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Abstract—Negative bias temperature instability (NBTI) has
evolved into one of the most serious reliability concerns for highly
scaled pMOSFETs. It is most commonly interpreted by some form
of reaction–diffusion model, which assumes that some hydrogen
species is first released from previously passivated interface defects
and then diffuses into the oxide. It has been argued, however, that
hydrogen motion in the oxide is trap-controlled, resulting in dis-
persive transport behavior. This defect-controlled transport modi-
fies the characteristic exponent in the power law that describes the
threshold-voltage shift. So far, a number of NBTI models based on
dispersive transport have been published. Interestingly, although
seemingly based on similar physical assumptions, these models
result in different predictions. Most notably, both an increase and
a decrease in the power-law time exponent with increasing disper-
sion have been reported. Also, different functional dependences
on the dispersion parameter have been given in addition to dif-
ferences in the prefactors and the saturation behavior. We clarify
these discrepancies by identifying the boundary and initial condi-
tions which couple the transport equations to the electro-chemical
reaction at the interface as the crucial component. We proceed
by deriving a generalized reaction (dispersive) diffusion formalism
and provide the missing link between the various published models
by demonstrating how each of them can be derived from this
generalized model.

Index Terms—Analytical models boundary condition, bias
temperature instability, dispersive transport, initial condition,
negative bias temperature instability (NBTI), numerical solution,
power law, stretched-exponential.

I. INTRODUCTION

AMONG the various reliability issues in modern CMOS
technology, negative bias temperature instability (NBTI)

has been identified as one of the most serious concerns for
highly scaled pMOSFETs [1]–[4]. Most commonly, models
based on the reaction–diffusion (RD) theory originally pro-
posed by Jeppson and Svensson 30 years ago [5], [6] are used
to explain NBTI. Recently, a lot of effort has been put into
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refining the classic RD theory [2], [7], [8]. The RD model
assumes that Si–H bonds at the semiconductor–oxide interface
are broken at higher temperatures and electric fields, causing
the released hydrogen species to diffuse into the oxide. As
a result, one obtains the change in the silicon dangling bond
density ∆Nit = [Si•] − [Si•]0 at the interface, with [Si•]0 as
the initial density of dangling bonds. It can be shown [2] that
the RD model gives a fractional power law for the evolution
of ∆Nit

∆Nit(t) = A(T,Eox)tn. (1)

In the RD framework, H2 is often assumed as a diffusing
species because it gives a characteristic time exponent of
n = 1/6 for the threshold-voltage shift, which is consistent
with some [8], [9], but not all [10], recent delay-free mea-
surements, whereas H0 and H+ result in n = 1/4 and n = 1/2,
respectively [7].

From ∆Nit, the threshold-voltage shift is normally estimated
by assuming that all traps are positively charged, that is,
∆Qit(EF ) ≈ q∆Nit, which is an assumption that is only actu-
ally fulfilled during a strong negative bias where the Fermi-level
at the semiconductor–oxide interface is close to the valence
band edge [11]. In fact, for a proper consideration of the Fermi-
level dependence, the accurate trap density-of-states has to be
known [12]. This is particularly important for the understanding
of measurement results, be that an IDVG characteristic, charge-
pumping, or DCIV measurements, where the Fermi-level is
moved to completely different energies.

In addition to interface state generation, which seems to
be the universally acknowledged feature of NBTI [1], [4],
positive charge generation in the oxide bulk has been reported
[11], [13], [14]. Positive charge has been attributed to trapped
holes either in preexisting traps [13], [14] or in traps gener-
ated by the released hydrogen species [11]. Independent of
the controversial question whether the contribution of trapped
charges is important or not [3], [15], we focus here on hydrogen
transport and the interaction of hydrogen with dangling bonds
at the interface, which is the ingredient of most NBTI models.
The contribution of oxide charges and the trap occupancy have
to be added on top of the contribution by a separate model,
if required.
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During the last couple of years, several alternative ex-
planations to the classic RD model have been put forward
[3], [11], [16]–[18]. In particular, it has been argued that
transport of the hydrogen species inside the oxide is dispersive
[2], [11], [16], [17], which is consistent with hydrogen diffusion
measurements [19], [20] and available models for irradiation
damage [21], [22]. Interestingly, in these models, the power-
law exponent depends on a temperature-dependent dispersion
parameter. Another feature is that the trap density-of-states
directly influences the dispersion parameter and thus the expo-
nent and the magnitude of the observed threshold-voltage shift,
which makes it possible to incorporate technology-dependent
behavior into the model. As another consequence, these mod-
els brought H+ back into the game, which had originally
been dismissed due to the 1/2 exponent resulting from the
RD model.

One feature common to published trap-controlled dispersive
NBTI models is that they predict a reduction of the power-law
exponent with increasing dispersion [11], [16], [17]. However,
in contrast to that, it was observed that inclusion of traps into
the standard RD model increases the exponent [7]. In addition,
our own simulations showed [12] that a straightforward ap-
plication of the dispersive multiple-trapping (MT) transport
model [23]–[25] also increases the exponent, which is in contra-
diction to these published reaction-dispersive-diffusion (RDD)
models [2], [11], [16], [17]. A detailed analysis reveals that the
boundary condition at the Si/SiO2 interface is the main reason
for this discrepancy. It is shown that the choice of boundary
condition is essential for the overall behavior of the dispersive
system.

Another interesting issue in that context is the fact that the
dispersive proton transport models proposed by Kaczer et al.
[17] and Zafar [11] show a different dependence of the
power-law exponent on the dispersion parameter α. While
the Kaczer–Arkhipov model gives n = α/2, the Zafar model
arrives at n = α. Also, the prefactor in the Kaczer–Arkhipov
model depends on the square-root of the diffusivity, whereas
the Zafar model predicts a linear dependence. The latter is
insofar of relevance as the linear dependence of ∆Nit on
the diffusivity has been used by Zafar to explain the isotope
effect [4], [11].

