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1. Introduction
For analytical subband structure calculations in silicon (Si)
it is commonly assumed that the energy dispersion of the
conduction band valleys is well described by a parabolic
approximation with the transversal mass m, and the
longitudinal mass m;. However, in presence of shear strain a
more general description based on the two-band k-p
Hamiltonian is necessary [1-3]. Within the two-band k-p
model the subband structure for an infinite square well
potential can be found analytically. Due to the valley
degeneracy, the unprimed subbands remain two-times
degenerate within the k-p approach. Recently, a valley
splitting larger than the spin splitting was reported [4].
Lifting degeneracy reduces scattering and improves the
coherence time in spin qubits, which makes silicon-based
quantum devises promising for future applications in
quantum computing. In this work we propose an alternative
mechanism to create and control the valley splitting by
applying shear strain.
2. Method and Results

Within the two-band k-p model the dispersion relation

of a [001] valley is of the form [1-3]

E=k>+(k2+k2)m, /m, —2,[k? +8°, (1)

where all the wave vectors are normalized by
k, =0.15x 27/ a, the position of the minimum relative to

the X point. Energies are in units of #%*k./(2m,),
5 =(m-mkk,/ MYy, n=mDe,_/k; is dimension-less
shear strain, M~ =m ™' —m;", £, denotes the shear strain

component, and D =14 eV is the shear strain deformation
potential [1,4]. Excellent agreement between the two-band
k-p model (1) and the results of empirical pseudo-potential
(EPM) band structure calculations with the parameters from
[2,5] is demonstrated in Fig.1. Tensile stress in [110] and
compressive stress in [-110] direction is assumed. For this
setup only shear strain component g, is nonzero. The shear

strain £, substantially modifies the energy dispersion in

the [001] valleys. The £, dispersion is shown in Fig.2 for
several values of shear strain. The valley minimum moves
both in energy and position, approaching the X-point of the
Brillouin zone for larger strain 77 — 1.

The subband energies can be found analytically for an
infinite square well potential, which is a good model for an
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ultra-thin Si film. The dispersion of the unprimed subbands
in a [001] thin Si film of thickness ¢ is

E, =p +(k +k)m /m -1-8%11-p}), @)
where p = (/m) /(tk,) - n=0. The
denominator of the last term in (2) describes the
dependence of the non-parabolicity parameter on the film
thickness [5] for the unprimed subbands as shown in Fig.3.
This increase of the non-parabolicity parameter with ¢ leads
to a decrease of low-field mobility as compared to the
mobility computed with the bulk valuea =0.5 eV™'. The
relative correction is about 7% for /= 3 nm and 15% for
=2.5 nm (Fig.4).

The k+p theory predicts the same dispersion (2) for both
[001] valleys and cannot describe the valley splitting. To go
beyond the k-p theory, we introduce an auxiliary tight-
binding model defined on a lattice of sites each containing
two localized orbitals ¢ (r) and g (r) in such a way that it

mimics the two-band bulk k, dispersion [6]. In a finite array
of 2N sites the two Bloch functions are:

y.(LE)=Y ic,. exp(ik,na/ 2)(a(k)olx =nal2) (3,

i=1,2n=-N

For zero strain

+ib(k,)B(r—na/2))=C.C.,
where k; are defined by E,(k)=E, a is the Si lattice constant,
a(k,), b(k;) are the coefficients in the linear combination of
two basis functions and are determined from the two-band
k-p model, and C.C. is complex conjugate. Proceeding as
in [6], the following equation for p, is readily obtained:

¥ sir{l—aiif” kot]

+ L P :
Va-pP)1-8* - pi?)
It follows from (4) that for & =0, when the dispersion is
purely parabolic, the valley splitting is exactly zero. Since
S depends strongly on shear strain, applying uniaxial [110]
stress to [001] ultra-thin Si film generates valley splitting
proportional to strain. Uniaxial stress is currently used to
enhance performance of modern MOSFETs, where it is
introduced in a controllable way. For small § (4) gives
) 2
AE,__=2k—°[E] Bl
my\ kot ) kit

for the valley splitting, so that the splitting is engineered by
adjusting strain and .

“4)

sin( p, ko) =

)
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3. Conclusion
In conclusion, an alternative way to induce controllable
valley splitting in ultra-thin Si films by applying uniaxial
stress is proposed. For small stress values the splitting is
shown to depend linearly on shear strain. Valley splitting
rapidly increases with decreasing Si thickness and can be
larger than the spin splitting.
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Fig.2: Conduction band (1) for different shear strain values.
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Fig.4: Relative mobility correction due to thickness dependence of
the non-parabolicity parameter as a function of effective field, for
two Si film thicknesses. The correction is negative and reaches
20% for t=2.4 nm.
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Fig.1: Comparison between Eq.(1) (dashed lines) and the results
of EPM calculations (solid lines). The contour lines are spaced at
50 meV. Tensile stress along [110] and compressive stress along
[-110] of 150 MPa in each direction is applied.
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Fig.3: Dependence of the non-parabolicity parameter on film

thickness t.
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Fig.5: The left-hand side (I.h.s) and the right-hand side (r.h.s) of
(4) as function of p, without shear strain (dotted line) and for a
nonzero shear strain. Intersections of Lhs and rhs. reflect
graphical solutions of (4). Splitting between roots p, results in
valley splitting controlled by shear strain.
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