
High Performance Parallel
Mesh Generation and Adaption

F. Stimpfl, R. Heinzl, P. Schwaha, and S. Selberherr

Institute for Microelectronics, TU Wien, Gußhausstraße 27-29, Vienna, Austria

Abstract. The continuing growth of complexity in physical models and the addi-
tion of more accurate geometrical features intensifies the weight placed on mesh
generation. Driven by the increase of computational speed and the availability
of multi-core CPUs current programming paradigms are not sufficient anymore
to fully utilize the available computational power. A high performance mesh
generation approach overcomes these difficulties by suitably combining multiple
programming paradigms and following modern design guidelines. Parallelization
and robustness of the algorithm are facilitated by employing a rigorous surface
treatment, which not only enforces prescribed quality criteria such as the Delau-
nay property, but also allows to decouple the subsequent parallel meshing steps.
We present a parallel advancing front algorithm capable of creating Delaunay
conforming meshes.

1 Introduction
Modeling, generation, and adaptation of unstructured meshes is of utmost importance
for scientific computing, especially in the area of Technology Computer-Aided Design
(TCAD) [1]. Different fields of TCAD application impose a variety of different con-
straints and requirements on mesh generation, e.g., topography simulation requires a
good approximation of surface elements, while ion implantation simulation requires a
high mesh density near the surface, according to the gradient of the ion distribution.
Diffusion simulations add a need for a fine mesh at interfacesin addition to a high
mesh density near the surface. The complex field of device modeling even requires a
completely different type of mesh, necessitating a remeshing step for the whole input
structure. In summary, it can be observed that each simulation step has completely dif-
ferent requirements on the underlying spatial discretization. Therefore, meshing is still
one of the major showstoppers in this field of scientific computing.

Meshing is the initial step for simulations and failing to properly control the mesh-
ing process will produce a mesh of bad quality and, therefore, can jeopardize or even
completely prevent the chain of simulations. Changes made during the simulation pro-
cess often bring the necessity to remesh or alter the structure during the course of the
simulation. When utilizing complex input structures the remeshing steps can take an
enormous amount of time, which delays all further processing steps and, therefore,
slows down the simulation process as a whole. Both, quality of the mesh and remeshing
steps, are issues which call out for robust high performanceapproaches.

The simulation of microelectronic devices such as transistors is an area of TCAD,
which mostly makes use of finite volume schemes for discretization, due to their in-
herently flux preserving nature, which also implies the fundamental requirement of



2

a conforming Delaunay mesh. Most of the Delaunay mesh generation algorithms are
based on Delaunay refinement, which always construct a convex hull and subsequently
refine it. By following this approach additional difficulties on parallelization and high
performance mesh generation are imposed.

Another issue which often occurs during simulation is the variation of element sizes
of the input structures, e.g., diffusion simulation. On oneside of the structure the mesh
consists of very small elements, while the opposite side is made up of very large ele-
ments. The transition between these two sides results in difficulties for mesh generation
and special mechanisms for handling this difficulties have to be applied.

A very important constraint in TCAD simulations is the possibility of scaling. Not
only should the meshing approach work for small devices, butit should also be scalable
for complex device structures meshed in parallel on multiple cores or on a high perfor-
mance computing cluster, respectively. This constraint issupported by the current trend
of increasing the amount of cores in a single processor.

High performance approaches therefore accelerate the necessity of parallelization
techniques which are required to fully utilize the available computational power. This
circumstance adds to the already complex mesh generation task, as geometrical and
topological consistency has to be ensured, which requires particular attention in a paral-
lel setting and necessitates the use of advanced programming techniques and paradigms
to be implemented efficiently. The availability of robust high performance tools is there-
fore of utmost importance.

Traditional programming approaches are not sufficiently utilizing the increasing
computing power even in desktop systems anymore. To tap thispowerful and growing
resource the application of modern programming paradigms is increasingly important
for scientific computing. The concept of parallelization, which is often only applied
reluctantly, as many of the already tested algorithms and implementations need to be
rethought or rewritten, which of course entails new and thorough testing. Fortunately
current compiler technologies already incorporate facilities fitting the multi-core nature
of modern CPUs to support the development of parallel applications, e.g., the parallel
STL which is part of GCC 4.2 [2] is accounted for and combined with already estab-
lished partitioning tools such as METIS [3].