Thus, the question related to the origin of these discrepancies
arises. In order to understand this issue, the differences and
similarities in the physical assumptions invoked during the
derivation of both models are investigated. An important issue
in that context is the fact that models based on the classic RD
theory assume that all interface traps contribute equally to the
threshold-voltage shift. In the model of Zafar [11], however, a
different interpretation is introduced by assuming that a large
number of dangling bonds always exist but only a fraction can
be observed in electrical measurements, whereas the majority
is too close to the band edges to contribute. During NBT stress,
the total number of interface states is increased, and only this
increase is visible during measurements. To model this partial
contribution of the generated interface states to the observable
threshold-voltage shift, the occupancy of the interface states
as a function of the Fermi-level position has to be introduced
[11], [12].

Zafar derived her model using statistical mechanics, without
explicitly stating the electro-chemical reaction at the interface,
which is equivalent from a mathematical point of view. We
also demonstrate how the assumptions introduced by Zafar can
be incorporated into generalized RD and RDD models. For
the sake of completeness, we note that the threshold-voltage
shift in the final Zafar model is attributed to a contribution of
chargeable interface states and oxide defects. However, both
contributions are directly calculated from the shift in ∆Nit by
using two different occupancy probabilities for oxide and inter-
face states. Thus, we can limit our discussion to the underlying
transport problem and the corresponding initial and boundary
conditions.

A fundamental problem during the study of NBTI is related
to the fact that the damage created during the stress phase
begins to relax immediately once the stress is removed. This
makes the classic measurement technique problematic, where
the stress is interrupted during the extraction of the threshold
voltage [26], [27]. In particular, the value of the extracted
power-law exponent depends significantly on the delay in-
troduced during the measurement [28]. Experimental results
obtained with delayed measurements show a linear increase
of the exponent with temperature [3], [17], with the exponent
being around 0.2–0.3. In contrast, temperature-independent
exponents in the range 0.1–0.2 have been extracted from delay-
free measurements [9], [29]. Provided that the generation of
interface defects is the only mechanism responsible for NBTI,
one may expect the model to predict a temperature-independent
exponent in a delay-free setup. On the other hand, it is just
as reasonable to require the model to predict this linear de-
pendence of the slope in delayed measurements. We remark
that none of the existing models can currently satisfy both
requirements [30].

On the other hand, if an additional effect on top of inter-
face state generation occurs, like hole-trapping [3], [27], [31],
the interpretation is more involved [30]. Assuming that this
additional mechanism results in a temperature-independent ex-
ponent, it might dominate the temperature-independent expo-
nent during delay-free measurements, whereas during delayed
measurements, fast recovery of this additional process may ex-
pose the underlying interface state creation mechanism, which
might then show the observed temperature dependence. For
this assumption to hold, the additional component must be
large enough to overshadow any temperature dependence of the
interface state creation mechanism.

In the following, we will derive a generalized RD formalism
suitable for our purposes. Since RDD models will be considered
as extensions of the standard RD theory, its foundations will be
revisited in some detail first. Thereby, care is taken in formulat-
ing the results in such a way that they can be directly transferred
to the dispersive transport case where particular attention will
be paid to potential pitfalls. This generalized formalism allows
us to identify the differences and similarities existing in the
various published models. As such, the main purpose of this
paper is not the derivation of a new model for NBTI degradation
but rather the derivation of a unified modeling framework that
allows us to pin-down the differences observed in the existing
models.
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II. GENERALIZED RD FORMALISM

The RD model consists basically of an electro-chemical reac-
tion at the semiconductor–oxide interface, which is coupled to a
drift-diffusion equation in the oxide bulk. Without considering
the questions whether the depassivation process is field-driven
[2], [32], why holes at the interface are required and how they
influence the reaction [18], and in which charge state (neutral
or positive) the created trap and the released hydrogen species
are, we write

Si−H � Si• + Hc + Ht. (2)

Thereby, we differentiate between hydrogen in a conduction/
mobile state Hc and trapped hydrogen Ht [33]. We will show in
Section IV that this distinction is important since in dispersive
transport models most hydrogen becomes trapped quickly and
might not be available for the reverse reaction. We also note
that a large background concentration of hydrogen may exist in
the vicinity of the interface, possibly in the order of 1019 cm−3

[34], which, if assumed to be freely available, could dominate
the reverse reaction and completely compensate the forward
reaction in a standard RD model.

It has been claimed that the binding energies of the Si–H
bonds display a Gaussian broadening [3], [35]. Previously
published dispersive NBTI models consider either a dispersion
in the forward rate [3] or a dispersion in the transport proper-
ties [11], [16], [17], but not both. Although both options are
feasible, we focus in this paper on dispersive transport only. In
particular, the variations in the energy barrier for the reverse re-
action become important in the context of dispersive transport.

In the standard RD formulation, the barrier is considered to
be single valued, and Ht = 0. The kinetic equation describing
the interface reaction is commonly assumed to be of the form
[6], [36], [37]

∂Nit

∂t
= kf (N0 − Nit) − krNitH

1/a
it (3)

where Nit = [Si•] is the interface state density, N0 = [Si–H]0
is the initial density of passivated interface defects, Hit is the
hydrogen concentration at the semiconductor–oxide interface,
and kf and kr are the temperature- and possibly field-dependent
rate coefficients, while a gives the order of the reaction (one
for H0 and H+, and two for H2, assuming an instantaneous
conversion of H0 to H2, cf., [37]). In our context, it is important
to recall that the usual assumptions are that Nit0 = Nit(0) = 0
at the beginning of the stress period and that all generated Nit

contribute equally to the threshold-voltage shift. A somewhat
surprising feature of the RD equations is, as will be shown in the
following, that, by allowing a larger number of initial interface
defects, a completely different behavior is obtained.

Hydrogen motion is assumed to be controlled by conven-
tional drift-diffusion [6]

∂Hc

∂t
= −∇ · FHc + Gc (4)

F = −Dc

(
∇− Z

Eox

VT

)
(5)

with Hc(x, 0) = 0. Hydrogen transport is postulated to occur
on a single energy level, which will be referred to as the con-
duction state, with Hc, Dc, and Gc as the hydrogen concen-
tration, diffusivity, and generation rate in the conduction
state, respectively, F as the flux operator, Z as the charge state
of the particle, VT = kBTL/q as the thermal voltage, TL as
the lattice temperature, and Eox as the electric field inside the
oxide.

