High Performance Parallel
Mesh Generation and Adaption

F. Stimpfl, R. Heinzl, P. Schwaha, and S. Selberherr

Institute for Microelectronics, TU Wien, GuRhausstrae297Vienna, Austria

Abstract. The continuing growth of complexity in physical models ahe addi-
tion of more accurate geometrical features intensifies tight placed on mesh
generation. Driven by the increase of computational speeldtiae availability
of multi-core CPUs current programming paradigms are nfficgnt anymore
to fully utilize the available computational power. A higlerformance mesh
generation approach overcomes these difficulties by dyitaimbining multiple
programming paradigms and following modern design guidsli Parallelization
and robustness of the algorithm are facilitated by emptpynrigorous surface
treatment, which not only enforces prescribed qualityecidt such as the Delau-
nay property, but also allows to decouple the subsequeatlpameshing steps.
We present a parallel advancing front algorithm capableredting Delaunay
conforming meshes.

1 Introduction

Modeling, generation, and adaptation of unstructured e®ghof utmost importance
for scientific computing, especially in the area of Techggl@omputer-Aided Design
(TCAD) [1]. Different fields of TCAD application impose a vaty of different con-
straints and requirements on mesh generation, e.g., tapbgisimulation requires a
good approximation of surface elements, while ion implaatasimulation requires a
high mesh density near the surface, according to the gradighe ion distribution.
Diffusion simulations add a need for a fine mesh at interfagesddition to a high
mesh density near the surface. The complex field of deviceetimafleven requires a
completely different type of mesh, necessitating a rermgskiep for the whole input
structure. In summary, it can be observed that each simulatep has completely dif-
ferent requirements on the underlying spatial discrétimail herefore, meshing is still
one of the major showstoppers in this field of scientific cotimau

Meshing is the initial step for simulations and failing toperly control the mesh-
ing process will produce a mesh of bad quality and, therefmae jeopardize or even
completely prevent the chain of simulations. Changes madeglthe simulation pro-
cess often bring the necessity to remesh or alter the steudiuring the course of the
simulation. When utilizing complex input structures theneshing steps can take an
enormous amount of time, which delays all further procegsieps and, therefore,
slows down the simulation process as a whole. Both, qudlityeomesh and remeshing
steps, are issues which call out for robust high performappeoaches.

The simulation of microelectronic devices such as traosiss an area of TCAD,
which mostly makes use of finite volume schemes for disattin, due to their in-
herently flux preserving nature, which also implies the fameéntal requirement of

a conforming Delaunay mesh. Most of the Delaunay mesh gioeralgorithms are
based on Delaunay refinement, which always construct a gdnukand subsequently
refine it. By following this approach additional difficulen parallelization and high
performance mesh generation are imposed.

Another issue which often occurs during simulation is théaten of element sizes
of the input structures, e.g., diffusion simulation. On sige of the structure the mesh
consists of very small elements, while the opposite sideddarup of very large ele-
ments. The transition between these two sides resultsfinudifes for mesh generation
and special mechanisms for handling this difficulties havee applied.

A very important constraint in TCAD simulations is the pdusidtly of scaling. Not
only should the meshing approach work for small devicesitistiould also be scalable
for complex device structures meshed in parallel on métigres or on a high perfor-
mance computing cluster, respectively. This constraistipgorted by the current trend
of increasing the amount of cores in a single processor.

High performance approaches therefore accelerate thesigcef parallelization
techniques which are required to fully utilize the avaiabbmputational power. This
circumstance adds to the already complex mesh generasknda geometrical and
topological consistency has to be ensured, which requadgplar attention in a paral-
lel setting and necessitates the use of advanced prograpetinniques and paradigms
to be implemented efficiently. The availability of robusghiperformance tools is there-
fore of utmost importance.

Traditional programming approaches are not sufficientljzirtg the increasing
computing power even in desktop systems anymore. To tapdigrful and growing
resource the application of modern programming paradigntcreasingly important
for scientific computing. The concept of parallelizatiorhigh is often only applied
reluctantly, as many of the already tested algorithms amile@mentations need to be
rethought or rewritten, which of course entails new anddhgh testing. Fortunately
current compiler technologies already incorporate faedifitting the multi-core nature
of modern CPUs to support the development of parallel aptitins, e.g., the parallel
STL which is part of GCC 4.2 [2] is accounted for and combinéthwalready estab-
lished partitioning tools such as METIS [3].