We present an approach to parallel meshing based on a combination of advancing
front algorithms which optionally include the Delaunay property and thereby are able to
yield suitable results for both finite elements and finite volume discretization schemes.
Our approach first ensures that the input hull meets prescribed quality criteria before a
volume mesh is generated. In case a Delaunay tessellation isrequested, the conforming
Delaunay property [4] is enforced by the surface treatment algorithm. It then proceeds
with the generation of the mesh by using an advancing front algorithm specially adapted
to consistently provide elements fulfilling the Delaunay property and avoiding colliding
fronts. The main advantage of our approach is the ability to generate meshes using
local feature size criteria, while being compatible to the upcoming multi-core processor
designs by making use of state of the art programming techniques and paradigms.



3

2 Meshing Theory
A complex requirement of current Delaunay algorithms is thecreation of a convex hull
of the initial input from which the final mesh has to be extracted by recreating the given
boundary of the initial structure. This issue may not only result in overhead, due to the
construction of convex hull parts, which can be of substantial size and also have to be
meshed just to be removed at the end of the mesh generation, but also due to numerical
problems. This issue unnecessarily complicates and slows down the whole Delaunay
mesh generation process.
The formal part given in the next section is derived and adapted from [4–6], which
guarantees the consistency and the Delaunay conformity. The volume mesh generation
is treated by an advancing front algorithm based on abstractrules [7] for the inser-
tion of new elements during the advancing front algorithm. Throughout this paper the
term tessellation is used as generalization of a triangulation in two dimensions or a
tetrahedralization in three dimensions. Similarly the terms volume element and surface
element are used to designate triangles and lines or tetrahedra and triangles in two or
three dimensions, respectively.

Delaunay Tessellation
The definition of the Delaunay property is given first. The property was introduced by
Boris Delone (Boris Delone, Delaunay being the French transliteration)in 1934 [8]
and can be generalized using the following empty n-ball claim.

Definition 1. An n-ball is said to be empty, if it encloses no vertices of a set V ⊆ R
n,

where n is the dimension.

Using this claim, a simplex, which consists ofn vertices ofV , is said to be Delaunay, if
and only if there exists an empty n-ball that passes through these vertices.

Lemma 1. Given a domain D containing the vertices V and the set of boundary ele-
ments B, then ∀ b ∈ B there is no vertex v ∈ V, which encroaches b, if b is Delaunay.

Lemma 1 assures, that all boundary elements satisfy the Delaunay property and this
lemma can further be extended to Theorem 1 to show the Delaunay property for the
whole tessellation.

Theorem 1. Let T be the set of volume elements of a tessellation of D. If ∀ t ∈ T is
locally Delaunay then T is globally Delaunay.

Proof. Consider a volume elementt ∈ T and a vertexv ∈ V different from the vertices
formingt. Due to the local Delaunay propertyv lies outside the n-ball oft. Because this
is then true∀v, the n-ball oft is empty, and because this is then true∀ volume elements
t, D is the Delaunay tessellation ofV .

There exist two different concepts which extend the definition of the Delaunay trian-
gulation for boundaries - the constrained Delaunay triangulation (CDT) and the con-
forming Delaunay triangulation. Both concepts have in common, that they start from an
initial tessellation, which includes the convex hull, and refine the existing tessellation to
fulfill the Delaunay property. When creating a CDT the boundary edges are preserved



4

and are not split into smaller edges by avoiding the insertion of additional vertices.
An edge or triangle is said to be constrained Delaunay, if it satisfies the following two
conditions. First, its vertices are visible to each other, meaning that no segment of the
simulation domain lies between the vertices. Second, thereexists a circle that passes
through the vertices of the edge or triangle in question, andthe circle contains no ver-
tices of the triangulation which are visible from the interior of the edge or triangle [4].

In contrast to the CDT, where the boundary is not modified, when creating a con-
forming Delaunay tessellation the boundary is modified by inserting new vertices in
order to satisfy the Delaunay property for all boundary elements. Both concepts aim to
fulfill Lemma 1.