The generation rate Gc is given by the interface reaction and
reads for the usually considered 1-D problem

Gc(x, t) =G0(t)δ(x − x0) (6)

G0(t) =
1
a

∂Nit

∂t
. (7)

Alternatively, one may introduce an influx of newly created
species at the boundary by integrating (4) over an infinitesi-
mally thin interfacial layer. This results in

FHc|it · n = G0 (8)

with n as the normal vector at the interface. Although (8) is
the conventionally employed formalism, we will also use the
spatial generation rate (6) as it can be more intuitively extended
to dispersive transport models.

For the calculation of the time-dependent density of inter-
face states Nit, (3) and (4) can be solved numerically on an
arbitrary geometry. However, for some special cases, analytical
approximations can be given [37]–[39], which are helpful in
understanding the basic kinetics. Although the solution of the
RD model depends on the underlying geometry [40], it is
commonly assumed that NBTI is a 1-D problem. For the sake
of conciseness, we will derive our analytical models for a
1-D geometry.

Depending on the parameter values and boundary conditions,
different phases are observed, which are shown in Fig. 1 for
the three most commonly used species: H+, H0, and H2.
1) The reaction-dominated regime with an exponent n = 1,
where the reverse rate is negligible due to the lack of avail-
able Hit; 2) Depending on the parameter values, a transition
regime where ∂Nit/∂t = 0, which gives an exponent n = 0;
3) The quasi-equilibrium regime where ∂Nit/∂t is much
smaller than the generation and passivation terms. This is as-
sumed to be the dominant regime and displays the characteristic
time exponent depending on the created species; and 4) A
saturation regime which could be either a soft saturation due
to a reflecting boundary condition or a hard saturation resulting
from the depassivation of all passivated interface states [41].
As the nature and influence of the oxide-poly boundary is not
yet resolved [8], [41], we will restrict our discussion to the
case of an infinitely thick oxide, which is an issue of little
consequence to the discussion presented here.1 In contrast, the
numerical results used for the model validation are obtained

1For instance, it has been reported that a change in the transport properties
of hydrogen inside the oxide and the poly layer may result in an intermediate
kink in the threshold voltage shift [8], [30], [42], which is an issue that is still to
be confirmed experimentally. However, the fundamental kinetics would remain
unchanged.
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Fig. 1. Five phases of the standard RD model obtained from a numerical
solution of (3) and (4) on a 2-nm oxide, using the parameters N0 = 1012 cm−2

and Nit0 = 0. Shown are the results for the three species H+, H0, and H2. The
time exponent n = 1 is the signature of the reaction-limited phase, whereas
n = 1/4, . . . , 1/2, n = 1/4, and n = 1/6 are observed for the three species in
the diffusion-limited phase. At the beginning of the diffusion-limited phase,
H+ behaves like H0. Furthermore, in the nonselfconsistent simulation, where
the feedback of the charges on the field distribution is neglected, H+ does not
show a soft saturation since all hydrogen is pulled away from the interface.

by using a perfectly reflecting boundary condition on a 2-nm
oxide. As such, the analytical approximations give the correct
initial trends but do not account for saturation or other effects
induced by the oxide-poly boundary.

The RD model assumes the quasi-equilibrium of the interface
reaction (∂Nit/∂t ≈ 0) to be the dominant regime [2], [11], [17].
Consequently, we obtain from (3)(

kf

kr

N0 − Nit

Nit

)a

= Hit. (9)

The RHS of (9) contains the interfacial hydrogen concentra-
tion which, at least in principle, has to be determined by solving
the coupled drift-diffusion equation in the bulk. Two identities
are helpful in that context. The first one is obtained by inte-
grating the continuity equation (4) over time and the positive
half-space

∆Nit(t) = a

∞∫
0

Hc(x, t)dx (10)

with ∆Nit(t) = Nit(t) − Nit0. We now introduce a general
parameter B(t) as

∞∫
0

Hc(x, t)dx ≡ B(t)Hit(t) (11)

which depends on the transport model and the geometry. This
allows us to express Hit as

Hit(t) =
∆Nit(t)
aB(t)

. (12)

Alternatively, we can reformulate the boundary condition (8) by
introducing a time-dependent parameter C(t) as

FHc(t)|it · n ≡ C(t)Hit(t) (13)

and consequently write

Hit(t) =
G0(t)
C(t)

=
1

aC(t)
∂Nit

∂t
. (14)

Provided the exact hydrogen profile Hc(x, t) is known, (12) and
(14) are equivalent. However, since in the analytical approxima-
tions a guess for Hc(x, t) is used, these two formulations lead
to slightly different results.

In order to bypass the complete solution of the coupled
drift-diffusion equation [6], which results in rather complex
analytical expressions for Hc(x, t), for many purposes, approx-
imate solutions have been proven to be useful. Alam suggested
[2], [37], [38] to use a triangular hydrogen profile (on a lin–lin
scale) of the width

√
Dct for neutral species. A more rigorous

but closely related expression can be derived from the comple-
mentary error function diffusion profile, which results from a
constant surface concentration. This is not quite the case for
NBTI where the assumption of a constant surface concentration
holds only during the initial stress phase and is later replaced
by a constant dose criterion during the saturation phase, which
would then result in a Gaussian profile [43]. Nevertheless,
expressions of the form

B(t) = λ0

√
Dct (15)

C(t) = Λ0

√
Dc/t (16)

are reasonably accurate before the onset of saturation, with
λ0 = 1/2 and Λ0 = 1 for the linear profile, and λ0 = 2/

√
π and

Λ0 = 1/
√

π for the complementary error function. In addition,
λ0 and Λ0 can be adjusted empirically [37]. However, the
improved accuracy is of little practical relevance during the
presaturation stress phase. An interesting feature is the fact
that for diffusing species (Z = 0), area estimation (15) is more
accurate than flux estimation (16) and thus preferable. In other
words, it is easier to get the area of a diffusion-dominated
profile right than the gradient straight at the interface.

