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We present an compact model to describe the charge injection for organic light-emitting diodes. By
identifying a critical distance where the concentration of carriers in the extended states equals that
of the trapped carriers, we obtain a model for the injection current, which links the drift-diffusion
and the multiple-trapping theories. This model yields the injection current as a function of electric
field, temperature, and barrier height between metal and organic semiconductor. Good agreement
with recent experimental data is observed. The effect of the field-dependent mobility on the injection
current is also discussed. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2801702�

Over the past 10 years, there has been a surge of interest
in the development and application of organic semiconduc-
tors, such as organic light-emitting diodes �OLEDs� and or-
ganic field effect transistors.1,2 However, on the theoretical
side, there is still a lack of satisfactory description of the
physical process underlying the charge injection in organic
light-emitting diodes. For example, the Fowler-Nordheim
model for tunneling injection and the Richardson-Schottky
model for thermionic emission3 were developed for regular
band-type semiconductor materials. They are, however, in-
sufficient to handle disordered organic materials, where the
density of states �DOS� is a Gaussian distribution, with lo-
calized charge carriers and discrete hopping within a distri-
bution of energy states.4 Arkhipov et al. presented an ana-
lytical model based on hopping theory,5 and Wolf et al.
performed detailed Monte Carlo simulations of charge injec-
tion from a metal to an organic semiconductor layer.6

Due to the low mobility in organic semiconductors ��
�10−3 cm2/V s�, the diffusion transport is also very impor-
tant for the charge injection process. At the same time, dif-
ferent parameters such as barrier height, mobility, and device
length affect the current in OLED. It is useful to consider an
organic diode structure in which a single carrier-type �i.e.,
either electrons or holes� dominates the current flow in order
to clarify the device operation in a relatively simple
situation.7 Such devices can be easily fabricated by choosing
the contact so that the energy barrier for one carrier injection
is much higher than that for the other. Furthermore, since
that the electron mobility ��e� is much larger than the hole
mobility ��h� in organic semiconductors ��h�0.01�e �Ref.
8��, it is commonly believed that the electrons would travel
all the way to the interface between the electron transport
layer and hole transport layer and recombine with holes in
the immediate vicinity of that interface. So the double carrier
injection current should be approximately equal to the single
carrier injection current for some OLEDs with thicker or-
ganic film and higher hole injection barrier.9,10 Therefore, the
aim of this work is to develop an analytical, diffusion-
controlled single carrier charge injection model particularly
suited for OLED. This model is based on drift-diffusion and
multiple trapping theories. The latter can be used to describe

hopping transport in organic semiconductors.11 The pre-
sented model can be used to explain the dependence of the
injection current on the temperature, the electric field, and
the barrier height. The theoretical predictions agree well with
the experimental data.

The present work is concerned with injection-limited
conduction at high electric field. The potential barrier e��x�,
formed at the metal semiconductor interface, is a superposi-
tion of an external electric field and a Coulomb field binding
the carrier on the electrode,12,13

e��x� = � −
e2

16��0�x
− eFx . �1�

Here, x is the distance to interest and the metal-organic layer
interface. Since the rapid variation of the potential Eq. �1�
takes place in front of the cathode, the field F can be re-
garded as being nearly constant.

Using the drift-diffusion theory, the hole current J can be
written as

− J = kBT�� e

kBT
pe�x�

d��x�
dx

+
dpe�x�

dx
� , �2�

where kB is the Boltzmann constant, pe�x� is the hole con-
centration in the extended states, and � is the mobility. On
taking J and � as constant, and solving for pe�x�, we obtain

pe�x� = �N −
J

kBT�
�

0

x

exp	 e��x��
kBT


dx��exp	−
e��x�
kBT


 , �3�

where N is the carrier concentration at x=0. In multiple trap-
ping theory,14 the total carrier concentration is given by a
sum of carrier concentrations in the extended states pe�x� and
the localized states,

p�x� = pe�x� + �
0

�

g�E,x�f�E,EF�dE . �4�

Here, g�E� is the density of the localized states, f�E ,EF� is
the Fermi Dirac distribution, and the quasi-Fermi energy EF
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EF�x� = kBT ln��0	0Nt

pe�x� � ,

where Nt is the total concentration of localized states, 	0 is
the lifetime of carriers, and �0 is the attempt-to-escape
frequency.