The next section gives an overview of the advancing front algorithm, which is ex-
plained using an example in two dimensions. The generalization to higher dimensions
is possible.

Advancing Front Algorithm
For our Delaunay volume mesh generation, the advancing front algorithm is derived
from the gift-wrapping algorithm, which can be specified n-dimensionally. It starts with
a set of boundary elements. These boundary elements form theinitial front which is
advanced into the simulation domain. A boundary element of this set is chosen to form
a new element, either with an existing point or a newly created point. The current edge
is then removed from the front and the two new edges are, depending on their visibility,
added to the front. This process terminates when no edges remain within the front.

The advantages of this method are the good control mechanismfor the element
sizes and the quality of the generated elements. A major drawback of this method is
that the quality of the generated elements depends heavily on the quality of the bound-
ary elements and the colliding fronts. Different implementations of this type of mesh
generation technique suffer from severe robustness issues.

Due to the fact that the advancing front depends heavily on the quality of the bound-
ary, we prepare the boundary according to the Delaunay properties defined in the pre-
vious section. Therefore, when starting from a Delaunay conforming boundary, the re-
sulting advancing front will satisfy the Delaunay propertyonly, if no additional points
are inserted.

Our advancing front algorithm uses abstract rules [7] whichdefine the procedure of
mesh generation, e.g., how new points are inserted or how certain elements are treated
during the meshing process. The rules are defined in a unit coordinate system and the
current element is transformed to this unit coordinate system, a matching rule is applied,
and the results are transformed back to the original mesh. The procedure of choosing a
matching rule can be performed by various criteria, e.g., element size or element quality.
The following will combine the meshing theory with the practical techniques.

3 Our Meshing Approach
The first step, the processing of the boundary, assures that all boundary elements con-
form to the Delaunay property according to Lemma 1. Not only the surface vertices but
also the volume vertices are taken into account, when processing the surface to create a
Delaunay tessellation.



5

Our proposed algorithm based on Lemma 1 is equal to the conforming Delaunay
tessellation, but without the overhead of creating an initial tessellation first and with-
out the overhead of cutting all elements between the boundaries out of the tessellation
afterwards. An example for a processed boundary is given in Figure 1.

Fig. 1: An example of a conforming Delaunay triangulation. Before and after surface preprocess-
ing step.

The refinement of a boundary element is performed, when a vertex in its vicinity ex-
ists, which would encroach this element and therefore violate Lemma 1. One straight-
forward method is to refine the boundary element by an orthogonal projection of the
encroaching vertex onto the boundary element, as depicted in Figure 2. The created
refined boundary element is split into new boundary elements, depending on the di-
mension of the boundary element, e.g., a projected vertex onto a boundary edge is split
into two new boundary edges. This procedure creates new boundary elements, which
satisfy Lemma 1 and, therefore, are locally Delaunay.

Fig. 2: A surface element and the circumcircle which is encroached by a volume vertex (left). The
resulting two Delaunay surface edges, after the orthogonalprojection of the encroaching vertex
(right).

A second case exists, because the encroaching vertex is incident to another boundary
element and, using an orthogonal projection, the created refinement would itself become
an encroaching vertex, due to numerical inaccuracies. Thissituation may lead to an
endless refinement loop, which limits the applicability of the orthogonal projection. For
this case an azimuthal rotation of the encroaching vertex around the intersection of the
boundary elements instead of the orthogonal projection is performed. An example for
the azimuthal rotation is depicted in Figure 3. The result ofthis surface processing step
is a conforming Delaunay surface tessellation.

The necessary projections and rotations to fulfill Lemma 1 are controlled by abstract
rules as mentioned in the previous section.



6

Fig. 3: An edge and the circumcircle which is encroached by a vertex on an incident edge (left).
The resulting two Delaunay surface edges after the azimuthal rotation of the encroaching vertex
(right).

In the subsequent step the advancing front algorithm traverses all existing boundary
elements and creates new volume elements according to Lemma1. The volume vertex
closest to the boundary element, which does not encroach theboundary element, is used
to create a new volume element [4].

