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Abstract

The performance of carbon nanotube field-effect transistors is analyzed
numerically, using the non-equilibrium Green’s function formalism. The
effect of electron—phonon scattering on both the DC and switching response
of these devices is studied. For the calculation of the switching response, the
quasi-static approximation is assumed. The role of the electron—phonon
coupling strength and phonon energy are investigated. Our results indicate
that scattering with high-energy phonons reduces the on-current only weakly,
but can increase the switching time considerably due to charge pile-up in the
channel. Conversely, scattering with low-energy phonons reduces the
on-current more effectively, but has a weaker effect on the switching time.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tremendous advances have been achieved in microelectronics
technology during the past decades. With continuing efforts to
improve the speed and functionality of integrated circuits and
to achieve higher integration densities, device dimensions are
being decreased, and they will eventually reach the scale of the
electron wavelength. With the aid of numerical analysis one
can gain a deeper insight into device operation and investigate
methods to improve the device performance. Carbon nanotube
field-effect transistors (FETs) have been considered in recent
years as potential alternatives to complementary metal-oxide—
silicon (CMOS) devices.

A carbon nanotube (CNT) can be viewed as a rolled-up
sheet of graphene with a diameter of a few nanometers. The
way the graphene sheet is wrapped is represented by a pair
of indices (n, m), called the chiral vector. The integers n and
m denote the number of basis vectors along two directions
in the honeycomb crystal lattice of graphene. The CNT is
called zigzag, it m = 0, armchair, if n = m, and chiral
otherwise. CNTs with n — m = 3 are metals, otherwise they
are semiconductors [1]. Semiconducting CNTs can be used as
channels for transistors [2] which have been studied in recent
years as potential alternatives to CMOS devices because of
their capability of quasi-ballistic transport.
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Depending on the work function difference between
the metal contact and the CNT, carriers at the metal-CNT
interface encounter different barrier heights (see figure 1). The
fabrication of devices with positive (Schottky-type) [3] and
zero (ohmic) [4] barrier heights for holes has been reported.
In this work we consider devices with zero barrier heights for
electrons.

The non-equilibrium Green’s function (NEGF) method
has been successfully utilized to investigate the characteristics
of nanoscale silicon transistors [5], carbon nanotube (CNT)-
based transistors [6], and molecular devices [7, 8]. In this work
we employ the NEGF formalism to study quantum transport in
CNT-based transistors in more detail.

2. The non-equilibrium Green’s function formalism

The NEGF formalism initiated by Schwinger, Kadanoff and
Baym allows one to study the time evolution of a many-
particle quantum system. Knowing the single-particle Green’s
functions of a given system, one may evaluate single-particle
quantities such as carrier density and current. The many-
particle information about the system is cast into self-energies,
which are part of the equations of motion for the Green’s
functions. Perturbation expansion of the Green’s functions is
the key to approximating the self-energies. Green’s functions
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Figure 1. Sketch of the CNT-FET investigated. The insulating layer is HfO, with €, = 15 and a thickness of 2 nm. The geometry parameters
are Lgs = Lgp = 4 nm and Loyt = 50 nm. A E, represents the Schottky barrier at the metal-CNT interface.

provide a powerful technique to evaluate the properties of a
many-body system both in thermodynamic equilibrium and
non-equilibrium situations.

Four types of Green’s functions are defined: the retarded
and advanced Green’s functions, G' and G?, which deal
with the dynamics of carriers, and lesser and greater Green’s
functions, G= and G~, which describe the statistics. The
transport equations are solved on the surface of the CNT.
Due to quantum confinement along the tube circumference,
wavefunction of carriers are bound around the CNT and can
propagate along the tube axis. We considered an azimuthal
symmetric structure, in which the gate fully surrounds the
CNT. Under the assumption that the potential profile does not
vary sharply along the CNT, the sub-bands are decoupled [9].
As a result, the transport equations need to be solved only
along the CNT axis, which is assumed to be the z-direction in
cylindrical coordinates. In this work we assume bias conditions
for which the first sub-band contributes mostly to the total
current. In the mode-space approach the transport equation for
a sub-band can be written as [6, 10]

G"z,7; E)y=[EI — H(z,7; E) — "%z, 2; E)I"%, (1)

G3(z,7E) = G'(z,7; E)£5(2, 7 E)G'(z, 25 E),  (2)

where the self-energy X describes the renormalization
of the Green’s function due to the interaction with the
surrounding many-particle system, and H is the single-
particle Hamiltonian. The general form of the single-particle
Hamiltonian is given by

hZ
H(z)=—-—V.+U(2), (3)
2m

where the potential energy U includes the effects of the lattice
potential and the Hartree potential, which is in fact the solution
of the Poisson equation.

