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Mixed initial-boundary value problem in particle modeling
of microelectronic devices

M. Nedjalkov, D. Vasileska, 1. Dimov and G. Arsov

Abstract. The Boltzmann equation in presence of boundary and initial conditions, which de-
scribes the general case of carrier transport in microelectronic devices is analysed in terms of
Monte Carlo theory. The classical Ensemble Monte Carlo algorithm which has been devised
by merely phenomenological considerations of the initial and boundary carrier contributions is
now derived in a formal way. The approach allows to suggesta set of event-biasing algorithms
for statistical enhancement as an alternative of the population control technique, which is virty-
ally the only algorithm currently used in particle simulators. The scheme of the self-consistent
coupling of Boltzmann and Poisson equation is considered for the case of weighted particles.
It is shown that particles survive the successive iteration steps.

Keywords. Boltzmann €quation, carrier transport in semiconductors, event biasing, integral
equations.

1. Introduction

As semiconductor feature sizes shrink into the nanometer scale regime, even conven-
tional device behavior becomes increasingly complicated as new physical phenomena
at short dimensions occur, and limitations in material properties are reached. In ad-
dition to the problems related to the understanding of actual operation of ultra-small
devices, the reduced feature sizes require more complicated and time-consuming man-
ufacturing processes. This fact signifies that a pure trial-and-error approach to device
optimization will become impossible since it is both too time consuming and too ex-
pensive. Since computers are considerably cheaper resources, simulation is becomin fag
an indispensable tool for the device engineer. Besides offering the possibility to test
hypothetical devices which have not (or could not) yet been manufactured, simulation
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offers unique insight into device behavior by allowing the observation of phenomena
that can not be measured on real devices, Computational Electronics in this context
refers to the physical simulation of semiconductor devices in terms of charge trans-
port and the corresponding electrical behavior. It is related to, but usually separate
from process simulation, which deals with various physical processes such as material
growth, oxidation, impurity diffusion, etching, and metal deposition inherent in device
fabrication leading to integrated circuits.

Device simulation can be thought of as one component of technology for computer-
aided design, which provides a basis for device modeling. The goal is to provide sim-
ulation tools with the necessary level of sophistication to capture the essential physics
while at the same time minimizing the computational burden so that results may be
obtained within a reasonable time frame.

There are two main kernels, which must be solved self-consistently with one an-
other, at any level of semiconductor device simulation: the transport equations gov-
erning charge flow, and the fields driving charge flow. Both are coupled strongly to
one another, and hence must be solved simultaneously. The fields arise from external
sources, as well as the charge and current densities which act as sources for the time
varying electric and magnetic fields obtained from the solution of Maxwell’s equa-
tions. Under appropriate conditions, only the quasi-static electric fields described by
the solution of Poisson’s equation are necessary. The fields, in turn, are driving forces
for charge transport modeled at various levels of approximation within a hierarchical
structure ranging from compact modeling to an exact quantum mechanical description.
At the very beginnings of semiconductor technology, the electrical device character-
istics could be estimated using simple analytical models relying on the drift-diffusion
(DD) formalism. Various approximations had to be made to obtain closed-form so-
lutions, but the resulting models captured the basic features of the devices. These
approximations include simplified doping profiles and device geometries. With the
ongoing refinements and improvements in technology, these approximations lost their
basis and a more accurate description was required. This goal could be achieved by
solving the DD equations numerically. Furthermore, as semiconductor devices were
scaled into the submicrometer regime, the assumptions underlying the DD model lost
their validity. Therefore, the transport models have been contin uously refined and ex-
tended to more accurately capture transport phenomena occurring in these devices.
The need for refinement and extension is primarily caused by the ongoing feature size
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reduction in state-of-the-art technology. As the supply voltages can not be scaled ac-
cordingly without jeopardizing the circuit performance, the electric field inside the
devices has increased. A large electric field which rapidly changes over small length
scales gives rise to non-local and hot-carrier effects which begin to dominate device
performance. An accurate description of these phenomena is required and is becom-
ing a primary concern for industrial applications. To overcome some of the limitations
of the DD model, extensions have been proposed which basically add an additional
balance equation for the average carrier energy. However, such tools do not have pre-
dictive capability for ultra-small structures, for which it is necessary to consider the
Boltzmann transport equation. This equation provides the most complete classical
description of the carrier transport, and is inherently associated with evolution of par-
ticles and thus with the Monte Carlo method. It will be introduced in details in the next
section. Here, to give a more complete picture we add few words about the transport
models beyond the Boltzmann equation: the quantum models, Moving downwards
to the quantum area in the hierarchical map of transport models, at the very bottom
we have the Green’s function approach. The latter is the most exact, but at the same
time the most difficult of all. One level above are approaches based on the density
matrix or the defined via the Fourier transform of the latter Wigner function. These are
Markovian in time. In contrast, the Green’s functions method allows one to consider
simultaneously correlations in space and time, both of which are expected to be impor-
tant in nano-scale devices. However, the lack of a direct physical interpretation of the
formal quantum models and the enormous computational burden needed for their jm-
plementation make the usefulness in understanding quantum effects in actual devices
of limited values. For example, the only successful utilization of the Green’s function
approach commercially is the NEMO (Nano-Electronics Modeling) simulator which
is effectively 1D and is primarily applicable to resonant tunneling diodes. Thus, effec-
tive computational methods for quantum transport are still in process of establishment.
Many works utilize the alternative way, namely to incorporate quantum models on top
of the Boltzmann equation.

Within the requirement of self-consistently solving the coupled transport-field prob-
lem in this emerging domain of device physics, there are several computational chal-
lenges, which limit this ability. One is the necessity to solve both the transport and
the Poisson’s equations over the full 3D domain of the device (and beyond if one in-
cludes radiation effects). As a result, highly efficient algorithms targeted to high-end
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computational platforms (most likely in a multi-processor environment) are required
to fully solve even the appropriate field problems. The appropriate level of approxi-
mation necessary to capture the proper non-equilibrium transport physics relevant to
a future device model is an even more challenging problem both computationally and
from a fundamental physics framework.

From the above discussion it follows that, one must to perform particle-based de-
vice simulations that solve the Boltzmann transport equation self-consistently with the
Poisson equation, as the latter gives the fields that drive the carriers during the free-
flight portion of the Monte Carlo method. A development of formal approaches to this
problem gives novel opportunities for optimization and statistical enhancement and
assists the incorporation of quantum models.

The Monte Carlo method for device simulations is so transparent from a physical
point of view, that is frequently interpreted as emulation of the process of carrier trans-
port as viewed by the classical Boltzmann picture. According to this picture point-like
particles drift over Newton’s trajectories under the action of the applied electric field.
The drift processes are interrupted by scattering events which are due to lattice imper-
fections such as lattice vibrations - phonons, impurities and other defects. The physical
model of the particular semiconductor provides information about the carrier effective
masses, dispersion relations and the variety of interaction mechanisms between carri-
ers and the lattice imperfections. This information is incorporated into physical proba-
bility functions generally depending on the phase space coordinates formed by carrier
wave vector and position, and which govern the carrier evolution. As the Monte Carlo
method simulates the probabilistic evolution of the individual carriers, it provides the
carrier distribution satisfying the Boltzmann equation. This phenomenological result
is in accordance with the fact that the equation itself is derived from phenomenologi-
cal considerations, by accounting the number of carriers, exchanged due to the applied
forces, velocities and scattering events between given small phase space region and the
rest of the phase space. The formal proof that the used algorithms solve the equation
was carried out later, for the homogeneous, single particle steady-state algorithm [1],
for the inhomogeneous counterpart [2], and for the transient Ensemble Monte Carlo
algorithm (EMC) for an initial condition problem [3].