Analogously, for the proton, it is assumed that the drift-
term dominates. By approximating the hydrogen profile by a
rectangle [42] of width vct = µcEoxt, one obtains

B(t) =µcEoxt (17)

C(t) =µcEox. (18)

The mobility is assumed to be related to the diffusivity [4]
via the Einstein relation as µc = Dc/VT . Contrary to the
diffusing species where the area estimation is more accurate,
for pure drift, flux estimation (18) gives results closer to the
full numerical solution and should thus be preferred over area
estimation (17).

Quite generally, for any species and transport model consid-
ered here, we will introduce

B(t) =B0t
b (19)

C(t) =C0t
c−1. (20)
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TABLE I
HYDROGEN PROFILE SHAPE FUNCTIONS FOR THE THREE

TRANSPORT MODELS CONSIDERED IN THIS PAPER

We note that, for the approximations discussed in this paper,
b = c holds. As will become clear later, the main advantage
of introducing (19) and (20) is that it allows us to formulate
the final NBTI models independently of the species, transport
model, and, under certain circumstances, the assumed boundary
conditions. The parameter values for the various models dis-
cussed in this paper are summarized in Table I.

After having established the area and flux formulations (12)
and (14), we obtain two fundamental RD equations. First, by
inserting (12) into (9), one obtains the area formulation

(
kf

kr

∆Nit,max − ∆Nit

Nit0 + ∆Nit

)a

=
∆Nit

aB
(21)

or, alternatively, using (14) with (9) gives the flux formulation

(
kf

kr

∆Nit,max − ∆Nit

Nit0 + ∆Nit

)a

=
1

aC

∂∆Nit

∂t
(22)

with the maximum value of ∆Nit given by ∆Nit,max =
N0 − Nit0.

We repeat that, provided the expressions for B and C are
accurate, (21) and (22) will deliver the same result. Using, for
instance, the approximate relationships (15) and (16), however,

will give different results, most notably because (21) is an alge-
braic equation in ∆Nit whereas (22) is a first-order differential
equation in time. As will be shown later, both expressions result
in a practically time-independent offset to the correct solution
during the presaturation phase. This offset is of little practical
importance as hardly any parameter of the RD model is known
with any certainty anyway. However, in the saturation regime,
(21) results in a square-root-like behavior, whereas (22) might
be best approximated by a stretched-exponential.

Equations (21) and (22) are straightforward to solve for
∆Nit. Unfortunately, (21) gives a rather lengthy result [see
(30) for the proton case], whereas (22) only results in an
implicit expression for ∆Nit, which might be approximated by
a stretched-exponential. Both results have in common that, de-
pending on the relative value of ∆Nit to Nit0, the solution be-
haves quite differently. The two asymptotic limits ∆Nit�Nit0

and ∆Nit � Nit0 are very intuitive and will be discussed in
the following. Also, saturation is first neglected (Nit(t) � N0)
and discussed in Section II-D.

A. Small Concentration of Initial Interface States

With the assumption ∆Nit(t) � Nit0, the standard RD
model is obtained from (21)

∆Nit(t) = ARDB1/(1+a)(t) (23)

with the species-dependent prefactor

ARD =
(

a

(
kf

kr
∆Nit,max

)a)1/(1+a)

. (24)

In contrast, by using the flux formulation (22), one obtains

∆Ñit(t) =
(

1 + a

c

C0

B0

)1/(1+a)

∆Nit(t) (25)

which differs from (23) by a constant prefactor. With the
complementary error function profile, this prefactor is equal to√

2 and 31/3 for H0 and H2, respectively, while the linear profile
gives roughly twice these values. For the proton model, the
prefactor of (25) is

√
2, which is precisely the result delivered

by the dispersive drift models based on the MT model and is in
excellent agreement with the numerical solution.

With the appropriate shape functions (17) and (15), (23) and
(25) give the exponents n = b/(1 + a), which are the well-
known values of 1/2, 1/4, and 1/6 for proton, atomic, and
molecular hydrogen transport, respectively. These exponents do
not depend on temperature nor is it possible to include process
dependences. Again, we note that the exponent of 1/2 obtained
from the RD model for H+ transport is not observed experi-
mentally, which led researchers to discard this possibility. On
the other hand, the exponent for molecular hydrogen diffusion
(n = 1/6) is close to the values observed in recent delay-free
measurements, ≈ 0.12–0.14 [9], [29], making some researchers
favor that model [29], [44]. However, the issue of temperature-
dependent delayed-slopes remains unanswered in the classic
RD model [30].
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B. Large Concentration of Initial Interface States

Interestingly, by assuming ∆Nit(t) � Nit0, a completely
different solution is obtained. This is because ∆Nit in the
denominator on the LHS of (21) can be neglected against
Nit0, which results in ∆N

1/a
it instead of ∆N

1/a+1
it . In the area

formulation (21), one obtains

∆Nit(t) = AP B(t) (26)

with the prefactor

AP = a

(
kf

kr

∆Nit,max

Nit0

)a

= A1+a
RD N−a

it0 . (27)

Again, in contrast, flux formulation (22) gives

∆Ñit(t) =
1
c

C0

B0
∆Nit(t). (28)

As before, (28) differs from (26) by a constant prefactor.
Interestingly, for neutral diffusing species, the prefactor is equal
to four, with the estimation based on the linear hydrogen profile,
whereas the complementary error function profile results in
exactly one. Also, there is no difference in the proton drift
model. In this regime, the exponent obtained by the RD model
is equal to n = b, with the values 1, 1/2, and 1/2 for proton,
atomic, and molecular hydrogen transport, respectively. Note
that the exponents are solely determined by the area function B
rather than a combination of area function and kinetic exponent
a as in the standard RD model. For classic drift-diffusion, these
resulting exponents are not compatible with measurements.
However, as will be shown in the following, the introduction
of dispersive transport can bring the exponents within the
observed ranges.

The assumption ∆Nit(t) � Nit0 has originally been intro-
duced by Zafar [11]. This is based on the (actually mandatory)
notion that the occupancy of the interface states depends on the
position of the Fermi-level and that not all interface states are
electrically active. In this context, N0 is now the maximum
number of hydrogen binding sites rather than the maximum
number of electrically observable interfaces states in a com-
pletely depassivated sample.