We present an approach to parallel meshing based on a caimhbindadvancing
front algorithms which optionally include the Delaunay peoty and thereby are able to
yield suitable results for both finite elements and finiteuvmoé discretization schemes.
Our approach first ensures that the input hull meets presgtdbality criteria before a
volume mesh is generated. In case a Delaunay tessellatiequssted, the conforming
Delaunay property [4] is enforced by the surface treatmkgarahm. It then proceeds
with the generation of the mesh by using an advancing frgorahm specially adapted
to consistently provide elements fulfilling the Delaunagpgerty and avoiding colliding
fronts. The main advantage of our approach is the abilitydnegate meshes using
local feature size criteria, while being compatible to theaming multi-core processor
designs by making use of state of the art programming tedlesiqnd paradigms.

2 Meshing Theory

A complex requirement of current Delaunay algorithms isdieation of a convex hull
of the initial input from which the final mesh has to be extealdby recreating the given
boundary of the initial structure. This issue may not onutein overhead, due to the
construction of convex hull parts, which can be of substsize and also have to be
meshed just to be removed at the end of the mesh generattadsbudue to numerical
problems. This issue unnecessarily complicates and slows dhe whole Delaunay
mesh generation process.

The formal part given in the next section is derived and asthftom [4—6], which
guarantees the consistency and the Delaunay conformigyvd@lume mesh generation
is treated by an advancing front algorithm based on absttées [7] for the inser-
tion of new elements during the advancing front algorithirotighout this paper the
term tessellation is used as generalization of a triangulah two dimensions or a
tetrahedralization in three dimensions. Similarly therngrolume element and surface
element are used to designate triangles and lines or teltralaad triangles in two or
three dimensions, respectively.

Delaunay Tessellation

The definition of the Delaunay property is given first. Thegay was introduced by
Bopuc enoue (Boris Delone, Delaunay being the French transliteratioiip34 [8]
and can be generalized using the following empty n-balhtlai

Definition 1. An n-ball is said to be empty, if it encloses no vertices of a setV C R",
where nisthe dimension.

Using this claim, a simplex, which consistsrofertices ofV, is said to be Delaunay, if
and only if there exists an empty n-ball that passes throlugéet vertices.

Lemma 1. Given a domain D containing the vertices V and the set of boundary ele-
ments B, thenV b € B thereis no vertex v € V, which encroachesb, if b is Delaunay.

Lemma 1 assures, that all boundary elements satisfy theuB&yaproperty and this
lemma can further be extended to Theorem 1 to show the Defgunogerty for the
whole tessellation.

Theorem 1. Let T be the set of volume elements of a tessellation of D. If Vte Tis
locally Delaunay then T is globally Delaunay.

Proof. Consider a volume elemeht T and a vertex € V different from the vertices
formingt. Due to the local Delaunay propestyies outside the n-ball df Because this
is then truevv, the n-ball oft is empty, and because this is then txi&lume elements
t, D is the Delaunay tessellation @t

There exist two different concepts which extend the definitf the Delaunay trian-
gulation for boundaries - the constrained Delaunay tri¢atgan (CDT) and the con-
forming Delaunay triangulation. Both concepts have in cannthat they start from an
initial tessellation, which includes the convex hull, apfime the existing tessellation to
fulfill the Delaunay property. When creating a CDT the bougdalges are preserved

and are not split into smaller edges by avoiding the insertibadditional vertices.
An edge or triangle is said to be constrained Delaunay, dtisfies the following two
conditions. First, its vertices are visible to each othezaming that no segment of the
simulation domain lies between the vertices. Second, teeists a circle that passes
through the vertices of the edge or triangle in question,taectircle contains no ver-
tices of the triangulation which are visible from the interof the edge or triangle [4].

In contrast to the CDT, where the boundary is not modified,wtreating a con-
forming Delaunay tessellation the boundary is modified kseiting new vertices in
order to satisfy the Delaunay property for all boundary edeta. Both concepts aim to
fulfill Lemma 1.

The next section gives an overview of the advancing fronvrétlgm, which is ex-
plained using an example in two dimensions. The generaizéd higher dimensions
is possible.