The alternative way to approach the Boltzmann equation with the methods of the nu-
merical Monte Carlo theory was reported in end of the 1980’s [4], [5]. This mathemati-
cally-based approach lead to the development of new algorithms such as the Weighted
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Ensemble Monte Carlo method [6], [7] and the Backward Monte Carlo method [4],
[5]. These early works focused on the transient case of evolution of an initial distri-
bution of carriers. The potential of this approach for treatment of quantum transport
problems has been also recognized [8]. Indeed, only formal approaches are possible
in this case because of the lack of direct physical probability functions which govern
the quantum evolution.

The approach has been further applied to the stationary Boltzmann equation with
boundary conditions, giving rise to the single particle counterparts of the weighted and
backward algorithms, as well as event biasing schemes for statistical enhancement [9],
[10]. Statistical enhancement aims at reduction of the time necessary for computation
of the desired device characteristics. Enhancement algorithms are especially useful
when rare events in the transport process control the device behavior.

As based on the linear Boltzmann equation (BE), the approach is relevant for frozen
field transport, where Coulomb interactions between particles are neglected. If the lat-
ter are enabled, the problem becomes nonlinear through the electric force, which now
becomes dependent on the distribution function. Recently also this problem has been
resolved within an analysis of the iterative procedure of the self-consistent coupling
between the Boltzmann and Poisson equations. The general transient problem in pres-
ence of initial and boundary conditions has been considered and event biasing has been
applied for simulation of real structures. The obtained results as well as a discussion
of the physical and application aspects of the approach are given in [11]. In this work
we present the theoretical aspects of the approach. In particular a detailed derivation
of the event-biasing scheme is provided, beginning with the integral form of the trans-
port equation and the corresponding adjoint equation. It is shown that the separation
of the contributions form the initial and boundary conditions becomes obsolete in the
special case of the EMC. Event biasing is introduced and some basic biasing models
are discussed. Finally the self-consistent scheme for event biasing is analyzed.

A short introduction to Monte Carlo evaluation of integrals and integral equations
which aims to introduce the notations and to make the work self-contained is given in
the next section.

2. Monte Carlo evaluation of integrals and integral equations

The expectation value Eiy, of a random variable 1 which takes values 1/(Q)) with prob-
ability density py(Q) is given by the integral Ey = [ dQpy(Q)¢(Q) where Q is a
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multi-dimensional point. The simplest Monte Carlo method evaluates E;, by perform-
ing N independent realizations of the probability density Py Generated are NV points
Q1,--.,Qn, called sampling points for the random variable v). The sample mean 7
estimates the expectation value Ey

N
1 4.
Bysn==3"9(Q) P{E,—n| < %} ~ 0.997 @.1)
=1

with a precision which depends on the number of independent realizations N and the
variance of oy, of the random variable. According to the "rule of the three sigma™: the
probability P for 7 to be inside the interval 30y/v/'N around Ey is very high (0.997).

The concept of the Monte Carlo approach for evaluation integrals is to present given
integral as an expectation value:

_ = ) _
I= /f(Q)dy = fp(Q)p(Q)» p(Q) >0, I/p(Q)dy =1 (2.2)

of the random variable Y = f/p. The probability density function P can be arbitrary,
but admissible for I p # 0if f = 0. Different random variables can be introduced,
depending on the choice of p. All of them have the same expectation value [ but
different variance and higher moments. It can be shown that the lowest variance is
obtained if p is chosen to be proportional to | f|.

The idea is generalized for evaluation of integral equations. Consider a Fredholm
integral equation of the second kind with a kernel X and a free term fj

£(@Q) = [ Q' F(QVK(Q, Q)+ /o(Q) 2.3)

The solution is expanded into a Neumann series by iteratively replacing the equation
into itself. The terms of the series are consecutive iterations of the kernel on the initial
condition. Each term in the series is a multiple integral of the type of (2.2) and can
be evaluated by a Monte Carlo method. Now assume that we are not interested in the
solution itself, but in the inner product of J with a given function A:

() = (4, f) = / dQAQ)£(Q)

Useful in this case becomes the adjoint to (2.3) equation:

(@) = f dQK(Q, Q)g(Q) + A(Q') (2.4)
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If (2.3) is multiplied by g, (2.4) is multiplied by f, the two equations are integrated
and compared, it is obtained that (4, f) = (fo,9):

)= [ dQa@) 1@ = [@r@e@ = s

(!

The last equality is obtained with the help of the Neumann expansion of (2.4).

9@ =AQ)+Y KM@, Q)AQ): K'(Q,Q) [ IQE(Q, Q1K™ (Q1, Q)

n=1
(2.6)
This gives rise to the series expansion {(A) = ¥".(A);. For example, the integrand of

i

{(A)7 is a product of Jfo with two iterations of the kernel:

o - fo(@)E(Q, QUK (Q1, Q1) AQ5)
fdy = /dQ dQ1dQx Fo(Q')P(Q', Q1) P(Q1, Q) @) O P(Qh% )

(A)3 with three iterations, etc. Actually (2.7) has been augmented with the help of two
probabilities P and P in order to resemble (2.2). These probabilities are used to build
the so called numerical trajectories:

* Py(Q') selects the initial point Q' of the trajectory. Py must take nonzero values
in the points where Jfo is different from zero.

¢ The transition probability P(Q’, Q) uses the value of the selected on the pre-
vious step point ' to select the next trajectory point ¢). In order P to be a
probability, it is required that [dQP(Q, Q) = 1YQ'. Furthermore P must be
different from zero where K is nonzero.
The random variable in (A), is a product of factors %%, X evaluated at each selected
point in the sequence @)y — Q; — (2. The latter is obtained by application of the
probabilities By — P — p, The mean value of N realizations of the r.v., calculated
over the trajectories (Q' — Q1= Qi=1,... » N, evaluates (A),. Here we used
the iterative character of the multiple integral (2.7) to introduce a consecutive proce-
dure for construction of the trajectory. In this way the trajectory can be continued by
consecutive applications of P. Such trajectory can be used to evaluate simultaneously
all terms (2.5), i.e. to evaluate directly (A). Our goal is to find a stochastic model
where the concrete choice of Fp and P optimizes the computation of (A4). We con-
tinue with an analysis of the Boltzmann equation in the spirit of the above Monte Carlo
theory.
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3. The Boltzmann equation with initial and boundary conditions
3.1. The transport model

The time-dependent Boltzmann equation formulated in the complete six-dimensional
phase space 7', composed by the wave vector k and position r, is

(% +v(k)V, + F(r)Vk,) flk,r,t)= [dK' S(K', k,r) f(K,r, t)=Ak,r)f(k,r,1)

(3.1)
The function f gives the distribution of the semiconductor carriers in the phase space:
Carriers are accelerated over Newton’s trajectories by the electric field E and are scat-
tered between them by the existing semiconductor lattice imperfections. The scattering
is assumed local in position and time. Only the wave vector is changed instantaneously
as described by the scattering rate S (k' k, r) giving the frequency for scattering from
the before-scattering state k’ to the after-scattering state k. ) is the out-scattering rate:

e 55 = f dK'S(k,K,x)  F(r) = gE(x)/h (32)

q is the carrier charge and v the velocity. The force F = F(r) is an explicit function
of the position and does not depend on the solution f, so that carriers have negligible
contribution to the build-in potential. This corresponding to a frozen field model as-
sumption will be reconsidered later in this work. Both S and F can depend on the time
which is not explicitly written, but is assumed in what follows.