Due to the fact that the chosen vertex is not encroaching, theresulting volume ele-
ment satisfies the Delaunay property. Applying Theorem 1, ifall elements are locally
Delaunay, then the whole tessellation is Delaunay, which proofs, that the presented
Delaunay meshing approach results in a Delaunay conformingvolume mesh. Figure
4 depicts our developed parallel meshing approach, starting from the common surface
treatment.

Fig. 4: An overview of the presented meshing approach. Starting from an initial input geometry
the surface preprocessing step is done. The segments are meshed in parallel and in the final step
the resulting meshed segments are merged into one output geometry.

4 Programming Paradigms
The implementation of algorithms related to advancing front mesh generation tech-
niques is one of the most complex programming topic due to thecombination of ge-



7

ometrical and topological issues. Geometrical robustnessand accuracy problems can
yield topological inconsistencies, whereas topological problems can severely circum-
vent the successful termination of the whole algorithm.

The matter of consistency is even more pronounced in a parallel environment, where
consistency between the concurrent parts has to be accounted for explicitly.

To deal with these issues we have separated the geometrical and topological ar-
eas into different types of programming parts. Geometricalissues are treated by using
generic programming and the outsourcing of this treatment into numerical libraries,
e.g., interval arithmetic or exact numerical kernels like CGAL [9]. The precision of the
used geometric predicates is essential to ensure that element consistency is maintained
during the advancing front algorithm.

As outlined in the previous section, our approach yields a decoupled method which
does not require communication between the parallel code parts. This makes the pro-
cedure appealing not only for parallelization using sharedmemory as provided, e.g, by
OpenMP [10], but also for message passing interfaces such asOpen MPI [11]. The cur-
rent trend of deploying multi-core machines clearly favorsthe use of shared memory
parallelization techniques, especially since they have begun to be integrated into the
newest generation of the freely available compiler collection, GCC.

Automated parallelization can only be effective, if the compiler is supplied with
sufficient semantic information as possible. This specification of algorithms at the re-
quired high semantic level is greatly facilitated by the useand combination of several
programming paradigms, which at the moment is only efficiently supported in the C++
programming language [12]. The parallel STL is likely the first step in this direction,
which emerging compilers are pursuing and is consequently picked up and used by
our Generic Scientific Simulation Environment (GSSE) [13, 14] used for topological
operations.

The importance of the use of several complementary programming paradigms be-
comes apparent, when considering how to best implement parallel tasks. In order to
be reliable, parallel parts must not have side effects or explicit dependencies on global
state information. While such a requirement needs to be specifically taken care of in
procedural and object-oriented programming approaches, functional programming al-
ready inherently incorporates the required traits. However, functional programming has
great difficulties when dealing with files, as these essentially represent frozen state in-
formation which cannot be accommodated in a purely functional setting.

The generic programming paradigm provides many features which have initially
been envisioned for the object-oriented paradigm. However, since algorithms are usu-
ally woven into the data carrying objects, object-orienteddevelopment has problems
reusing algorithms. The reusability of source code developed using the generic pro-
gramming source code eases also debugging and maintenance.

The appropriate combination of several distinct programming paradigms can allevi-
ate the shortcomings of the individual paradigms, while making the strengths available
to the whole. The generic programming paradigm is well suited to procedurally deal
with file and input/output operations by iterations, which can be used to supply in-
formation to functional code parts which are inherently parallel. Parallelization of the
whole construct can then be achieved by simple partition of the iteration.



8

The following snippet of code shows a central part of the meshgeneration appli-
cation, using a GSSE domain, parametrized to a specific data type, as an interface for
segments which are fed to the a functional meshing routine.

for_each(domain.segment_begin(),
domain.segment_end(),
generate_mesh(thread_id++));

The parallelization of the traversal of the segments of the domain by iterator partition-
ing is sufficient to parallelize the meshing procedure, due to the functional nature of
the specification. It is therefore possible to develop and test algorithms in a sequential
manner and then parallelize them by simple recompilation. This basic strategy remains
the same, even for seemingly complex tasks.

However, a major caveat remains in this approach. The data types, to which the
GSSE domain has been parametrized must not contain internalstates, e.g., in the form
of static member variables which prohibit parallelization.