C. Intermediate Concentration of Initial Interface States

For an intermediate concentration of initial interface states, a
transition between the two regimes given through (23) and (26)
is observed. Since the condition ∆Nit(t) � Nit0 will be valid
during early times, the regime described by (26) will be labeled
pre-RD in the following. One may define the transition point
to the standard RD scheme as the time where ∆Nit(t) = Nit0,
and we obtain by inverting (26)

tRD =
(

Nit0

AP B0

)1/b

. (29)

The time point given through (29) is also (roughly) equivalent
to the intersection point of (23) and (26). Such a transition

Fig. 2. Two different regimes for a medium number of initial interface defects
Nit0 = 1011 cm−2 given through (21). The transition between the pre-RD
regime and the standard RD regime at t = tRD can be clearly observed. A
value of N0 = 1013 cm−2 was used.

is depicted in Fig. 2 for the values Nit0 = 1011 cm−2 and
N0 = 1013 cm−2. Obviously, for Nit0 = 0, we obtain tRD = 0,
that is, only the conventional RD regime is observed. However,
for large Nit0 closer to N0, the transition occurs very late or not
at all due to the onset of saturation.

D. Saturation

While the different expressions for Hit resulted only in
a constant prefactor during the stress phase, inaccuracies in
the estimation for Hit influence the saturation behavior more
significantly. Although these differences are of minor practical
importance, they explain the different expressions given in
literature [11], [41], [45].

For the sake of brevity, we limit the following discussion to
proton and atomic hydrogen transport (a = 1). We first solve
the full RD equation in the area formulation (21), which has the
solution

∆Nit(t)=
K(t)+Nit0

2

(√
1+

4K(t)∆Nit,max

(K(t)+Nit0)
2 − 1

)
(30)

with K(t)=Bkf/kr. While the expression in the RD regime for
small Nit0 is obvious, in the pre-RD regime with ∆Nit�Nit0,
we obtain by expanding the square-root for large Nit0

∆Nit(t) =
∆Nit,max

1 + (t/τPL)−b
(31)

with

τPL =
(

Nit0

B0

kr

kf

)1/b

. (32)

Interestingly, based on a dispersion of the forward-rate kf

only, an expression of the form (31) has been derived by
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Huard et al. [13] and successfully fitted to their measurement
data. There, the exponent b depends on the variance of the
distribution of forward rates and the temperature. Here, as will
be shown later, the introduction of dispersive transport makes b
dependent on the dispersion parameter of the transport equation
and consequently also on the temperature.

In contrast, if we solve the flux-based expression (22), we
obtain the general implicit solution

∆Nit

N0
+ log

(
1 − ∆Nit

∆Nit,max

)
= −

(
t

τP

)c

(33)

where we introduced

τP =
(

c
kr

kf

N0

C0

)1/c

. (34)

In the RD regime, (33) can be approximated by a stretched-
exponential [45]

∆Nit(t) = ∆Nit,max

(
1 − exp

(
−

(
t

τRD

)c/2
))

(35)

with τRD = τP /21/c. Note that for short times t < τRD,
the aforementioned expression has the correct asymptotic
limit (25).

In contrast, when we assume that ∆Nit�N0 at all times [46],
which is a much more stringent assumption than ∆Nit�Nit0

used to differentiate the pre-RD from the RD regime, one can
neglect the first term on the LHS of (33) to obtain the stretched-
exponential given by Zafar for her dispersive-drift model [11]

∆Nit(t) = ∆Nit,max

(
1 − exp

(
−

(
t

τP

)c))
. (36)

Note the different exponent compared to (35) and the
slightly different time constant. We remark that the condition
∆Nit � N0 at all times requires Nit0 to be very close to
N0. Otherwise, the first term on the LHS of (33) cannot be
neglected. This can also be seen from the Taylor expansion of
the stretched-exponential (36), which gives

∆Nit(t) =
Nit0

N0

1
c

C0

B0
AP B(t). (37)

which differs from the exact solution (28) by the ratio Nit0/N0.
In contrast, an expansion of the (implicit) full solution (33)
correctly results in (28). Thus, the error in the stretched-
exponential is only small for Nit0 ≈ N0. In particular, for
the stretched-exponential to be accurate in the most impor-
tant stress phase within p percent, Nit0 has to be larger than
N0 × p/100. The accuracy of the power-law-like approxima-
tion (31), on the other hand, is not as sensitive to the value of
Nit0, and it includes the correct short time limit of the implicit
full solution (33). These results will be discussed in more detail
in Section VI-B.

Fig. 3. Schematic illustration of dispersive transport. Particles in the hydrogen
conduction band fall into the traps and are reemitted into the conduction band.
Reemission is more likely for shallow traps. The time-dependent demarcation
energy Ed separates shallow from deep traps. With time, the demarcation
energy becomes more negative until the bottom of the trap distribution is
reached (Ed → Emin) and equilibrium is obtained. As a result, the motion of
the particle packet slows down with time. Note how the individual trap levels,
which microscopically correspond to the different energy levels of hydrogen in
an amorphous material, are approximated by a macroscopic density-of-states.

III. DISPERSIVE TRANSPORT

In contrast to drift-diffusion transport, dispersive transport
is trap-controlled. This implies that most particles reside on
trap levels. Depending on the trap level energy (the distance to
the “conduction band”), hydrogen can easily be released from
shallow traps but has large release times from deep traps. This
is schematically illustrated in Fig. 3.

RDD models proposed so far have relied on simplified trans-
port models developed either for the time evolution of an initial
hydrogen profile after an irradiation pulse [16], [17], [21],
[22] or on a phenomenological time-dependent diffusivity as
observed in hydrogen diffusion and annealing experiments [2],
[11], [19], [20]. The applicability of these simplified equations
to the problem at hand has not been rigorously assessed and, as
we will show in the following, contains the following pitfalls.

1) First, during NBTI stress, one has to deal with a continu-
ous influx of particles which has to be properly accounted
for in the boundary condition of the model equations.

2) Second, the reverse rate of the interface reaction de-
pends on the concentration of available hydrogen at the
interface. Here, one might have to consider that, in the
dispersive case, most particles reside in deep traps rather
than in the “conduction state.” As will be shown, this
issue is of fundamental importance to the model as it
results in completely different time exponents.