In the general case of device transport the Boltzmann equation (3.1) is provided by
both initial, and boundary conditions. The specified at time ¢ = O initial condition fids
assumed zero outside the device domain D, while the boundary condition f;, is defined
at times ¢ > 0 on the device boundaries 9D, 1 1s zero on the reflecting parts of the
boundaries, and is usually assumed to be the equilibrium distribution function at the
highly doped contacts where carriers flow in and out of the device.

The first term Sf on the right hand side accounts for the events of scattering at
time ¢ from all phase space points k’, r into the phase space point of interest k, r, so
it is called in-scattering term, while the second term \ [, called out-scattering term,
accounts for the opposite events of scattering out of k, r.

The mean value (A)(%) of a generic physical quantity A are obtained with the help
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of the inner product of A with the distribution function f:

(A) :[dk!drA(k,r)f(k,r,t) = /dk!dr /Ooo dt’ Ak, r)5(t — ') f(k, x, )

(3.3)
The reason for the extension with the time integral will become clear in what follows.
Here f is assumed normalized to the total number N (t) = (6p) of carriers in D Op
is explained below). In this way, in a homogeneous semiconductor of volume Vp, the
occupation number of a state k is 473 f(k)/Vp. The averaged, or mean value A per
carrier is then given by the ratio (A)/(6p). The mean value in given domain Q € D
is obtained with the help of the domain indicator fg, which is unity if the phase space
point belongs to  and is zero otherwise. For example N (¢, Q) = (fq, f) is the actual
number of carriers in €.

3.2. Trajectories

The characteristics of the Liouville operator on the left hand side of (3.1) are deter-
mined by the Newton equations, which describe the free carrier dynamics:

dr _
dt
Note that F' may depend on the time which is not explicitly written. A solution of

dk
S F(r) v(k) (B34

(3.4), called trajectory, is uniquely determined by specifying an initialization phase
space point and time. A trajectory initialized by k, r, is denoted as follows:

K(t:k,rt)=k— ftftF(R(y))dy R(t:k,r,t) =1r— /ﬁt v(K(y))dy (3.5)

The compact notation K(¢'), R(t') will be used: when needed to avoid ambiguity the
initialization will be specified explicitly. t' parameterizes the trajectory “packward” in
time if 0 < ¢ < t and “forward” in time if ¢ > t. Using (3.5), we can write for a
trajectory segment between two given times tp < #;:

te 1y
K(t.) = K(t2) + [ F(R))dy = K(t) - ] F(R(y))dy

- -
R(t.) = Rit2) + f v(K(y))dy = R(t:) — ] K@)y GO

Since the uniqueness of the solution, the above relations show two possible ways for
initialization: using K(t2), R(t2), t2, te > t2 OF using K(t1), R(t1),t1, te < t1- At
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evolution time ¢, both ways of initialization provide the same point K(z.), R(t.). We
refer to the first way as to forward initialization and to the second as to backward
initialization.

According the Liouville theorem, the trajectories conserve the phase space volume:
dkdr = dK(t')dR(#'). In particular:

/ dkdr(k, v, K(¢), R(t)) = f dK'dr'$(K' (), R(t), K, ')  B.7)

Here ¢ is a given function, K(7), R(7) is a backward trajectory initialized by k, r at ¢,
while K'(7), R/(7) is a forward trajectory initialized by k' = K(#'), v’ = R(#'). Over
a trajectory the Liouville operator becomes a total time derivative. Thus, provided that
there are no scattering events, the value of f is conserved over trajectories. In order to
use the rules for Monte Carlo integration we first need the integral form of (3.1).

3.3. Integral form

We consider equation (3.1), written for a backward trajectory (3.5) initialized by k, r, ¢:

(% -+ /\(K(t’),R(t')))f(K(t-’),R(t’),t’) =/dk’S(k’, K(),R()) f(K,R(t),t)

(3.8)
After a multiplication by the integrating factor e~ /i \E® R the left hand side
becomes a total time derivative:
t
d —JMK(@)R(y)dy

b # FK(),R(t),t) =

, ~ [ MK () R(w)dy
f di Sk, K(t'), RI)) f(<, R(#), t)e ¥

The obtained equation can be integrated in the limits (to,%). According to equation
(3.5), K(t' = t) = k and R(#' = t) = r. The time % can be appropriately chosen
to provide an initial or boundary point, where the value of f is known. That is #; is
0 if at ¢ = 0 all points of the trajectory segment between t' = t and ¢ = 0 belong
to D. If the trajectory (evolving backwards in time) crosses the boundary @ at time
tp > 0, then {9 = ¢. Note that in stationary conditions the interval 7, = £ — ¢, depends
only on the phase space point k, r. It is convenient to utilize the indicator 8p of the
device domain D), which takes values 1 if the real space component of the trajectory
belongs to D and 0 otherwise. This allows to set the bottom time limit on the right
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to 0. Moreover, since the domains of definition of f; and f, are complementary, the
integral form can be stated in a way which includes both, the initial and the boundary
terms:

i — [ A () R()dy
i . = /0 ' 0p(R(2)) /dk’f(k’,R(t’)?t’)S(k’,K(t’),R(t’))e

) R(y))dy — [ AK () RE))dy
+e 0 fi(K(0),R(0)) +e * fo(K(ty), R(ts), tp) (3.9)

&
_ _ _ = [ AXK(y)R{y))dy
The obtained equation has a transparent physical meaning. The terme ¢

is the probability for a carrier starting at time ¢’ from the phase space point K ('), R(#')
to remain over the trajectory until reaching k,r at time #, provided that the out-
scattering rate is A. Hence, the value of f(k,r,¢) is formed by two contributions:
The first one is the fraction of the initial (boundary) value which survives over the
trajectory despite the scattering events. The second contribution is accumulated dur-
ing the evolution of the system by the following events taking place in the trajectory
part before the point k, r, t: At time ¢’ electrons from the whole momentum space, but
having real space coordinate equal to R(#'), are scattered with rate S in the proper
momentum state K (#') (this ensures that they will follow the trajectory which passes
through k, r at time ¢). The number of such events is proportional to the electron dis-
tribution f(k’,R(t'),t')). The exponent gives the probability the properly scattered
electrons to remain on the trajectory until time ¢ is reached.

An application of the Monte Carlo theory to equation (IF) gives rise to backward
evolution algorithms. The natural forward evolution is introduced by the adjoint equa-
tion.

3.4. The adjoint equation

The function f(Q) = f(k,r,t) in (3.9) is defined on a seven dimensional point Q.
However, the integral on the right hand side is only four dimensional, which shows
that the kernel is degenerate. To obtain a formal analogy with (2.3) we first augment
the right hand side with an integration on r’. Furthermore the upper limit of the time
integral is augmented to co and the kernel is multiplied by a term, which aims to keep
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the value of the multidimensional integral unchanged:

% — [ A () Ry
flkzf) = ]dt.’[dk’fdr’f(k’,R(t’),t’)S(k’,K(t’),r’)e v x
0
Op(r')o(' — RVt — ') + folk,T, £) (3.10)

Note that the free term in (3.9), shortly denoted by f; is a function of k,r,t only,
since the later determine 9 and K (to), R(to). Here 8(t —t') is the Heaviside function.
According to (2.4), the adjoint equation with a given free term go has the same kernel,
but the integration is carried over the unprimed variables:

oo = f' AMK(y),R(y))dy

Gl Y = f dt ] dk / drg(k, r, £)S(K, K(£), 1')e * e
0
Op(r)o(r' —R(t))6(t — ') + go(K', ¥/, ¢') (3.11)

Itis now convenient to apply the Liouville theorem (3.7). The integration variables k, r
can be changed to K(#'), R(t') which are further denoted as k* = K(¢'),r" = R(t).
The latter at time ¢’ provide a forward initialization of the trajectory. The equation
reads:

g 4 " . : — [ AK()R(w)dy
gk, r',th) = /dt/dka’/dr g(K(t), R(t),t)S(K, k% r')e + X
0

Op(x")o(x' —r")0(t — ¢') + go(k',x,t")

Now it is possible to account for the § function and the Heaviside function . As ¢ has
been used to denote the time for evaluation of (3.3), it is convenient to change the time
integration variable to 7.

gt t) = (3.12)

0 o - A RE)ay ,
f dr/dk“@p(r )S(K', k* r")e ¢ g(K(7),R(7),7) + go(K', ¥', )
t!