The approach of combining several programming paradigms offers great flexibil-
ity for developing, testing, and quickly deploying new algorithms in a very efficient
manner.

5 Examples and Benchmarks

The presented approach is demonstrated using examples fromdifferent fields of TCAD.
It can be observed that the speed of the parallel approach reduces meshing time consid-
erably, thus enabling the whole simulation process to quickly get a result, as shown in
Table 1. Execution time can be decreased with increasing segment size and complexity.

Example Sequential MeshingParallel MeshingNum. pointsNum. segments
Diffusion Example (Figure 5) 149 sec 59 sec 1.2e4 2

Levelset (Figure 6) 31sec 19sec 1.9e4 3
MOSFET (Figure 7) 74sec 46sec 3.6e4 7

Table 1: Comparisons of the mesh generation and included mesh adaptation times (in seconds)
on AMD’s X2 5600.

The following example shows device structures which have been meshed in parallel.
The various segments are colorized differently to show the partition of the mesh.

6 Conclusion

The highly complex tasks of modeling, mesh generation, and adaption can greatly benefit
from modern programming approaches and a multi-paradigm approach. The application
of modern programming paradigms and implementation of a multi-paradigm develop-
ment enables not only the incorporation of modern compiler technology, but also eases
an orthogonal optimization approach.



9

Fig. 5: TCAD process simulation, e.g., diffusion simulation requires an initial, spatially homo-
geneous and adapted distribution of a function space. Our volume mesh generation algorithm
therefore incorporates a given point cloud to generate the illustrated mesh.

Fig. 6: Local feature size control enables meshing of thin layers of a three-dimensional device
structure (marked in red) is made possible without imposingadditional meshing overhead.

7 Acknowledgment

This work has been supported by the Intel Corporation and theAustrian Science Fund
FWF, project P19532-N13.



10

Fig. 7: Unstructured mesh representation of an extracted implicit surface used for moving surfaces
in TCAD.

References

1. Heinzl, R.: Concepts for Scientific Computing. Dissertation, Technische Universität Wien,
Austria (2007)

2. GNU: GNU Compiler Collection (GCC). http://gcc.gnu.org/.
3. Karypis Lab: METIS. http://glaros.dtc.umn.edu/gkhome/views/metis/.
4. Shewchuk, J.R.: Delaunay Refinement Mesh Generation. Dissertation, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA, USA (1997)
5. Edelsbrunner, H.: Triangulations and Meshes in Computational Geometry. Acta Numerica

(2000) 133–213
6. Ruppert, J.: A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation.

Journal of Algorithms18(3) (1995) 548–585
7. Schöberl, J.: NETGEN - An Advancing Front 2D/3D-Mesh Generator Based on Abstract

Rules. Comput. Visual. Sci.1 (1997) 41–52
8. Delaunay, B.: Sur la Sphère Vide. In: Izvestia Akademia Nauk SSSR, Otdelenie Matem-

aticheskii i Estestvennyka Nauk, Moscow, Russia (1934) 793–800
9. Fabri, A.: CGAL - The Computational Geometry Algorithm Library. In: Proc. of the 10th

Intl. Meshing Roundtable, CA, USA (2001) 137–142
10. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory Program-

ming. IEEE Computational Science & Engineering5 (1998) 46–55
11. Graham, R.L., Shipman, G.M., Barrett, B.W., Castain, R.H., Bosilca, G., Lumsdaine, A.:

Open MPI: A High-Performance, Heterogeneous MPI. In: Proc.of the 5th Intl. Work-
shop on Algorithms, Models and Tools for Parallel Computingon Heterogeneous Networks,
Barcelona, Spain (2006) 1–9

12. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J., Willcock, J.: An Extended Comparative Study
of Language Support for Generic Programming. J. of Functional Programming17(2) (2007)
145–205

13. Heinzl, R., Schwaha, P.: GSSE. (2007) http://www.gsse.at/.
14. Heinzl, R., Spevak, M., Schwaha, P., Selberherr, S.: A Generic Topology Library. In: Proc.

of the Object-Oriented Programming Systems, Languages, and Applications Conf., Portland,
OR, USA (2006) 85–93