In the injection regime, very close to the contact all the
traps are filled. Moreover, the carrier concentration in the
extended states is much higher than that in the trapped states.
At large distance from the injection contact, the main contri-
bution to the total carrier concentration comes from the oc-
cupied localized states.5 So we propose here the concept of
critical distance xd, where the carrier concentration in the
extended states equals the carrier concentration in the local-
ized states, i.e.,

pe�xd� = �
0

�

g�E,xd�f�E,EF�dE . �5�

Substituting Eqs. �1�, �4�, and �5� into the Poisson equation,

d2�e��
dx2 = −

e

�0�
p�x� , �6�

the critical distance xd can be calculated from

1 = �
0

� 16�xd
3g�E − e��xd��

1 + 16�xd
3�0	0Nt exp�− E/kBT�

. �7�

In various disordered organic systems, a pure Gaussian
DOS can be assumed,

g�E� =
Nt

�2�

exp	−

E2

2
2
 , �8�

where 
 is the standard deviation. Solving Eqs. �7� and �8�
numerically, we can obtain the critical distance xd. The free
carrier concentration at xd is calculated by Eq. �5�. Finally,
the injection current can be calculated as

J = kBT�

�N − pe�xd�exp	 e��xd�
kBT


�
�

0

xd

exp	��x�
kBT


dx

. �9�

The critical distance as a function of the electric field is
plotted in Fig. 1 for different Nt. The parameters are 
 /kBT
=4, �=0.4 eV, �0=1�1012 s−1, and 	0=1�10−12 s. We can
see that the critical distance decreases with Nt. However, the

effect of the electric field is non monotonic. The critical dis-
tance increases with electric field in the lower electric field
regime, and decreases with electric field in the higher electric
field.

The barrier height � plays an important role in injection
efficiency. We calculate the relation between the injection
current and the electric field for different �, as shown
in Fig. 2. The parameters are Nt=1�1018 cm−3, 

=0.1656 eV, �0=1�1011 s−1, 	0=1�10−11 s, T=300 K,
and �=1�10−9 cm2/V s. The injection current increases
with the electric field, and the lower the �, the higher the
injection current as intuitively expected. However, the slope
of log J vs log is not constant.

Figure 3 shows the temperature dependence of the injec-
tion current with �=0.3 eV, where other parameters are the
same as in Fig. 2. The temperature coefficient decreases
strongly with increasing electric field. The coefficient re-
verses sign at high electric field, which has also been ob-
served in Ref. 13 theoretically.

A comparison between the model prediction and the
experimental data5 is shown in Fig. 4 �=0.3 eV
and �=0.5 eV. The fitting parameters are Nt=1
�1017 cm−3, �=2.56�10−11 cm2/V s for PPV-ether, and
2.51�10−9 cm2/V s for PPV-imine, respectively. The other
parameters are the same as in Fig. 2.

Next, we compute the charge injection for the OLED
using our model assuming a field-dependent mobility. Note
that there have been well-known models for charge injection
in OLEDs with constant mobility. However, the mobility in
organic materials depends on the local electric field F as15

��F� = �0 exp���F� . �10�

Here, �0 denotes the mobility of carriers at zero field and
� is the parameter describing the field dependence. We first

FIG. 1. Dependence of the critical distance on the electric field.
FIG. 2. Dependence of the injection current on the barrier height.

FIG. 3. Temperature dependencies of injection current.
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substitute Eq. �10� into Eq. �2� to obtain the carrier
concentration,

pe�x� = �N −
J

kBT�0 exp���F�
�

0

x

exp	 e��x��
kBT


dx��
�exp	−

e��x�
kBT


 . �11�

Then, by connecting Eqs. �7�–�9� and �11�, we obtain the
injection current with the field-dependent mobility. Figure 5
illustrates the relation between injection current
and electric field with field dependent mobility, with
�0=7.3�10−6 cm−2/V s and �=1�10−4 m/V1/2, and
�=0.3 eV. For comparison, the injection current with con-
stant mobility is plotted as well.

The diffusion-controlled injection process in OLED is
investigated and the concept of critical distance is proposed.
A compact injection model applicable to OLED is formu-
lated. This model is shown to fit the experimental data well
and to explain the dependency of the injection current on the
barrier height, the temperature, and the electric field. It was
found that the field-dependent mobility plays an important
role in the injection model at higher electric field.
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FIG. 4. Comparison between our model and experimental data. FIG. 5. Comparison between injection currents for field dependent mobility
and constant mobility.
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