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Abstract. In Technology CAD (TCAD) environments, a proper vector dis-

cretization in two or three dimensions is of crucial importance because physical

models used in semiconductor device simulation tools depend on vector quanti-

ties. We discuss two discretization methods for Delaunay meshes that are based

on the unstructured neighborhood information. In addition a comparison to an

element based method is given. Overall good convergence is achieved by apply-

ing these methods in a TCAD environment for the calculation of the driving

force, electric field, and the current density vector. An example simulation of a

diode in breakdown and a bipolar structure in snap-back operation is presented.

1. Introduction

Simulation environments for semiconductor devices, usually known as Technology
CAD (TCAD) tools, model the device physics using basic semiconductor equation
sets, consisting of partial differential equations (PDE). Because of the complexity of
the PDEs in non trivial semiconductor devices, analytical solutions are usually not
available and numerical methods have to be applied [1]. Consequently, discretization
in time and space is necessary, where the latter is discussed in this paper.

Different transport models can be used for device simulation, the drift-diffusion
model, the hydrodynamic model and the six-moments method are three examples.
For demonstration purposes the drift-diffusion transport model, consisting of Pois-
son’s equation and the current density relation is selected in this paper. There are
three independent variables, the electrostatic potential (Ψ) and the electron and hole
concentrations (n and p). The discretization of the equations is commonly done us-
ing the box integration method [2]. The basic transformation used within the box
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integration method concerns the divergence operator. Applying an integration over a
volume Vi and using Gauss’ theorem on the basic equation ∇ · F = G leads to

∑

all neighbors j

FijAij = GiVi . (1)

This formulation describes fluxes Fij leaving a Voronoi box i to a neighboring box j
along a connecting edge dij via the surface area Aij (see Fig. 1). With the summation
of all those weighted fluxes and by using a generation term (Gi) inside the box volume
Vi, scalar quantities in each box i can be approximated with a description similar to
(1). For the calculation of this discretization, the only geometric information necessary
is the unstructured neighborhood information. This includes a list of all mesh points
with their associated volumes, together with a connectivity list with one entry for
each connection that contains the associated distances dij and the areas Aij . This
formulation is very flexible and also independent of the problem dimension.
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Fig. 1. Voronoi box i of mesh point i with connections
to neighboring mesh points. The flux from box i to box j (Fij)

through the area Aij is depicted. The vector quantities Ei and Ji

are constant over the whole box i.

Fluxes are defined along an edge dij and represent the projection of a vector
quantity on the edge: Fij = eij · F, with eij being the unit vector pointing from
mesh point i to mesh point j. In the drift-diffusion model two types of fluxes are
used, the dielectric flux and the electron and hole current. The dielectric flux is
approximated using finite differences and the current density using the Scharfetter-
Gummel discretization [3].

The system of the PDEs is commonly solved with an iterative Newton solver.
The solution variables, i.e. Ψ, n and p, are quantities defined at the mesh points
and are known after each Newton iteration step. The fluxes from one box to a
neighboring box can be calculated using these results. There are physical models,
like the carrier mobility µ(F) or the impact ionization rate GII(J,F), that depend
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on vector quantities, in this case the driving force F and the current density J. It
is therefore necessary to have a representation of vector quantities within the area
of the box. Since the results form those models influence the solution variables, the
vector discretization has a considerable impact on the simulation result as well as on
the convergence behavior of the Newton solver. To achieve convergence, derivatives
of the vector quantities are needed to calculated the Jacobian matrix, especially when
one of the named models dominates the device behavior.

Laux proposed a method to determine the impact ionization generation rate on
triangular meshes [4]. The electric field is evaluated inside one triangle by a linear
interpolation of the electrostatic potential (E = E(Ψi, Ψj , Ψk, geometry)). In con-
trast, the current density that is calculated with the non linear Scharfetter-Gummel
discretization, is evaluated individually for three different regions (see J1,J2,J3 in
Fig. 2), by using a weighted linear combination of the current densities along the
edges: Jν = Jν(Jij , Jjk, Jki, geometry), ν ∈ {1, 2, 3}, so there are three different rates
calculated for each element. The element based calculation of the vector quantities
requires information about triangles (in 2D) or tetrahedrons (in 3D) within the im-
plementation of this scheme and have to be stored in addition to the unstructured
neighborhood information. Furthermore, a different implementation for two- and
three-dimensional meshes is required.
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Fig. 2. Approach by S. Laux [4]: The electric field E
is constant within one triangle and each triangle

has one current density vector Jx for each edge.

In this work, two approaches are presented that assume all vector quantities con-
stant over one Voronoi box, consistent with the box integration method, that only
depend on the unstructured neighborhood information. Only quantities from the
boxes i and j are needed for evaluating the flux Fij . Both presented approaches aim
to meet the following demands:

• simple coupling with box integration method

• exact solution for homogenous fields
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• numerical stability

After the derivation, a short discussion of the two approaches is given and example
simulations will be presented.