In order to solve the system of equations discussed above
in a finite system, boundary conditions have to be specified.
The boundary conditions of equation (1) have to model
the contacts, which act as a source or drain for electrons.
Due to the transitions between the device and the lead, this
type of boundary condition can be imposed by adding self-
energies [5, 11, 10]. The self-energies due to contacts are
only non-zero at the boundaries [10] and can be calculated as
in [10, 12, 6].

Using a perturbation expansion, one can define the self-
energy X as an irreducible part of the Green’s function. An

exact evaluation of the self-energy is possible only for some
rather pathological models. For real systems one has to rely
on approximation schemes. In this work, the lowest-order
self-energy for electron—phonon interaction within the self-
consistent Born approximation has been applied [10].

The interaction of electrons with optical phonons is
inelastic.  Assuming that the electron—phonon interaction
occurs locally [13], X(r,r'; E) = 0 for r # 1/, the self-
energies can be written as

Tina (E) =Y Dinets (n5(hay) + 4 £ 1) G=(E & hay),
J

Tia(E) = Z Dinels. (ng(hwy) + 3 £ 1) G™(E F hay),

J

“
where /iw; denotes the phonon energy of branch A, n(fiw;)
the average phonon occupation number, and D, the electron—
phonon coupling strength. The plus and minus signs in
equation (4) denote the phonon emission and absorption
processes, respectively. Assuming that the bath of phonons is
maintained in thermodynamic equilibrium, n(%w, ) is given by
the Bose—FEinstein distribution function. The electron—phonon
interaction strength of an (n, 0) zigzag CNT is given by

2
RIMY|

Dinel = s
2nmqw;,

(5)
where m,. is the mass of a carbon atom. Interaction with
acoustic phonons can be approximated as an elastic process,
E 4+ hw, ~ E, and the approximation ng(fiw; ) ~ ng(hw,) +
1 =~ kgT/hv,q, where v is the sound velocity, can be used.
Based on this approximation, the self-energies for acoustic
phonon interaction simplify to

<
23 (E) = DuG=>(E), (6)
kg T|MAP|?
Dy=—2—" 1 )
nmcqvy

Phonons with q ~ 0 are referred to as I'-point phonons,
and can belong to the twisting acoustic (TW), the longitudinal
acoustic (LA), the radial breathing mode (RBM), the out-of-
phase out-of-plane optical branch (ZO), the transverse optical
(TO), or the longitudinal optical (LO) phonon branch. Phonons
inducing inter-valley transitions have a wavevector of |q| ~
qx, where gg corresponds to the wavevector of the K-point of
the Brillouin zone of graphene. K-point phonons, also referred
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Figure 2. (a) Ballisticity versus electron—phonon coupling strength for a CNT of 50 nm length. Results for both elastic and inelastic scattering
with different phonon energies are shown. The operating point is Vg = Vp = 1 V. The dependence of the ballisticity as a function of the bias
is discussed in [19]. (b) Sketch of phonon emission and absorption processes in the channel. E. is the conduction band of the CNT.

to as zone boundary phonons, are a mixture of fundamental
polarizations.

The self-energy due to electron—phonon interaction
comprises the contributions of elastic and inelastic scattering
mechanisms, Y.y = e + Zipel. The retarded self-energy is
given by

dE' Te_p(E")
2 E—E’
— E:_ph) defines the broadening,

S () = — 3T (E) + P [ L ®

>
e—ph

and P f represents the principal part of the integration. The
imaginary part of the retarded self-energy broadens the density
of states, whereas the real part shifts it in energy.

where I'e_pp = (T

3. Implementation

The coupled system of transport and Poisson equations was
solved numerically. In order to solve transport equations
numerically, they need to be discretized in both the spatial
and the energy domain. Uniform spatial grids have been
employed. The carrier concentration at some node / and the
current density between the nodes / and [ + 1 of the device are
given by

C[dE __
n = —4 / 5. Gil(E). )

, 4q [dE <
Jl,l+1=E EZ%e{G”H(E)tHU}, (10)

where the factor 4 is due to the spin and band degeneracy.
In the Poisson equation carriers are treated as a sheet charge
distributed over the surface of the CNT [14, 15]. The energy
grid, however, should be non-uniform, since an adaptive
integration method is generally required to evaluate quantities
such as (9) with sufficient accuracy.