A comparison with (2.4), (2.5) and (3.3) shows that the free term go must be chosen
as:

go(K',x',t') = A(K,¥)o(t — ¢')
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The Neumann expansion (2.6) of g is obtained by a recursive replacement of (3.12)
into itself. For example the second term ¢@ is

i
@, v, t) = / dty f dk? f dkeS(K, k2, 1) p(r')
t!

= fl A(KL(y), R (1)) dy .
e ¥ S(Ki(t1), k3, Ri(t1))0p(Ra(t1))

— [ MKae) Ra(u))dy
e U A(Ky(t), Ra(t)) (3.13)
where the trajectory K, Ry is initialized by k¢,1r’,t' and K3, R, is initialized by
kS, Ri(t1), 1.
The physical meaning of equation (3.12) can be displayed by choosing A to be the
indicator of a phase space sub-domain Q € D : A = fg(k, r). It will be shown that in
this case the quantity

R AR W , ,
G(Bg,t;ka,ra,O)zf di'e g(Ka(t),Ra(t))  (3.14)
0

is the probability of a carrier, initially located at k1,0 (these values initialize the
trajectory K, (y), Ra(y)) to appear in Q at time ¢ without leaving D during the evo-

lution. In particular consider the contribution of the term (3.13) to (3.14) in the case
A=6q:

v — [ A(Ka(9)Ra(y)d
/d fdtlfdka/dkze { i S(Ka(t), ki, Ra(t))p(Ra(t))
0
- f/\ K, ()R (y))dy
xe ¢ S(Ki(t1), k3, Ri(t1))0p(Ra(t1))
— [ AMK(y)Ra(a))dy
xe 0o (K (1), Ra (1)) (3.15)

We recall two classical transport probability densities, py and pg. pydt is the probabil-
ity for a carrier at k, r, £y to experience a free flight in the time interval (%, ) and to
be scattered during (¢,¢ + dt) provided that the out-scattering rate is A:

~ f A () Ry
pe(t ke tg)dt =e ‘o MEK(2), R(t))dt
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The proof of the normalization of Py 18 straightforward !,

The quantity
S(k,k',r)
Ak, r)

is the probability for scattering per unit time from a phase space point k,r in the

ps(k, kK, r)dk’ = dk’

volume dk’ around k/, r. Only the wave vector component changes, showing that the
scattering is regarded instantaneous in time and local in real space. The function pg is
normalized to unity as ) is defined from equation (3.2).

The densities p; and pg appear explicitly in equation (3.15) if the latter is augmented
by a multiplication of each exponent with A and a division of the next S by the same
A. For convenience the time variables are altered according to ' — ¢, ¢; — ts,

o0 o
G — f dt; f dts f dke / dks (3.16)
0 1

~ MK (4 Ral)y S(Ka(t), k%, Ra(t))

A(Ka(t1), Ra(t1)) }GD(Ra(tl))

[+

A(Kq(t1), Ra(tr)) {

— A () R )y

g /\(Ki(tz):R](tZ)) {S(K](tz)akS;Rl(tz))

A(Ki(t2), Ry (t2))

}QD(Rl(tz))

—tft MK (y),Ra(y))dy
2.

& BQ(Kg(t), Rz(t))a(t - tg)

The obtained probability densities are enclosed in curly brackets. Note that the inte-
gral on ¢, is augmented to infinity, which is compensated by 8(t — ¢;). G is entirely
decomposed into a product of conditional probability densities p;pgpipg which gen-
erate the natural process of evolution of the Boltzmann carrier system. Indeed we
can recognize elementary events which compose the following process: The initial
carrier drifts over the trajectory K, R,, until time ¢, when a scattering event occurs.
The carrier coordinates Ko (t1), Ro (%) at the end of the free flight are used in pg
to generate the after scattering state: The carrier scatters from Ka(t1),Ra(t),t; to

'Here we assume the existence of both, trajectories and phonon scattering outside the device domain
D. Alternatively we may assume that trajectories do not exist outside 1D, which is equivalent to assume
A infinity. In this case the time to the boundary becomes an upper limit of the normalization integral. The
results of this section remain true after minor modifications
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ki, R, (%1),t; The next Py gives rise to a free flight in the time interval (¢,¢,) over
a trajectory K, R initialized by k¢, Ro(t1) = (ry,¢1). At time ¢, there is another
scattering from the end point of the trajectory K (£;), Ry (t2) to k3. R (t2) = r. The
latter initializes the trajectory K, R..

The last exponent is the probability for drift without scattering over K, R, until
time ¢ is reached. Indeed the equality

- IXKGRGIY oo - PR RGN
e b _ / dise MK (t3), R(t:))0(t; — )dt (3.17)

ty

shows that the exponent unifies all events having scattering time greater than #. Finally
o in 3.16 accounts only these processes, where the carrier is in Q at time .

The integrals on time and wave vectors take into account all possible elementary
events comprising three free flights and two scattering events. The domain indicators
reject all events where trajectories leave the device domain I before time 7. The 0
function takes care for the proper time ordering of the transport process. It discards all
events which do not obey the condition t1 <t < t. Thus counted are only processes
where the carrier: (i) is a subject of a two scattering evolution process; (ii) remains
inside D during the evolution; (iii) resides in Q at time ¢.

Equation (3.17) can be used to unify the terms with i < 2 into one expression.

2 % e oo
> 6® :/dtlfdtgfdtgfdkj‘fdkgfdkg x (3.18)
=0 0 t ta

pt(tIQkaprmo)pS(Ka(tl):ka, ch(tl)) X
pe(tas kT, Ro (), t1)ps (K (t2), k5, Ry (t)) x
Pelts; k3, Ra(ha), t2)ps(Ka(t3), kg, Ra(t3)) x

(GQ(Ka(t), Ra(t))g(tl—t) +0(t - fl)QD(RO,(tI))QQ(K] (t), R (£)0(ty — t)

+ 80t = 12)0D (R (41))8p(R (t2))a (K (), Ra (1))6(15 — t))

This result can be generalized for the rest of the series, giving rise to an infinite integral
and an infinite sum of theta functions which present the random variable ¥ associated
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to the Boltzmann transport process.

e e 9
G:Tr}i_r,n'mnfdt“‘ /dk?+1 pe(tren K R (81), t)ps (K (tien), ki Ra(ti) - - -
I:(}Ll

m i—1
xi{%@(t—ti) H)ap(Rj(th)) 0 (K (1), Ri(1))0(tir1 — 1) (3.19)
= ;l:

The following convention justifies the recursive notations:
—1
to=0; kd=ke Roi=ro; Ko=Ka; Ro=Ra ][Op=1
=0