A. MT Model

Dispersive transport is often described using the continu-
ous time random walk (CTRW) theory [47] or MT models
[23]–[25]. Both models exhibit similar features [48]–[50] and
will be considered equivalent in the following [49]. Since the
MT model lends itself exceptionally well to a numerical and
analytical treatment and is easier to solve for arbitrary initial
and boundary conditions, we use the MT equations in our
discussions.
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In the MT model, the total hydrogen concentration H con-
sists of hydrogen in the conduction states Hc and trapped
hydrogen as

H(x, t) = Hc(x, t) +
∫

ρ(x, Et, t)dEt (38)

with ρ(x, Et, t) as the trapped hydrogen density (cm−3eV−1) at
trap level Et. Transport is governed by the continuity equation
and the corresponding flux relation

∂H

∂t
= −∇ · FHc + Gc. (39)

Note that in (39) the time derivative of the total hydrogen
concentration is used which accounts for the exchange of
particles with the trap levels. The occupancy of the trap levels
is governed by balance equations which have to be solved for
each trap level

∂ρ(Et)
∂t

=
ν

Nc
(g(Et) − ρ(Et)) Hc︸ ︷︷ ︸

capture

− ν exp
(
−Ec − Et

kBTL

)
ρ(Et)︸ ︷︷ ︸

release

(40)

with ν as the attempt frequency, Nc as the effective density-of-
states in the hydrogen conduction band, and Ec as the hydrogen
conduction band edge (assumed to be zero in the examples). An
exponential density-of-states is commonly used [17], [25]

g(Et) =
Nt

E0
exp

(
−Ec − Et

E0

)
(41)

which, in this particular context, results in a power law [17],
[24] for the time dependence of ∆Nit. In the following, we
restrict our discussion to a position-independent density-of-
states. It is also worth recalling that the transport will only be
dispersive for E0 > kBTL, that is, for sufficiently “deep” trap
distributions [25].

Qualitatively, the system responds as follows if brought out
of equilibrium.

1) At the initial stage, the capture rate (first term) in (40)
dominates. Since ρ will still be small, the distribution will
closely resemble the density-of-states (cf., Fig. 5).

2) Then, since the release term depends exponentially on the
distance in energy of the trap level from the conduction
band, particles on shallower traps (traps “closer” to Ec)
are more likely to be released than deeper traps. As a
consequence, the shallower trap levels become depleted
while particles accumulate in the “deep” traps. This is the
nonequilibrium regime.

3) The transition between “shallow” and “deep” traps is
described by the demarcation energy [24], [25], [51]

Ed(t) = Ec − kBTL log(νt) (42)

which becomes more negative with time. Equation (42) is
valid for t > 1/ν.

4) As soon as the demarcation energy reaches the “bottom”
of the density-of-states, equilibrium is obtained, and the
system behaves similarly to a nondispersive one, although
a different “effective” diffusivity and temperature depen-
dence are observed [52]. Note, that from a mathematical
point of view, this never happens for an ideal exponential
density-of-states [25] such as (41).

The evolution of an initial particle sheet with time is shown
in Fig. 4, whereas the trapped hydrogen profile ρ(Et, t) is
shown in Fig. 5.

B. Arkhipov–Rudenko Approximation

As the MT equations are rather complex and can, in general,
only be solved numerically, simplified equations have been
derived by Arkhipov and Rudenko [25]. Their approximate
solution relies on the existence of the demarcation energy
separating shallow from deep traps and was derived to describe
the broadening of an initial particle distribution in the hydrogen
conduction band, such as in Fig. 4. This is not the case during
NBT stress, however, where we have to deal with a continuous
generation of particles at the interface during the stress phase.
As the treatment of this generation term is fundamental for
our considerations with respect to NBTI, an extended model
is derived in the following.

Assuming a closed system with initial hydrogen concentra-
tion H0(x) in the conduction state and initially empty trap
levels (ρ(x, Et, t) = 0), we proceed by integrating the conti-
nuity (39) with respect to time to obtain

H(x, t) − H0(x) = −∇ · FHc(x, t) + Gc(x, t). (43)

Here, we introduced the time average of a quantity as

X =

t∫
0

X(x, t′)dt′. (44)

The integral of the particle flux has been reformulated under
the assumption that the flux operator F is time-independent.
Most importantly, this requires Eox to be independent of time.
Assuming that the time-dependent demarcation energy (42)
separates shallow from deep traps, that the trap occupancy can
be neglected in the capture term of (40), that is, g(Et) �
ρ(x, Et, t), and that the shallow traps ρs are in equilibrium
with the conduction band (∂ρs(x, Et, t)/∂t ≈ 0), one can write
from (40)

ρs(x, Et, t) =
Hc(x, t)

Nc
g(Et) exp

(
Ec − Et

kBTL

)
. (45)

For the deep traps, the release term in (40) can be neglected,
which results in

ρd(x, Et, t) =
ν

Nc
Hc(x, t)g(Et). (46)

Note that this assumes that the traps are initially empty,
which is an assumption typical for current pulses in amorphous
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Fig. 4. Comparison of the hydrogen profiles at different time points for classic diffusion versus dispersive diffusion. Shown is the one-sided broadening of an
initial particle sheet H0(x) = Hinitδ(x). For the classic case, the diffusivity was set to D = Dc × 10−4 in order to accommodate both profiles on the same
plot. Note that the mobile hydrogen concentration in the conduction band Hc (dotted line) is much smaller than the concentration of the trapped hydrogen Ht

(dashed line) and that the profile is steeper, that is, it remains closer to the initial position.

materials [47], but probably difficult to justify in the context
of NBTI. The trapped hydrogen concentration can then be
obtained as

Ht(x, t) =

Ec∫
Ed(t)

ρs(Et)dEt +

Ed(t)∫
−∞

ρd(Et)dEt (47)

=
Hc(x, t)

θ(t)
+

Hc(x, t)
τ(t)

(48)

with the auxiliary functions

1
θ(t)

=
1

Nc

Ec∫
Ed(t)

g(Et) exp
(

Ec − Et

kBTL

)
dEt (49)

1
τ(t)

=
ν

Nc

Ed(y)∫
−∞

g(Et)dEt. (50)