The coupled system of the transport and Poisson equations
has to be solved self-consistently [8], where the convergence
of the self-consistent iteration is a critical issue. To achieve
convergence, fine resonances at some energies in (9) have to
be resolved accurately [15, 16]. For that purpose an adaptive
method for selecting the energy grid is essential [16].

4. The effect of electron—phonon interaction

The electron—phonon coupling strength and the phonon energy
depend on the chirality and the diameter of the CNT [17, 18].
In this section the device response is studied for a wide range
of electron—phonon interaction parameters. All the simulations
were performed for the device shown in figure 1.

4.1. Electron—phonon coupling strength

Figure 2(a) shows the ballisticity as a function of the electron—
phonon coupling strength. The ballisticity is defined as Is. /I,
the ratio of the on-current in the presence of electron—phonon
interaction to the current in the ballistic case [19].

The left-hand part of figure 2(b) illustrates an electron
losing its kinetic energy by emitting a phonon. The electron
will be scattered either forward or backward. In the case of
backward scattering the electron faces a thick barrier near the
source contact and will be reflected with high probability, such
that its momentum will again be directed towards the drain
contact.

Elastic scattering conserves the energy of carriers, but the
current decreases due to the elastic back-scattering of carriers.
Figure 3 shows the spectrum of the current density at the
source and drain contact. For elastic scattering, the source
and drain current spectra are symmetric (see figure 3). As the
electron—phonon coupling strength increases, resonances in the
current spectrum disappear, and the total current decreases due
to elastic back-scattering. In the case of inelastic scattering,
carriers acquiring enough kinetic energy can emit a phonon
and scatter into lower-energy states. Therefore, as shown
in figure 3(b), the source and drain current spectra are not
symmetric.

4.2. Phonon energy

Figure 4(a) shows the dependence of the ballisticity with
respect to the phonon energy. With increasing phonon
energy the effect of phonon scattering on the current is
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Figure 3. The spectra of the source and drain currents. (a) The effect of elastic phonon scattering with different coupling strengths is shown.
As the coupling strength increases resonances in the current spectrum disappear, and the total current decreases due to elastic back-scattering.
(b) The effect of inelastic phonon scattering with different coupling strengths is shown. The phonon energy is iw = 100 meV. Carriers
acquiring enough kinetic energy can emit phonons and scatter into lower-energy states. Since the energy of the electrons is not conserved in
this process, the source and drain current spectrum are not symmetric. As the coupling strength increases, more electrons are scattered into

lower-energy states.
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Figure 4. (a) Ballisticity versus phonon energy for a CNT of 50 nm length. Results for inelastic scattering with different electron—phonon
couplings are shown. Vg = Vj, = 1 V. (b) Ballisticity versus phonon energy with D = 10~! eV? at the bias point Vg = Vj, = 1 V. The

contributions due to phonon absorption and emission are shown.

reduced, because scattered electrons lose more kinetic energy
and the probability for traveling back to the source contact
decreases. The considerable decrease of ballisticity for low-
energy phonons is due to the phonon absorption process.

The right-hand part of figure 2(b) shows an electron
absorbing energy from a phonon and scattering into a higher-
energy state. In this case, the probability for arriving at the
source contact increases. This process can severely reduce the
total current [19].

Figure 4(b) separately shows the effects of the phonon
emission and absorption processes on the ballisticity. As
the phonon energy decreases, the phonon occupation number
increases exponentially, and the self-energy contributions of
these two components increase. However, due to the higher

probability for back-scattering of electrons in the case of
phonon absorption, this component reduces the total current
more effectively than the phonon emission process does.

To illustrate the effect of electron—phonon interaction on
the switching response of the device, the gate-delay time 7 is
studied:

Co Vi
T=—7-.

A (11

Here, Cg™' = Cps ' + Co~'. The quantum capacitance can
be approximated as Cq ~ 8q%/hvg ~ 400aF/um, including
the twofold band and spin degeneracy [20, 15]. Assuming
the quantum capacitance limit [21] (Cq < Ciyg), One gets
Cc ~ Cq and, therefore, Cg Vs ~ Qcn, where Qcy is the
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Figure 5. (a) The ratio of the gate-delay time in the presence of electron—phonon interaction to the gate-delay time in the ballistic case,
Ts./Tg1, as a function of the electron—phonon coupling strength. For comparison, the ratio Is. /g, is also shown. As the phonon energy
increases, the gate-delay time increases. This behavior is due to the reduction of the electron velocity in the channel and the resulting charge
pile-up. (b) The spectra of the source and drain currents. The effect of inelastic scattering with different phonon energies is shown. The
electron—phonon coupling strength is D = 2 x 10~! eV2. The figure shows a considerable increase of the electron population close to the

conduction band-edge as the phonon energy increases.

total charge in the CNT channel. As a result,

_ O
TR —.
Ip
It has been shown that, for CNT-based transistors, the quasi-
static approximation assumed here is justified for frequencies
below THz [22].