Advancing Front Algorithm

For our Delaunay volume mesh generation, the advancing &igorithm is derived
from the gift-wrapping algorithm, which can be specifiedimensionally. It starts with
a set of boundary elements. These boundary elements forimitia front which is
advanced into the simulation domain. A boundary elemerttiefdet is chosen to form
a new element, either with an existing point or a newly créat@nt. The current edge
is then removed from the front and the two new edges are, diapgon their visibility,
added to the front. This process terminates when no edgesmemithin the front.

The advantages of this method are the good control mechdoisthe element
sizes and the quality of the generated elements. A majorlgrekvof this method is
that the quality of the generated elements depends heavilyeoquality of the bound-
ary elements and the colliding fronts. Different implensiuns of this type of mesh
generation technique suffer from severe robustness issues

Due to the fact that the advancing front depends heavily enttality of the bound-
ary, we prepare the boundary according to the Delaunay piepelefined in the pre-
vious section. Therefore, when starting from a Delaunayaroning boundary, the re-
sulting advancing front will satisfy the Delaunay propestyly, if no additional points
are inserted.

Our advancing front algorithm uses abstract rules [7] whliefine the procedure of
mesh generation, e.g., how new points are inserted or hdaic@&lements are treated
during the meshing process. The rules are defined in a unitditwde system and the
current elementis transformed to this unit coordinatessysa matching rule is applied,
and the results are transformed back to the original meshpftcedure of choosing a
matching rule can be performed by various criteria, e.gmeint size or element quality.
The following will combine the meshing theory with the piiaat techniques.

3 Our Meshing Approach

The first step, the processing of the boundary, assuresl|thatuamdary elements con-

form to the Delaunay property according to Lemma 1. Not ohéygurface vertices but

also the volume vertices are taken into account, when psowpthe surface to create a
Delaunay tessellation.

Our proposed algorithm based on Lemma 1 is equal to the amirigrDelaunay
tessellation, but without the overhead of creating andhtgssellation first and with-
out the overhead of cutting all elements between the boigwlaut of the tessellation
afterwards. An example for a processed boundary is giveigiaré 1.

Fig. 1: An example of a conforming Delaunay triangulatioef@e and after surface preprocess-
ing step.

The refinement of a boundary element is performed, when awaenrtits vicinity ex-
ists, which would encroach this element and therefore tédl@mma 1. One straight-
forward method is to refine the boundary element by an orthabprojection of the
encroaching vertex onto the boundary element, as depint&igure 2. The created
refined boundary element is split into new boundary elemeatgpending on the di-
mension of the boundary element, e.g., a projected vertexaohoundary edge is split
into two new boundary edges. This procedure creates newdaoyelements, which
satisfy Lemma 1 and, therefore, are locally Delaunay.

[2
®
@

Fig. 2: A surface element and the circumcircle which is eached by a volume vertex (left). The
resulting two Delaunay surface edges, after the orthogormgéction of the encroaching vertex

(right).

A second case exists, because the encroaching vertex @eiridb another boundary
elementand, using an orthogonal projection, the creafetreent would itself become
an encroaching vertex, due to numerical inaccuracies. dihigtion may lead to an
endless refinement loop, which limits the applicabilityleé brthogonal projection. For
this case an azimuthal rotation of the encroaching vertexrat the intersection of the
boundary elements instead of the orthogonal projectiorifopmed. An example for
the azimuthal rotation is depicted in Figure 3. The resuthif surface processing step
is a conforming Delaunay surface tessellation.

The necessary projections and rotations to fulfill Lemmaelcantrolled by abstract
rules as mentioned in the previous section.

Fig. 3: An edge and the circumcircle which is encroached bgrtex on an incident edge (left).
The resulting two Delaunay surface edges after the azirhrdtation of the encroaching vertex

(right).

In the subsequent step the advancing front algorithm tsageall existing boundary
elements and creates new volume elements according to Léamiviee volume vertex
closest to the boundary element, which does not encroadiotiedary element, is used
to create a new volume element [4].

Due to the fact that the chosen vertex is not encroachingethdting volume ele-
ment satisfies the Delaunay property. Applying Theorem &ll i€lements are locally
Delaunay, then the whole tessellation is Delaunay, whidofs; that the presented
Delaunay meshing approach results in a Delaunay conforrohgne mesh. Figure
4 depicts our developed parallel meshing approach, sigiriinm the common surface
treatment.