Now consider the special case where the carrier evolves in the whole phase space il
ie. Q=D =7T. Then fq = Op = 1 and the random variable in (3.19) reduces to

m—1

p=Y Bt—t)8(ti—t); 0<t<ty... (3.20)
i=0

The time axis is decomposed into intervals by the consecutive times of (3.19). For
any time t and for any setting of the consecutive times #; there is a certain interval
tj <t < tj+1 which contains ¢. Then 6(t — t;)0(t;41 — t) = 1, while the remaining
terms in the sum of (3.20) become zero. The theta functions in time decompose the
evolution into mutually complementary events whose probabilities sum up to unity.
) = 1. In this case the value of (3.19) is easily evaluated:

G(br,t:ka,Ta,0) =1 Y t, ka, To (3.21)

This property is called conservation of the mass, which is another way of saying that
at any time ¢ the carrier must be somewhere in the phase space. It should be noted
that the traditional way of obtaining the conservation of the mass, equation (3.21), is
as follows. From (2.5), (3.3) and (3.21) and by setting 8o = 87 = 1 it follows that:

G(0r,t;ka,Ta,0) =/dk [drf(k,r,t)

By integrating (3.1) in the phase space T, the left hand side becomes the total time
derivative of G while the right hand side becomes 0. Hence

G(87,t; kasta,0) = G(07,0: Ky, 70, 0) = 1



Mixed initial-boundary value problem in particle modeling 315

In the general case Q € D # 7 the domain indicators discard some of the events of
the evolution, which are counted in (3.20). The random variable 4 in (3.19) is now not
fixed to 1, but has the 0 as an alternative value. Thus 1 counts only elementary events
where the domain indicators are unity and discards the rest of the events which accom-
plish G(0q, t; ka, ra,0) to G(07,t; ka, ra, 0). It follows that G(0q, t: ka, Ta, 0) is the
probability of a carrier, initially located at k,, ro, 0 to appear in Q at time ¢ without
leaving D during the evolution. In what follows we call condition I the restriction
that the trajectory must belong to D. With this experience we can generalize (3.19) to
G(A, t;ka,14,0) of any generic physical quantity A by simply replacing g by A.

3.5. Initial and boundary conditions

According to equation (2.5), the mean value of the physical quantity A at time ¢ is
obtained by the inner product of the free term of (3.10) with the solution of the adjoint
equation (3.12):

A)(t) = /deg Q)9(Q) /dk’fdrf dt fo(l, ¥, #)g (K, ', ) (3.22)

The Neumann expansion of (3.12) inserted in (3.22) gives the desired series for a
Monte Carlo approach. Since f; accounts for contributions of both, initial and bound-
ary conditions, (3.22) must be evaluated for each contribution separately.

3.5.1. Initial condition

K () R
(AY( /dk’fdrf 4t £, (K(0), R(O))e 1 RO 0

We recall that the backward trajectory (K(y), R(y)) is initialized by K/, r/,#/. Using
the same arguments as for (3.7) we change to forward initialization. By denoting
K(0),R(0) as k;, r; the forward trajectory K;(y), R;(y) is now initialized by k;, r;
attime 0. Then k' = K;(#') and r' = R;(#') so that

f."

o0 — [ MK (y) Ri(y))d
AYi(t) Zfdki/dr'ifi(ki,ri)./o dt'e 0 P yg(Kf;(t’%Ri(f):f)

(3.23)
The interpretation of this expression follows the arguments after (3.15). The function
[i gives the distribution of the initial carriers, i.e. the points which initialize the trajec-
tories at time 0. The rest of the expression can be easily identified as G(A, t; k;, r;, 0).
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Indeed the choice of f;(k;,r;) = d(k; —kgo)d(r; — r,) along with A = fq transforms
(3.23) into (3.14).

3.5.2. Boundary conditions

The treatment of the boundary conditions is not straightforward. The reason is that the
former are known on the boundaries only so that the volume integral on r’ in

: ffA K(y) Ry
fdk’/dr/ dt’ f,(K(ty), R(ty))e g(k’,r’,t’)

(3.24)
must be transformed into a boundary integral. A phase space point (k’, ') is bijectively
mapped onto (K(t;),ry = R(ty),,) where ry € 8D if t, > —oc. This prompts that
the transformation must replace one of the space integrals by a time integral. We
consider the subspace ®; of points (k/,r’) having finite ¢,. Fortunately this is the
relevant sub-domain for the integral (3.24), since in the complementary subspace the
integrand vanishes. The required time integral is introduced as follows. The domain
boundary can be formally defined by a function B(r) = 0. This gives an implicit
definition of the boundary time as a root of B(R.(¢")) = 0. Consider the equality

5(t" — 1) 6(t" —ty)
IVRBR)R—r() - v(K(t"))] ~ [VRBR)mr)|vLK(%))
(3:23)
Here v is the velocity component normal to the domain boundary in the crossing
point with the trajectory. The wave vectors K(ty) € K comprise the subspace K
of these wave vectors corresponding to velocities inwardly directed with respect to the

S(B(R(t"))) =

domain D.
The equality can be used to augment (3.24) by a time integral on t” in the limits
(0,¢):

o0 ¥
(As(t) = f dk’/ dr’ fo it /0 dt"S(BR("))) Ve B(R) perier) - v(K(")

~ I M) Ry
* fo(K ("), R(t"),t")e g(k',r'.t)

The time argument #, in the second row has been replaced by " with the help of
(" — t) in the first row of the expression. The obtained equation can be processed



Mixed initial-boundary value problem in particle modeling 317

within the same steps leading to (3.23). The integration variables dk’, dr’ are changed
to

dk'dr’ = dK(¢", X/, #')dR("; K, ¥', ) = dK(¢")dR(t") = dk” dr"

Now K(y), R(y) denote a forward trajectory initialized by kK”,r” " so that k' =
K(t') and r' = R(#'). The expression for (A)p(t) becomes:

%) g
(A(t) = / dk” / dr”‘/o. dt’ fo dt"5(B(x"))|[ VR B(R)g_p - v(K")|

) _fA(K(y],R(y))dy ’ I ’
o ma  ad g(K({'),R(t),t') (3.26)

The r” integral is transformed with the aid of the equality:

o TN P(rp) i
[ 3B = A G.27)

where ¢ is a test function. By using (3.27) and (3.25) into (3.26) it is obtained:

o0 4]
(A)p(t) = fgﬂda(rf,)dk” fK fo dt' /0 dt" vy (K") fo(K", v, £")

;
eXP(— f f\(K(y),R(y))dy)g(K(t’),R(t’),t’)

b2l

For consistence we denote the wave vectors k” of the boundary states by k;, the time
t by t, and rename the trajectory. Recalling that T dt fot dty = [y dty Jo dt' we
finally obtain:

(ANt) = f:dtb ynga(rwdkb/K w5

o0 #
<[ dt’exp(— A(Kb(y),Rb(y»dy)g(Kb(t'),Rbot'),t') (3.28)
ty ty

The upper bound of the integral on ¢, is set to ¢ by the delta function in gy. The
term v f has similar interpretation as f;: it gives the distribution of the points which
initialize the trajectories at time #,. The rest of the expression can be easily identified
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as G(A, t; ky, 15, 1). A physical insight to (3.28) provide the quantities:

Fi(Epte) = /dk{JUL(kb)fb{kbarbatb)a
K (xs)

T ol)= jg JL(rs, tp)do(xrp),
Jap
t
Nr(t) = /0 dtsTp(th) (3.29)

They represent the normal component of the incident carrier current density, the total
incident carrier current at time £; and the total number of carriers injected until evo-
lution time ¢. Then the integral with respect to ¢, gives the contribution of all carriers
injected at times ¢, < ¢ to the value of {A);(¢). Assuming A = 6, the term of the
second row is identified as G(fq, t; ki, r;, ). Usually the boundary conditions f; are
time independent so that the integrals in (3.29) become constants with respect to the
time.