Figure 5(a) shows the ratio of the gate-delay time in the
presence of electron—phonon interaction to that in the ballistic
case, Tsc/Tpi, as a function of the electron—phonon coupling
strength. As the phonon energy increases, the gate-delay time
increases. This behavior can be attributed to the average
electron velocity in the channel, which is high for ballistic
electrons and low for electrons scattered to lower-energy states.

Figure 5(b) shows the spectra of the source and drain
currents for different inelastic phonon energies. Electrons can
emit a single phonon or a couple of phonons to reach lower-
energy states. The probability of multiple phonon emissions
decreases as the number of interactions increases. Therefore,
as the phonon energy increases, the occupation of electrons at
lower-energy states increases.

As shown in figure 5(b), the electron population close
to the conduction band-edge considerably increases as the
phonon energy increases. Therefore, as the phonon energy
increases, the mean velocity of electrons decreases and the
carrier concentration in the channel increases (figure 6). The
increased charge in the channel results in an increased gate-
delay time.

(12)

4.3. Discussion

CNTs with a diameter deyyt > 2nm have a band gap
Eg < 0.4 eV, which render them unsuitable as a channel for
transistors. Since the fabrication of devices with a diameter
dent < 1 nm is very difficult, we limit our study to zigzag
CNTs with diameters in the range of dent = 1-2 nm.

Scattering with acoustic phonons is treated as an
elastic process.  The electron—phonon coupling is also
weak for acoustic phonons (Dxp < 1073 eV?), which
implies that the elastic back-scattering of carriers is
weak. Inelastic scattering is induced by OP, RBM,
and K-point phonons.  Considering the class of CNTs
discussed above, the energies of the these phonons are
hwop ~ 200 meV, hwrpm ~ 25 meV, and howg, ~ 160 meV
and howk, ~ 180 meV [23, 19]. The corresponding coupling
coefficients are Dop =~ 40 x 1073 eV?, Dpgm =~ 1073 eV?2,
and Dg, ~ 107*eV?, and Dy, ~ 1073 eV? [19].

As discussed in section 4.2, high-energy phonons such as
OP and K-point phonons reduce the on-current only weakly,
but can increase the gate-delay time considerably due to charge
pile-up in the channel. Low-energy phonons such as the
RBM phonon can reduce the on-current more effectively, but
have a weaker effect on the gate-delay time. In a CNT at
room temperature, the scattering processes are mostly due
to electron—phonon interaction with high-energy phonons.
Therefore, the on-current of short CNT-FETSs can be close to
the ballistic limit [4, 24, 25], whereas the gate-delay time can
be significantly below that limit [26-28]. The intrinsic (without
parasitic capacitances) gate-delay time for the ballistic case
can be approximated as T &~ 1.7 ps um™!, or equivalently
fr ~ 100 GHz um™"' [29]. The highest reported intrinsic cut-
off frequency for a device with a length of 300 nm is fr ~
30 GHz [30], which is far below the ballistic limit. Inelastic
electron—phonon interaction with high-energy phonons has to
be considered to explain the results.

5. Conclusions

The effect of the electron—phonon interaction parameters
on the performance of CNT-based transistors was studied
numerically, using the NEGF formalism. We showed that
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Figure 6. (a) The profile of the electron velocity near the source contact. (b) The profile of the electron concentration along the device. The
results for the ballistic case and for electron—phonon interaction are shown. As the phonon energy increases, the electrons scatter to
lower-energy states. Therefore, the electron velocity decreases and the carrier concentration increases. The electron—phonon coupling strength

is D = 107" eV? and the bias pointis Vg = Vp =1 V.

elastic back-scattering reduces the on-current effectively, but
the strength of this process is weak in CNTs. Inelastic
scattering with high-energy phonons reduces the on-current
only weakly, but increases the switching time considerably,
due to charge pile-up in the channel. Scattering with low-
energy phonons reduces the on-current more effectively, but
has a weaker effect on the switching time. In a CNT at
room temperature, the scattering processes are mostly due
to electron—phonon interaction with high-energy phonons.
Therefore, the on-current of CNT-FETs can be close to the
ballistic limit, whereas the switching time is found to be
significantly below that limit.
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