InputObject OutputObject

e ||
oo | |
o] | |

Partition Collect

Surface Meshing Volume Meshing

Sequential
Sequential
Sequential

J

Fig. 4: An overview of the presented meshing approach. iStgftom an initial input geometry
the surface preprocessing step is done. The segments anedriagarallel and in the final step
the resulting meshed segments are merged into one outpuiegso

4 Programming Paradigms

The implementation of algorithms related to advancing tfnmesh generation tech-
niques is one of the most complex programming topic due tatimbination of ge-

ometrical and topological issues. Geometrical robustaesisaccuracy problems can
yield topological inconsistencies, whereas topologicabfems can severely circum-
vent the successful termination of the whole algorithm.

The matter of consistency is even more pronounced in a pagalvironment, where
consistency between the concurrent parts has to be accdiontexplicitly.

To deal with these issues we have separated the geomeinidabpological ar-
eas into different types of programming parts. Geometigsales are treated by using
generic programming and the outsourcing of this treatmmatat numerical libraries,
e.g., interval arithmetic or exact numerical kernels liIKBAL [9]. The precision of the
used geometric predicates is essential to ensure that eleoresistency is maintained
during the advancing front algorithm.

As outlined in the previous section, our approach yieldsa@dpled method which
does not require communication between the parallel cods.pghis makes the pro-
cedure appealing not only for parallelization using shanednhory as provided, e.g, by
OpenMP [10], but also for message passing interfaces suOpas MPI [11]. The cur-
rent trend of deploying multi-core machines clearly favibrs use of shared memory
parallelization techniques, especially since they haygubeo be integrated into the
newest generation of the freely available compiler coikectGCC.

Automated parallelization can only be effective, if the goler is supplied with
sufficient semantic information as possible. This spedificaof algorithms at the re-
quired high semantic level is greatly facilitated by the asd combination of several
programming paradigms, which at the moment is only effityesupported in the C++
programming language [12]. The parallel STL is likely thetfistep in this direction,
which emerging compilers are pursuing and is consequeitked up and used by
our Generic Scientific Simulation Environment (GSSE) [14, dsed for topological
operations.

The importance of the use of several complementary progiaghparadigms be-
comes apparent, when considering how to best implementiglaiasks. In order to
be reliable, parallel parts must not have side effects oli@kdependencies on global
state information. While such a requirement needs to beifggaly taken care of in
procedural and object-oriented programming approachestibnal programming al-
ready inherently incorporates the required traits. Howduactional programming has
great difficulties when dealing with files, as these esskynti@present frozen state in-
formation which cannot be accommodated in a purely funefieatting.

The generic programming paradigm provides many featuréshathave initially
been envisioned for the object-oriented paradigm. Howesiece algorithms are usu-
ally woven into the data carrying objects, object-oriendedelopment has problems
reusing algorithms. The reusability of source code dewdopsing the generic pro-
gramming source code eases also debugging and maintenance.

The appropriate combination of several distinct prograngypiaradigms can allevi-
ate the shortcomings of the individual paradigms, while imgkhe strengths available
to the whole. The generic programming paradigm is well suiteprocedurally deal
with file and input/output operations by iterations, whidnde used to supply in-
formation to functional code parts which are inherentlyalat. Parallelization of the
whole construct can then be achieved by simple partitiohefteration.

The following snippet of code shows a central part of the ngesteration appli-
cation, using a GSSE domain, parametrized to a specific ga¢a &s an interface for
segments which are fed to the a functional meshing routine.

for_each(domai n. segnent _begin(),
domai n. segnment _end(),
generate_nesh(thread_i d++));

The parallelization of the traversal of the segments of thaain by iterator partition-

ing is sufficient to parallelize the meshing procedure, duthé functional nature of
the specification. It is therefore possible to develop astakgorithms in a sequential
manner and then parallelize them by simple recompilatitis Basic strategy remains
the same, even for seemingly complex tasks.

However, a major caveat remains in this approach. The daesiyto which the
GSSE domain has been parametrized must not contain inttetes, e.g., in the form
of static member variables which prohibit parallelization

The approach of combining several programming paradigriesogreat flexibil-
ity for developing, testing, and quickly deploying new aligfoms in a very efficient
manner.