4. Monte Carlo approach
4.1. The EMC algorithm for device simulations

We derive the EMC algorithm from the basic rules of the numerical MC procedure. In
the previous section we discussed the peculiarities of the kernel and the free term of
the Boltzmann equation, which determine the expression for (A4)(t). In particular for
a point-like initial condition k,, r,, the series expansion (2.5) becomes (3.19) (with 8q
replaced by the concrete expression for A). The terms of the series, represented by
(3.16) and (3.18) have the form of (2.7). This allows to identify a "natural” transition
probability PZ as a product of the probabilities pypg, incorporated in the Boltzmann
kernel. P? gives rise to the standard free-flight and after-scattering selection scheme
utilized in device Monte Carlo simulators. The time of the next scattering event ¢, is
determined by the equality:

tr
f pﬁ(t;ku r, to)dt =
ty

where 7 is a random number evenly distributed in the interval (0, 1). The next step is

to select the after scattering state according to pg. Usually S is comprised by several
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kinds scattering mechanisms S;:

s
~
7
4.1)
The probability for selection of a given after-scattering state is the product of the con-

S Ai:S; i 5

ditional probabilities involved in the first equality in (4.1). Thus inequality in (4.1) is
used first to select the concrete scattering mechanism 4,, where 7 is another random
number evenly distributed in the interval (0, 1). Then the after-scattering state wave
vector is generated from the selected mechanism 4,.. As |k’| is determined by the type
of scattering, three random numbers are utilized to select according pg,;,. the angles
which establish the k’ as a vector.

We establish a link between the numerical trajectories and the trajectories of the
classical semiconductor carriers. A numerical trajectory, constructed with the help of
P, resembles a possible real trajectory of a classical carrier. Apart from the require-
ment to fulfill the condition I, only the final point of the trajectory k, r, reached at
time ¢, determines the value of the corresponding random variable ) in (3.19). Indeed,
for any concrete trajectory only one term in the infinite sum in (3.19) can survive and
has the value ¢» = A(k,r), or ¢y = 0 if T is not satisfied. Thus, formally we can
speak about a numerical particle which evolves in the phase space as a classical car-
rier. According to (2.1), IV such particles can be used to evaluate the desired mean
value at time ¢: (A) ~ Zle tn/N. Note that this is a mean value corresponding to a
point-like carrier, initially placed at ko, r,,. If the renormalization factor V is assi gned
to the numerical particle, the latter can be viewed as carrying N~ !th fraction of the
physical characteristics of the carrier. Or we can say that the weight of such particles
igN =L,

The initial conditions (3.23) and boundary conditions (3.28) introduce additional
integrals which, as discussed in the previous section, initialize carrier distributions at
time 0 and #, respectively. We assume these distributions dense enough, i.e. there
are enough carriers in any initialization point, to allow the choice N = 1. Due to
this convention, there is one to one correspondence between numerical particles and
semiconductor carriers, the weight is unity, so that Monte Carlo numerical particles
can be regarded as real semiconductor carriers.

The mean value (A) = (A); 4 (A}, is decomposed into two terms which are eval-
uated separately. The initial probability P(ﬁ for (3.23) is constructed by taking into
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account the physical nature of f;: The latter is presented by N(0) = (1, f;) carriers
so that P(ﬁ. = fi/N(0). According to the above convention, the number of the Monte
Carlo particles is also N(0). As discussed, the evolution of each of the initialized
n = 1,...,N(0) particles follows the rules of the EMC algorithm and contribute to
the estimate of {A); with 1,. According to (2.1) and (2.7) the following relation holds:

N(0) N;(t)

(A); = NEO) Z }f; Yn = Zefzn = Z} A, (42)

where N;(t) is the number of the particles which remain in the device during the

,'t

evolution until time . We note that any other number N in the place of N(0) will give
rise to a weight N (0)/N for all particles.

The boundary term (3.28) is approached with the help of the physical characteristics
(3.29) of the charge injection, which are known quantities, external for the simulation.
The probability density for injection from the boundary per unit time is chosen to be

B _ Ip(ts) _ jilre,ts)  vi(ks)fulks,rs,ts)
= Nw X Toly) < ilrh) “3)

With this choice of P0 »» the estimator for (3.28) becomes:

Nr(t) Ny(t)

Nr(t)
1 b
)b: Nr(t) n§= 1;35% = E Yo = § Ap (4.4)

where Ny(t) is the number of the injected from the boundary particles which remain
in the device until time .
We show that the density PJ 0. Provides the well known steps used in the EMC

algorithm for boundary injection. PO,b 1s a product of three conditional probability
densities. The formal Monte Carlo interpretation of this density is as follows. For each
particle: (i) select the injection time #; from the first density, (ii) select the boundary
point by the second density, (iii) select the value of the in-warding wave vector by the
third density.

i According to this formal step the injection time #; is chosen randomly and a
single particle is injected. The process continues until the number of injected
particles becomes equal to Nr(¢). The net effect is that for a time interval Aty
around f; the differential number of injected particles is T’ D(ty)Aty,/Nr(t). It
is then equivalent (and more convenient) to inject the corresponding differential
number of particles at the consecutive steps Aty, of the evolution.
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ii As arule f; is the equilibrium distribution fe, a function which characterizes
given contact, assumed to be a homogeneous region. Then j, is a constant,

characterizing this region.

iii It can be shown that if the particle distribution in a homogeneous domain is
the equilibrium one, the distribution on the domain boundaries is v, f. and vice
versa. Thus there are two ways to inject f.-distributed particles in the device:
either to fix the initial position of all particles at the boundary, or to distribute
them evenly in a chosen domain near the boundary.

To this extend the scheme relies on the explicit knowledge of j,, I'p and Nr which
are calculated from f.. Alternatively, it is convenient to determine these quantities
implicitly. In the homogeneous domain of the boundaries the charge of the carriers
must compensate the charge of the dopants. Thus at each step of the simulation as
many particles, as needed for recovering the charge neutrality (usually disturbed during
the preceding step), are injected into the contacts. In this way we obtain the EMC
scheme for boundary injection.

The estimator for {A) is a sum of the initial and the boundary estimators:

Ni(t) N(t)

Ny(t)
(A)(t) = (A)i+{Ap= > An+ > A=) 4y (4.5)
n=1 n=1 n=1

That is, all particles remaining in the device are counted in the same way, no matter
whether related to the initial or to the boundary conditions.

To summarize: The particular choice of the initial probability PE gives rise to the
EMC scheme for initialization of particles at the initial time O inside D, and at the
boundary, at time ¢, € [0,#]. Once initialized they follow the evolution governed by
the natural probability densities p; and pg of the Boltzmann transport process, which
comprises the evolution scheme of the EMC. The numerical trajectories obtained by
using these densities are possible classical trajectories of the real semiconductor carri-
ers. At time ¢ only particles which remain during the evolution inside D contribute to
the estimated value of A. A Monte Carlo particle has the same physical characteristics
A(k, r) as has a real carrier located in the point k, r of the phase space. The above con-
siderations allow to view the particularly obtained algorithm, as emulation of the real
transport process. The latter presents the usual understanding of the EMC algorithm
for device simulations. The difference now is that the EMC algorithm, which accounts
for both, initial and boundary conditions, is obtained by using the formal rules of the
numerical Monte Carlo theory.
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Choices of alternative initial and transition probabilities give rise to algorithms for
event biasing.