For the sake of simplicity, we will restrict our discussion in the
following to the exponential trap density-of-states (41) where
the auxiliary functions can be explicitly given as

τ(t) =
1
ν

Nc

Nt
(νt)α (51)

θ(t) ≈ τ(t)/(αt) (52)

with the dispersion parameter

α = kBTL/E0. (53)

By adding Hc to the trapped hydrogen concentration (48),
the total hydrogen concentration H can now be written as

H(x, t)=Hc(x, t)+Ht(x, t)=
Hc(x, t)
γ(t)τ(t)

+
Hc(x, t)

τ(t)
(54)

with

1
γ(t)

=
1 + θ(t)

θ(t)
τ(t). (55)

From (54), an explicit expression for Hc is obtained

Hc(x, t) = τ(t)H(x, t) − Hc(x, t)
γ(t)

. (56)

Inserting (56) into (43) finally gives

H(x, t) − H0(x) = −∇ · F(x, t) + Gc(x, t)

+
Gc(x, t)

γ(t)
− 1

γ(t)
∂H(x, t)

∂t
. (57)

with

F(x, t) = Fτ(t)H(x, t). (58)

By setting G0 = 0, the original Arkhipov–Rudenko model is
retained.
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Fig. 5. Evolution of the trapped hydrogen profile with time for the diffusion process given in Fig. 4. Shown is the density ρ(Et) right at the interface (x = 0). At
early time points (t = t1), the profile closely resembles the exponential density-of-states. Particles residing on shallow traps closer to Ec = 0 are easily emitted
in a process that consequently favors the occupancy of the deeper trap levels. This results in the characteristic humps that can be observed for t > t1. Note that
the average energy of the trapped hydrogen 〈Et〉 roughly corresponds to the demarcation energy Ed.

C. Extremely Nonequilibrium Arkhipov–Rudenko
Approximation

For large times, (57) contains the transition to the equilibrium
regime where most particles reside in shallow traps. Under
the assumption that the system remains in nonequilibrium,
(57) can be further simplified. In the nonequilibrium regime,
most particles reside in the deep traps, which allows one to
approximate the total hydrogen concentration as [25]

H(x, t) =
Hc(x, t)

τ(t)
. (59)

Following the same procedure as before, one can derive an
expression only valid in the extremely nonequilibrium case [25]

H(x, t) − H0(x) = −∇ · F(x, t) + Gc(x, t) (60)

to replace (57). Note that there is no time derivative in (60)
because the dynamics of the system can be incorporated solely
into τ(t), which directly depends on the hydrogen trap density-
of-states and the demarcation energy. This is a characteristic
feature of any adiabatic process, where the time dependence of
the whole system is determined by the slowest process, in our
case, the thermal equilibration of hydrogen [53].

Of particular interest in our context is the concentration of
the mobile hydrogen Hc, which is directly linked to the total

hydrogen concentration H through (59) as

Hc(x, t) =
∂τ(t)H(x, t)

∂t
. (61)

This relation will be used for the formulation of the NBTI
boundary conditions.

D. Phenomenological Description of Dispersive Transport

Instead of MT or CTRW solutions, models based on a
phenomenological time-dependent diffusivity

D(t) = D00(ν0t)β−1 (62)

have been used [2], [11], [20]. Here, D00 is the microscopic
diffusivity, ν0 is an attempt frequency [54] possibly different
from ν, and β is the dispersion parameter [54]. As in the
MT model for an exponentially decreasing trap density, β is
given as β = kBTL/Eβ , where Eβ is the characteristic energy.
Since (62) has been empirically formulated by matching for
instance SIMS measurements, this model does not allow one
to differentiate between mobile and trapped hydrogen, which
has a significant influence on the NBTI boundary condition as
shown later.
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It is worth comparing the transport equation obtained with
the time-dependent diffusivity to the approximate solution of
the MT equations. Inserting (62) into (4) gives

∂H

∂t
= −∇ · D(t)

Dc
FH + Gc. (63)

Conversely, by taking the time-derivative of the nonequilibrium
MT approximation (60), one obtains

∂H

∂t
= −∇ · ∂τ

∂t
FH −∇ · τF ∂H

∂t
+ Gc. (64)

The most notable difference to the phenomenological descrip-
tion (63) is a different treatment of the particle flux, which,
in (64), has already been reformulated in order to allow a com-
parison. For an exponential trap density-of-states, a comparison
of the prefactor of the first flux term in (64) with the coeffi-
cient appearing in (63) yields that both fluxes are equivalent
provided that

Dcα
Nc

Nt
(νt)α−1 = D00(ν0t)β−1 (65)

holds. This is obviously the case if, for instance, α = β, ν = ν0,
and D00 = DcαNc/Nt. Thus, for the special case that ∂H/∂t
is small, the phenomenological formulation is equivalent to
the nonequilibrium MT approximation. This result will be
used in the discussion of the Zafar model (cf., Section VI-B).
Interestingly, for proton transport, the condition ∂H/∂t ≈ 0 is
approximately valid during the initial drift-limited phase, which
allows one to neglect the second flux term in (64).

IV. DISPERSIVE TRANSPORT AND NBTI

In order to obtain an NBTI model, the dispersive transport
equation has to be coupled to the electro-chemical reaction
assumed to take place at the interface. For the present analy-
sis, we have to keep in mind that the macroscopic density-
of-states is derived for an amorphous bulk material and is
unlikely to be valid close to an interface. In that context, the
physical mechanisms justifying the “conduction band” concept
in conjunction with hydrogen hopping next to the interface
need to be evaluated and justified. Published dispersive NBTI
models, however, are based on the validity of this concept, and
the different interpretations explain the discrepancies in these
models.

As in the RD model, the kinetic equation describing the
interface reaction is assumed to be of the form (3). Also, the
interface reaction is assumed to be in quasi-equilibrium, that is,
(9) to hold. In the following, various analytical models will be
derived using different boundary and initial conditions based on
the extremely nonequilibrium transport (60).