5 Examples and Benchmarks

The presented approach is demonstrated using examplesdliffenent fields of TCAD.

It can be observed that the speed of the parallel approackesaneshing time consid-
erably, thus enabling the whole simulation process to duigét a result, as shown in
Table 1. Execution time can be decreased with increasingesegsize and complexity.

Example Sequential Meshingarallel MeshingNum. pointsNum. segments
Diffusion Example (Figure %) 149 sec 59 sec 1.2e4 2
Levelset (Figure 6) 3lsec 19sec 1.9e4 3
MOSFET (Figure 7) 74sec 46sec 3.6e4 7

Table 1: Comparisons of the mesh generation and includeti edeptation times (in seconds)
on AMD’s X2 5600.

The following example shows device structures which havenbeeshed in parallel.
The various segments are colorized differently to show #rétpn of the mesh.

6 Conclusion

The highly complex tasks of modeling, mesh generation, dagton can greatly benefit
from modern programming approaches and a multi-paradignmoagh. The application
of modern programming paradigms and implementation of d@irpatadigm develop-
ment enables not only the incorporation of modern compéehhology, but also eases
an orthogonal optimization approach.

Fig. 5: TCAD process simulation, e.g., diffusion simulati@quires an initial, spatially homo-
geneous and adapted distribution of a function space. OQume mesh generation algorithm
therefore incorporates a given point cloud to generatelltrsriated mesh.

Fig. 6: Local feature size control enables meshing of thyeils of a three-dimensional device
structure (marked in red) is made possible without impositidjtional meshing overhead.

7 Acknowledgment

This work has been supported by the Intel Corporation and\tigtrian Science Fund
FWF, project P19532-N13.

10

Fig. 7: Unstructured mesh representation of an extractptigitsurface used for moving surfaces
in TCAD.

References

1.

~rWN

4]

10.

11.

12.

13.
. Heinzl, R., Spevak, M., Schwaha, P., Selberherr, S.: Ae@e Topology Library. In: Proc.

Heinzl, R.: Concepts for Scientific Computing. Disséotat Technische Universitat Wien,
Austria (2007)

. GNU: GNU Compiler Collection (GCC). http://gcc.gnu.brg
. Karypis Lab: METIS. http://glaros.dtc.umn.edu/gkhdvimns/metis/.
. Shewchuk, J.R.: Delaunay Refinement Mesh GeneratioseBaion, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA, U3897)

. Edelsbrunner, H.: Triangulations and Meshes in Comjautat Geometry. Acta Numerica

(2000) 133-213

. Ruppert, J.: A Delaunay Refinement Algorithm for Quali@nensional Mesh Generation.

Journal of Algorithmsl8(3) (1995) 548-585

. Schoberl, J.: NETGEN - An Advancing Front 2D/3D-Mesh €rtor Based on Abstract

Rules. Comput. Visual. Scl. (1997) 41-52

. Delaunay, B.: Sur la Sphére Vide. In: Izvestia AkademakNSSSR, Otdelenie Matem-

aticheskii i Estestvennyka Nauk, Moscow, Russia (1934)-808

. Fabri, A.: CGAL - The Computational Geometry Algorithnbkary. In: Proc. of the 10th

Intl. Meshing Roundtable, CA, USA (2001) 137-142

Dagum, L., Menon, R.: OpenMP: An Industry-Standard AfPIShared-Memory Program-
ming. IEEE Computational Science & Engineeri¢1998) 46-55

Graham, R.L., Shipman, G.M., Barrett, B.W., Castairj.RBosilca, G., Lumsdaine, A.:
Open MPI: A High-Performance, Heterogeneous MPI. In: Podcthe 5th Intl. Work-
shop on Algorithms, Models and Tools for Parallel ComputingHeterogeneous Networks,
Barcelona, Spain (2006) 1-9

Garcia, R., Jarvi, J., Lumsdaine, A., Siek, J., Willgat: An Extended Comparative Study
of Language Support for Generic Programming. J. of FunatiBnogrammind. 7(2) (2007)
145-205

Heinzl, R., Schwaha, P.: GSSE. (2007) http://www.gd5e.

of the Object-Oriented Programming Systems, LanguagesApplications Conf., Portland,
OR, USA (2006) 85-93