4.2. Event biasing

Since the degeneracy of the kernel of the Boltzmann equation, the transition probabil-
ities are not entirely arbitrary: The latter must respect all delta functions in the kernel,
which means that the evolution must proceed over classical trajectory segments and
the scattering between these segments must obey the energy conservation imposed by
the scattering functions. In this sense these transition probabilities can be associated
with generation of free flight and scattering events, having distributions, which differs
from the classical ones. Or, equivalently, the application of the such probabilities can
be regarded as biasing of the classical evolution. In this approach, called Weighted
EMC (WEMC), the evolution (and thus the distribution and the number) of the biased
particles differ from these of the EMC particles.

It will be shown that in the case of event biasing the EMC estimator (4.5) is gener-

alized to
Ivbias (t)

(A (B> Y wnda 4.6)
n=1

where N®#5(¢) is the number of the biased particles and wy, is the weight of the nth
particle. The weight can be viewed as a memory for the numerical trajectory which
leads a particle to given phase space point. In contrast the EMC particles have no
memory: their contribution to the estimators is independent of the way they arrive at
that point. We consider some possible ways of biasing the Boltzmann evolution. The
corresponding estimators are discussed and weights are determined by (4.6). While
biasing of the initial or boundary distributions give rise to weights which conserve
during the evolution, the biasing of the evolution probabilities produce weighs which
are dynamically updated in time. Then w,, in (4.6) is the value of the weight at time ¢
(similar to A,).

4.2.1. Biasing the initial and boundary conditions

Initial conditions The biased initial distribution could be any positive function PJi#*
normalized to unity in D. According (2.7) the biased initial distribution replaces P{ﬁ
in the denominator of (4.2). The weight of a numerical particle initialized at (k, r) is
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then
Brik,r)

k,r) = —/———
w0en) = prsticr)

(4.7)
Depending on the concrete choice of Pé”iz-as particles have different weight distribution.

However, there is a general property that the mean weight remains unity in D:

N(0)

fdkdr bl"‘s‘(k r)w(k,r) = /dkdrPM(k r] = NO) Z wy

where the last term, the estimator of the weight, shows that N (0) biased particles can
represent [V (0) real carriers exactly as the EMC particles do. That is, both properties
hold: the number of the biased particles is N (0) and their weights sum up to N(0).
It is possible to use another number N in the place of N(0). This will lead to a
renormalization of the weight w in (4.7) by a factor N(0)/N.

Boundary conditions Two ways of biasing the boundary conditions by modifying
the equilibrium boundary distribution f; = f. to 2 are considered. The term v f.
in (3.28) is assigned to the random variable and the injection from the boundary is
realized by a density P&iﬁs:

i vy fbias b f ?{ f b
Pb;as - : , las dt d r dku ias
06 = i gy b P do(ry i g

where the NP"‘S is obtained in accordance with (3.29). The estimator for (3.28), written
for the general choice of Nyum(t) injected biased particles becomes:

A Vi fe 83 s #_ (4.8)
< > b Nnum (t) ; (g)xgs w P&g\s Nnum (t)

A particular choice of Nyum(t) = N2U(t) gives rise to a weight w = f,/f™™.

Nbim;( ) f Nbizxa(t)
<A>b'_ Z fblasrl/)” = Z wnAn
n=1

While the number of injected particles Nyum () (or N2i%(2)) is an externally imposed
quantity, the number of biased particles N (¢) is a quantity, controlled by the simu-
lation.
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A scheme which ensures the injection of N, NP1 (¢) biased particles is obtained with
the help of (4.8): the number of injected real carriers is obtained by setting 10 = 1.

Nh:a\(t) NFim(ﬁ)

Z blds - Z Wn
f n=1

Thus the sum of the weights of the injected biased particles equals the number of the

injected carriers at any evolution time ¢. Hence, if the biased particles are injected
until the sum of their weights meets the requirement for a charge neutrality at any
time step, in any point of the boundary domain, their number will be NP (1) at any
evolution time. By following this result, we avoid the need for explicit knowledge of
the quantities in (3.29).

The averaged value of the weight per biased particle is estimated as:

ias Nr(t
W= / dty }{ do(r) / dkw Py = N )

Wwhere we have used the equality wu, f*% = v f,. Usually @ # 1 so that the number
of biased particles is different from the EMC particles.

Two particular choices of the f are considered below. By denoting the equilib-
rium distribution

fole,T) = ée{—é} &= 15%5T 4.9)

we first choose f** = f, (e, T}) to be an equilibrium distribution, corresponding to a
higher temperature 7,. Having higher kinetic energy, the numerical particles readily
overcome the source potential barrier and enrich the statistics in the channel. The
following peculiarity of the ratio f./f*® can be observed. With the increase of T5
increases the spread of the weight further away from unity. Accordingly increases the
variance of the physical averages, obtained by the mean of heavy and light particles.
Thus, the choice of an the appropriate bias is a matter of compromise between the need
for more particles in the channel and keeping the spread of the weight low.

The second choice of f** utilizes the idea of a weight control. A desired weight
wy of the numerical particles with kinetic energy below given level ¢; can be chosen.
fP13 is obtained from f, as follows:

fhiaS(E) = ‘iz—(li—)v £ Xy, fblaS( ) fe(f) g 55
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The weight wy is obtained as a function of wy and ¢; form the condition for normal-
ization of fP1as;
Wy f e (6 1)

e ey T

The physical distribution (4.9) is recovered by setting w; = 1. A choice of w; > 1
effectively reduces the number of particles below €| as compared to the unbiased case.
Accordingly, in the energy region above ¢, the number of the light particles increases.
Indeed, from (4.10) it follows that wp < 1 as long as w; > 1. €; can be adjusted in a
way to enrich the statistics of the carriers travelling in the channel.

In both cases of biasing heavy particles which enter the channel perturb the statis-
tics accumulated by a set of small weight particles. It is thus desirable to apply the
technique of particle splitting in parallel to the biasing in order to minimize the spread
of the weight.

4.2.2, Biasing the evolution

The evolution process is biased by a replacement of the Boltzmann probabilities com-
prising P2 in (3.19) by the corresponding counterpart P, The ratio w = PB / pbiss
is inserted (and assigned to the random variable) in order to retain the value of (3.19)
unchanged. Each replacement determines a factor w which multiplies the random
variable and thus updates the weight in the corresponding estimator. Thus we obtain a
novel effect of the weight evolution: the weight is updated after each biased evolution
step by multiplication with the corresponding factor w. In contrast the weight in all
previous cases is established once and conserves during the evolution.

Free flight The free flight distribution can be biased to become p®, by replacing
the physical total out-scattering rate A in p; by a numerical out-scattering rate Ap.

By virtue of the ideas, illustrated by (2.7) the physical free flight distribution p; in
(3.19) is replaced by the biased distribution pb®. Each replacement corresponds to a
weight factor

t:k,r, i
Wi = plg"ss(t;k,r, t)o)

In the special case A, = 0 the particle can travel without scattering over the trajec-
tory, changing its weight according w(t) = p(¢;k,r,%p). In this way particles with
appropriate velocity may be “encouraged” to enter the desired region of interest.
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Phonon scattering The phonon scattering can be biased by moditfying any of the two
step process of selection of the after-scattering state. Artificial carrier heating can be
achieved by biasing of the phonon scattering rates. For a given scattering mechanism,
the probability for phonon absorption is increased at the expense of phonon emission,
Controlled by a parameter w > 1,

; 1 s N
ADIES e N A (1 = E) o e = (4.11)

If in the course of the simulation a phonon absorption is selected, the particle weight
must be updated by a multiplication with A, /2%, otherwise with X /A2 = w. The
distribution of the flight time is not affected, because the sum of the emission and
absorption rates remains unchanged.