2. Derivation of vector discretization schemes

Two possible derivations for vector discretizations will be given in the following.
The derivations are shown for the electric field, the generalization to gradient based
fluxes is straight forward.

A. Scheme A

The first discretization scheme defines the projected component Eα in the direction
eα from the electric field E, where Ψ is the electrostatic potential:

Eα = eα ·E = −eα · ∇ (Ψ−Ψi) (2)

By integration over the box volume V and by applying Gauss’ theorem, (2) evaluates
to ∫

EαdV = −
∮ (

Ψ−Ψi

)
eαdA . (3)

By approximating the integral with a sum, Eα
i in box i can be written as

Eα
i =

1
Vi

∑

j

Aij
Ψi −Ψj

2
eα · eij , (4)

where the sum includes all neighbors j, Aij is the surface between the two boxes i and
j and Ψν is the electrostatic potential in mesh point ν. By defining Ei = (Ex

i Ey
i )T,

Ei can be written as

Ei =
1

2Vi

∑

j

AijdijEij , (5)

where dij = |dij | with dij = (xj − xi yj − yi)T and Eij is the component of the
electric field at the boundary between box i and j

Eij = −Ψj −Ψi

dij
. (6)

B. Scheme B

The second discretization scheme is an extension of the finite difference method
and is based on a scheme proposed in [5]. Considering the box 0 in a non-equidistant
orthogonal mesh depicted in Fig. 3 and its neighboring box 1 (not shown explicitly),
the electric field along the edge d01 can be expressed as E = −dΨ/dx. At the
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boundary between the two boxes, i.e. the midpoint between 0 and 1, the finite
difference method gives

E01 = −Ψ1 −Ψ0

d01
, (7)

the same result as in (6). The electric field Ex
0 in direction ex at mesh point 0

is expressed with a linear interpolation (8), the same procedure is applied to the
component Ey

0 (9).

Ex
0 =

E01

x1 − x0
+

E02

x2 − x0

1
x1 − x0

+
1

x2 − x0

(8)

Ey
0 =

E03

y3 − y0
+

E04

y4 − y0

1
y3 − y0

+
1

y4 − y0

(9)

An extension of this equation set, that also allows edges not aligned with the coordi-
nate axis is

1
xj − xi

⇒ xj − xi

(xj − xi)2 + (yj − yi)2

=
xj − xi

d2
ij

.
(10)

With the already specified vector Ei and with eij = dij/dij , a closed vector
representation can be given, where the area Aij is used as a weighting factor.

∑

j

Aij

dij
(eij ⊗ eij)

︸ ︷︷ ︸
Mi

Ei =
∑

j

Aij

dij
eijEij (11)

Note that (8) and (9) are still retained and can be extracted by using eij = (1 0)T

and eij = (0 1)T, respectively. Ei at the left side of (11) can be taken out of the
sum and the remaining part of the sum results in a pure geometry dependent matrix,
which is calculated once in the beginning of the simulation. This allows the convenient
formulation of the final discretization rule for a vector Ei in point i (12), using the
geometry matrix Mi (13) and the geometry factor (14).

Ei =M−1
i

∑

j

gijeijEij (12)

Mi =
∑

j

gijeij ⊗ eij (13)

gij =
Aij

dij
(14)
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Fig. 3. Voronoi box of mesh point 0 with its neighboring
points 1-4 in a non equidistant orthogonal mesh. The contributing

field components Eij from the edges are depicted.

3. Properties of the discretization schemes

Both derivations are based on the unstructured neighborhood information only,
so they can be easily coupled with the box integration method.

The second demand, the exact solution for a homogenous fields E = EH , with the
electrostatic potential Ψ(x) = −EH · x, was verified in (15) on scheme A limited on
orthogonal grids dij/dij ∈ {(±1 0)T, (0 ± 1)T}.

Ei =
1

2Vi

∑

j

gij (dij ⊗ dij)EH = EH (15)

For scheme B a general proof was performed:

Ei =M−1
i

∑

j

gij (eij ⊗ eij)EH = EH . (16)

The results of the discretization schemes with a linear electric field E(x) = −2αx
and an quadratic electrostatic potential Ψ(x) = αx2 was investigated in one dimen-
sion. Using only the x-axis and the naming convention from Fig. 3, the discretization
scheme A results in (17) and scheme B results in the exact solution (18).

EA(x0) = −α(x1 − x2) (17)
EB(x0) = −2αx0 (18)

The error of scheme A depends on the the ratio d01/d02 and results in

εA(x0) =
EA(x0)
E(x0)

=
1
2

(
d01

d02
+ 1

)
. (19)

With a mesh distance ratio in the range [1/1.16 . . . 1.16], the error is bound to 30%.
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The reference point taken as the correct solution in a box is the mesh point itself,
scheme B delivers this solution. Scheme A in contrast delivers the solution of the
point in the center between the two neighboring points which usually differs from the
mesh point. The examples in the next section will show how this difference may effect
the simulation result. In future work it has to be determined, if the mesh point itself
is a good choice for adequate vector modeling over the whole box, expecially when it
is shifted away from the box center. Additionally, investigations for higher dimensions
are necessary to find more results and comparison criteria for the two discretization
schemes.

