 Phenom 9600 (quad-core).

By making these efficient C++ implementation available to Python viaTyphoon even
complicated applications and simulation flows can be assembled quickly. Not only can
the efficiency of C++ be carried over to Python, Python’s shortcomings regarding multi-
threading can also be addressed by usingTyphoon. The sections intended to be paral-
lelized are implemented in C++ using GSSE and stored in a table. Source code of this
procedure is given in the following:

thread_count = 4
for segment in segments(domain):

parallel_apply_to(segment, thread_count, hydro_assemble)

The single Python thread is used to control the application,referencing the available
functions with Python remaining oblivious to the parallel nature of the underlying im-
plementation.

7

6 Conclusion

The field of scientific computing requires in addition to the topological and geometri-
cal outlines of the simulation domain, a comprehensive yet convenient specification of
quantities within these domains to set parameters and boundary conditions alike. Python
offers many such facilities but inherently lacks complex traversal mechanisms, perfor-
mance, and parallelization. By providing these capabilities with ourGSSE::Typhoon
module a powerful tool for the setup and conduction of simulations is obtained.

References

1. Python Software Foundation: Python Programming Language. http://www.python.org/.
2. Heinzl, R., Schwaha, P., Stimpfl, F., Selberherr, S.: Parallel Library-Centric Application

Design by a Generic Scientific Simulation Environment. In: Proc. of the POOSC Conf.,
Paphos, Cyprus (July 2008) Submitted

3. Heinzl, R., Schwaha, P., Selberherr, S.: A High Performance Generic Scientific Simulation
Environment. In B. Kaagström et al., ed.: Lecture Notes in Computer Science. Volume
4699/2007. Springer, Berlin (2007) 781–790

4. Singler, J., Sanders, P., Putze, F.: The Multi-Core Standard Template Library. In: Lecture
Notes in Computer Science. Volume 4641/2007. Springer, Berlin (2007) 682–694

5. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley (2002)

6. Berti, G.: GrAL - The Grid Algorithms Library. In: Proc. Computational Science ICCS.
Volume 2331., London, UK, Springer (2002) 745–754

7. Fabri, A.: CGAL - The Computational Geometry Algorithm Library. In: Proc. of the 10th
Intl. Meshing Roundtable, CA, USA (2001) 137–142

8. Heinzl, R., Schwaha, P.: GSSE. (2007) http://www.gsse.at/.
9. Boost: Boost Python. (2006) http://www.boost.org/.

10. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., K., T.G., L., R.B., Long,
K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Wil-
lenbring, J.M., Williams, A., Stanley, K.S.: An Overview ofthe Trilinos Project. ACM
Transactions on Mathematical Software31(3) (2005) 397–423

11. Sala, M., Spotz, W., Heroux, M.: PyTrilinos: High-Performance Distributed-Memory
Solvers for Python. ACM Transactions on Mathematical Software34(2) (March 2008) 1–33

12. Grasser, T.: Advanced Device Modeling and Simulation. World Scientific Publishing Co.
(2003)

13. Grasser, T., Tang, T., Kosina, H., Selberherr, S.: A Review of Hydrodynamic and Energy-
Transport Models for Semiconductor Device Simulation. Proc. IEEE91(2) (2003) 251–274

14. Schwaha, P., Schwaha, M., Heinzl, R., Ungersboeck, E., Selberherr, S.: Simulation Method-
ologies for Scientific Computing – Modern Application Design. In: Proc. of the 2nd ICSOFT
2007, Barcelona, Spain (July 2007) 270–276