Carrier can be guided towards preferred direction by modifying the distribution of
the scattering angle. In particular, we consider isotropic processes, where the distri-
bution of ¥ = cos# is a constant: p(x) = 1/2 for x € (—1,1). Here @ is defined
as the angle between the after-scattering momentum and the desired direction. The
following modified density function increases the probability for forward scattering at
the expense of backscattering.

1
| 7w ~1E¥ < 5o
pblas(x) _ ::} (412)
7 X=x<l

Here w > 1 is a given parameter, g is determined from the normalization:

|

2w 14w

w—1 ; +1
X0 = PO (xg) = X5 =

w41

and P () is the cumulative probability. In this case if r is a random number evenly
distributed between 0 and 1, and r < Pbi“(XO) it holds:

= .
xp = 2wr —1, ﬁ—w,
Otherwise 2 0 1
= p
. = 1- w ! pbias = U_)

This means that the particle weight is either reduced or increased by the factor w
whenever 7 is generated from the density (4.12).
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5. Self-consistent coupling with the Poisson equation

The Coulomb interaction between the semiconductor carriers is accounted by the Pois-
son equation:

V(EVV)=g(D+C)  Cfr,4) = / dkf(k,r,t) B =-VV() (5.0

Here V' is the electrical potential in the device and D is the concentration of the ionized
donors. The equation links the electrical potential V' with the distribution function
f. The Boltzmann equation for Coulomb carriers becomes nonlinear via the electric
force F(f)(r,t), now depending on the distribution function f. As the results of the
previous section are based on the linearity of the integral equations involved, it is no
longer possible to apply the steps used to derive event biasing schemes. The solution
is sought in the iterative procedure of coupling of the EMC technique with the Poisson
equation: the latter is discretized by a decomposition of the device region into mesh
cells ¥;. The particle system is evolved in time intervals Af ~ 0.1fs. At the end of
each time step, at say time ¢, the charge density qC'(ry, t) is calculated and assigned
to the corresponding grid points. We use the relation between C} and the distribution
function f, which is estimated with the help of (4.5) by introducing a mesh ®,, in the
wave vector space. Thus Q,, ; = @,,'¥, ky,,r; € Q,, ;, and:
L Ei\r(t) ba,,,(n)

km,r’jt _— —__?
f( 1,t) Vo Vo

C(rla t) =~ Z f(kmy ry, t)chm,
N(t) =~ Clri, )Wy, (5.2)
l

Here the argument of the @ function is a compact notation for the position of the n-
th EMC particle. The above relations become equalities in the thermodynamic limit
N — oo, Va,,, Vo, — 0. The charge density C is used to find the solution of the
Poisson equation, which provides an update for the electric force F(r,t) within the
following scheme:

EMC PE EMC PE EMC PE
Bt B et B 7 — ft

At 2AL t
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The latter governs the trajectories evolving the particles in the next time interval ¢, ¢ +
At.

A generalization towards event biasing becomes possible due to two features of the
approach: (i) The electric field remains frozen during the successive steps of solving
the Boltzmann equation; (ii) The Markovian character of the Boltzmann transport. The
latter is formally proven as follows: Equation (3.9) is rewritten by splitting the time
interval (0,t) into (0, 7) and (7, )

t —ftM's.r)dy
e / 4o (R()) / A, R, ) S, KE), RE e ¥ +

~[xway | 7 5 ; ~ [ Mw)ay
iy f dt'0p(R(L)) f dk'F (K, R(), ) S(K, K('), R(£))e *
0

~ [ awidy — ] \a)dy — [ Ay
te v e 0 AKO)LRO) £e b f(K (), Ri(t), 8)

—f Ky
+e % Ffo(K(ty), R(ts), ts)

where the shortcut A(y) = A(K(y),R(y)) has been used. Here, by recalling the
considerations above equation (3.9), the boundary term has been decomposed into two
contributions: ¢, < 7and ¢, > 7. The term in the square brackets is f(K(7), R(7), 7).
Thus the solution f at time 7 inside the device becomes an initial condition for the
future evolution.

Assume a biased process, where at time 7 = £ — At the biased particles emerge with
weights w,. The carrier distribution function f and the distribution function of the
numerical particles can be evaluated with the help of (4.6) and (5.2):

bias T
ZN ( )wneﬂm,l(n)

NhiaS(
f(k r; 7_) =1 n En i 99?7:,,1('”-)
Ty 2 - 1
Vq’m Vgﬁ

bias
k o~
f ( marlaT) V&)mVQ[

Here the argument of the 6 function is a compact notation for the position of the nth
biased particle. Now we can use f to evaluate the physical carrier density at time .
Accordingly the actual electric potential and force are provided by the Poisson equa-
tion. Now the question is what to do with the biased particles? Can they continue
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further the evolution or a novel ensemble of particles with different weight and distri-
bution must be introduced in order to correctly evaluate the carrier distribution at time
T+ At = t7 The answer is that either way is possible: In the thermodynamic limit
INbias o, Vo,., Vo, — 0, the values of f and fbias become well defined numbers in
any point of the phase space. We can formulate a biased initial distribution Pf:i,fs and
the carrier initial distribution P ; (at time 7!):

bias bias
pbias _ _J s’ i _ B _ F NR()
PT’,L' = Nbias(T)a PT,% S N(T), w(k,r) = P:E)i;js o fbias N(T}

(5-3)

and proceed according the discussion after (4.7). The number of the biased particles
which continue the evolution changes from N"#(7) to N(7) - the actual number of
carriers in the device. This approach renormalizes the original weights w,, but keeps
the distribution proportional to f%2. As P, ; is known, any other initial distribution,
(which can be entirely different from f%*) can also be used for event biasing.

Alternatively, a choice of N®%(7) particles will renormalize the weight in (5.3) by
a factor N (7)/N®#(r):

bias bias
f(km: rl:'i T) ~ ZTI:I (T) wnggm..ﬁ(n) = Z’fj:r (T) wn@ﬂ‘m,l (‘I‘L)

o2k, 1y, 7) SN gy NS (T)

(e

w(kma ry) =

The orthodox Monte Carlo approach requires N;’if‘f(f} particles initiating from k,,, ;
with a weight w(k,,, ;). However from the last term it follows that w(ky,, ;) is the
mean weight per particle, averaged within the set of N}}ﬁ‘f(r) biased particles which
reside in (k;;,,r;). As the weights w,, sample w, we can use the original weights and
states of the particles from this set to continue the evolution. It follows that biased
particles, which emerge at time T with weights w,, present a biased initial condition

for the next step of the evolution:

WEMC PE WEMC PE
fgias A ‘Abias o fAt o i Eias e fbias

At 2At

bias
ahe T Jomp . J5Ag

Concluded is that the particle weights and states survive between the successive itera-
tion steps, which completes the proof of the self-consistent WEMC scheme.
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6. Conclusion

The Boltzmann-Poisson equations coupling scheme is considered for the general case
of boundary and initial conditions in presence of event biasing. A self-consistent
Weighted EMC method is derived and the basic steps of the method are analyzed in
terms of the Monte Carlo theory. A set of algorithms for biasing the initial, and/or the
boundary conditions and the evolution of the weighted particles is presented and their
peculiarities with respect to optimization of the statistical enhancement are discussed.
It is shown that weighted particles can survive the successive iteration steps of the self-
consistent coupling with the Poisson equation. Alternatively, the algorithm of biasing
can be changed after any step on the expense of a corresponding renormalization of
the weight of the numerical particles.

We would like to note another aspect of the presented approach, which is related to
the formal similarities between the Boltzmann and Wigner equations. Due to the latter
the formal part of the analysis could be applied in the quantum case, so that this work

can be viewed as a necessary step towards development of self-consistent quantum
Monte Carlo algorithms.
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