Analyzing the geometry matrix Mi in scheme B shows, that it results from a sum
of symmetric matrices eij⊗eij whose determinants equal 0 and whose main diagonals
are positive. The sum of symmetric matrices with positive main diagonals and non-
negative determinants results in a symmetric matrix with positive main diagonal and
a non-negative determinant. If at least two of the participating matrices are linear
independent, the determinant of the geometry matrix is positive. As long as the
Delaunay criterion is fulfilled, there are always linear independent edges for one box
and the inverse geometry matrix can be calculated.

The introduction already stated that the derivatives on mesh points are needed for
the Jacobian matrix. This makes it necessary, that the derived discretization schemes
are also differentiable on quantities ξk associated to a mesh point k. This is indeed
possible and one obtains for scheme A:

∂Ei

∂ξk
=

1
2Vi

∑

j

Aijdij
∂Eij

∂ξk
, (20)

and for scheme B:
∂Ei

∂ξk
=M−1

i

∑

j

gijeij
∂Eij

∂ξk
. (21)

In both discretization schemes, the existence of
∂Eij

∂ξk
, which is available in any device

simulation based on the box integration method, is sufficient to calculate
∂Ei

∂ξk
.

4. Examples

To demonstrate the applicability of these discretization schemes and to show the
differences in the results, two 2D simulation examples will be given. Impact ionization
was selected as a good example for a physical model that strongly depends on vector
quantities and that strongly influences the device behavior. This generation term is
one of the most challenging problems in numerical simulation, especially when it is
the dominating physical effect. For modeling impact ionization in the drift-diffusion
equation set, a modified version of the model [1] has been chosen:

GII = αn
|Jn|
q

+ αp
|Jp|
q

. (22)
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GII is the impact ionization generation term added to the right hand side of the
continuity equation. Jn and Jp are the electron and hole current densities, q is the
elementary charge and αν , ν ∈ {n, p}, is defined as

αν = α∞ν exp

(
−

(
Ecrit

ν

|Fν |
)βν

)
, (23)

where α∞ν , Ecrit
ν and βν are material dependent parameters. The difference to the

model in [1] is, that the driving force Fν is used instead of the electric field. The sim-
ulations were performed with an adapted version of Minimos-NT [6], all derivatives
of the impact ionization terms were calculated and added to the Jacobian matrix.
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Fig. 4. Simulation of a reverse biased diode using different

vector discretization schemes and different meshes.

25 30 35 40 45
Voltage [V]

10
-12

10
-10

10
-8

10
-6

10
-4

C
ur

re
nt

 [
A

/µ
m

]

Laux
Scheme A
Scheme B

Fig. 5. Simulation of an n+ pn n+ structure in snap-back

using different vector discretization schemes.
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The first device that was simulated is a reverse biased diode with an abrupt
pn-junction, a donor concentration of 1020 1/cm2 and an acceptor concentration of
1017 1/cm2. A comparison of the two presented discretization schemes for unstruc-
tured neighborhood information and the scheme from Laux using using two different
meshes is shown in Fig. 4. The simulation results on a very fine mesh can be seen
in the upper half of the figure. As expected, the results are the same for all three
schemes. Increasing the mesh spacing by a factor of 8 near the junction and a factor
of 20 near the contacts shows that using scheme A and scheme B give results worse
than obtained from the scheme of Laux. In the element based scheme, three different
generation rates are calculated for each element, in the two other schemes there is
only one rate for the whole Voronoi box. This is comparable to an implicit higher
resolution. However, the scheme from Laux requires a more complex calculation for
the rate and its derivatives, whereas scheme A and B are calculated straightforwardly
using only the unstructured neighborhood information.

To show that the schemes are capable of solving more complex problems, an
n+ pn n+ structure was simulated in snap-back condition. Figure 5 shows the results
of a quasi-static simulation, again all three schemes are depicted. In contrast to the
diode example schemes A and B give slightly different results, the scheme of Laux is
located in between A and B.

5. Conclusions

Two vector discretization schemes that are only based on the unstructured neigh-
borhood information and that seamlessly integrate in the box integration method
were presented. Both schemes allow to be used on Delaunay meshes, so orthogonal
as well as triangular meshes can be used. The general formulation allows them to be
used in 1D, 2D and 3D. Two examples were given, showing that these schemes can
handle numerically challenging configurations very well and a comparison with the
element based scheme from Laux was given. The different results show that a proper
selection of the vector discretization method is important.
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