The time average of the generation term required in (60)
follows directly from (6) as

Gc(x, t) =
∆Nit(t)

a
δ(x − x0). (66)

By placing the interface at x = 0, the total hydrogen concen-
tration in the positive half-space can be given at every time

step through

H(x, t) = H(0, t) exp
(
− x

λ(t)

)
(67)

with λ(t) =
√

Dcτ(t) for neutral particles and λ(t) =
µcEoxτ(t) for protons [17]. For the exponential trap density-
of-states, one obtains for neutral particles

λ(t) =
(

Dc

ν

Nc

Nt

)1/2

(νt)α/2 (68)

whereas the proton results in

λ(t) =
Dc

ν

Nc

Nt

Eox

VT
(νt)α. (69)

Note that (69) is only valid for larger times as it neglects the
diffusive component at short times [17] and, as in the RD
model, H+ will at first behave like H0.

Using the spatial distribution of the total hydrogen concen-
tration (67), the continuity equation for the extremely nonequi-
librium case (60) can be integrated over the half-space x > 0,
and one obtains with the assumption H0(x) = 0

H(0, t) =
∆Nit(t)
aλ(t)

. (70)

By identifying B(t) = λ(t), (70) is the dispersive equivalent of
(12) obtained for the standard RD model. A compilation of the
values of B for the three discussed species is given in Table I.

Alternatively, we can integrate the MT continuity (60) over
an infinitesimally thin interfacial layer to obtain

F(0, t) · n =
∆Nit(t)

a
. (71)

It is straightforward to show that F · n = λH holds for the
exponential hydrogen profile (67). Thus, for the dispersive
MT model, we only need to consider the single fundamental
equation (9). This is of course a consequence of the fact that we
can use the exact solution for the hydrogen profile rather than
an approximation as in the RD case.

A crucial question in the context of dispersive transport is
how to determine the interfacial hydrogen concentration Hit. In
the following, we will consider two different models. The first
assumes that Hit is given by the total hydrogen concentration
H , thus, from (9) and (70)(

kf

kr

∆Nit,max − ∆Nit

Nit0 + ∆Nit

)a

=
∆Nit

aB
. (72)

This is the assumption employed in the Kaczer–Arkhipov
model [17]. The different behavior observed in the dispersive
case is therefore the consequence of a modified B(t).

Alternatively, one may assume that only the mobile hydrogen
can contribute to the reverse reaction, that is, Hit = Hc, and we
obtain via (9), (61), and (70)(

kf

kr

∆Nit,max − ∆Nit

Nit0 + ∆Nit

)a

=
∂

∂t

τ∆Nit

aB
. (73)
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Here, the different behavior is a consequence of a modified B, τ ,
and time derivative. As will be shown, this results in a funda-
mentally different behavior compared to the Kaczer–Arkhipov
model. In the following, the four solutions of (72) and (73) for
the cases ∆Nit(t) � Nit0 and ∆Nit(t) � Nit0 are analyzed.

A. Total Hydrogen Boundary Condition, RDD Regime

The solution of (72) can be directly taken from the general-
ized RD model discussed in the previous sections using B = λ.
Thus, in the RDD regime, we obtain from (23) for neutral
particles

∆Nit(t) = ARD

(
Dc

ν

Nc

Nt

)1/(2+2a)

(νt)α/(2+2a) (74)

with the same prefactor ARD as in the RD model given through
(24). For atomic hydrogen (a = 1), the exponent is given
through n = α/4, whereas molecular hydrogen (a = 2) gives
n = α/6.

For the proton, we obtain from the approximate relation
for λ(t)

∆Nit(t) = ARD

(
Dc

ν

Nc

Nt

Eox

VT

)1/2

(νt)α/2. (75)

Note that the numerical solution for H+ may contain a tran-
sitional regime with n = α/4, where the diffusive component
still dominates.

Since α is equal to one in the diffusive limit and zero in the
extremely dispersive case, (74) and (75) imply that, with dis-
persive transport, an exponent smaller than the RD exponents
of 1/2, 1/4, and 1/6 can be obtained. Also, for increasing trap
density Nt, the total amount of degradation decreases.

A qualitative explanation of the exponent reduction can
be given by noting that dispersive transport results in most
particles being trapped close to the interface, yielding a steeper
profile compared to classic diffusion. As all hydrogen is avail-
able for the reverse rate in (3), the net interface state generation
is suppressed, resulting in a smaller exponent.

Since the dispersion parameter α depends linearly on the
temperature, a linear temperature dependence of the exponent
is obtained as [17]

n1 =
α

2 + 2a
=

kBTL

2E0(1 + a)
. (76)

This is consistent with experimental results obtained with de-
layed measurements [3], [17], but inconsistent with the delay-
free measurement results of [9], [29].

B. Total Hydrogen Boundary Condition, Pre-RDD Regime

For the case that a large initial concentration of interface
states is allowed, the pre-RD result (26) can be directly applied,

Fig. 6. Example simulation showing the transition between the pre-RDD
regime and the RDD regime which could be used to explain a different initial
exponent compared to the long time exponent. Shown are the numerical and
analytical solutions of the MT equations. Note that the analytical solution is
only valid after the reaction-limited phase.

and one obtains with the dispersive area function for neutral
species (68)

∆Nit(t) = AP

(
Dc

ν

Nc

Nt

)1/2

(νt)α/2. (77)

For the proton, one obtains with (69)

∆Nit(t) = AP
Dc

ν

Nc

Nt

Eox

VT
(νt)α. (78)

As before, the exponents n = α, α/2, and α/2 for H+, H0,
and H2 reduce to their pre-RD equivalents 1, 1/2, and 1/2 for
α = 1. Also, the exponent increases linearly with temperature
similarly to (76), and the same compatibility/incompatibility to
measurements is given.

Interestingly, (78) shows the same characteristic features as
the Zafar model, that is, n = α and ∆Nit ∝ Dc. This similarity
is further discussed in Section VI-B.

Another interesting interpretation following from a transition
between the pre-RDD to the RDD regime is as follows. It has
been reported [9], [41], [42] that the initial power-law exponent
observed during measurements is close to 0.3, which later-
on changes to a value close to 0.15. This has been attributed
to H0−H2 conversion. In the dispersive transport framework,
however, a different interpretation becomes possible: For H+

and H0 transport, the ratio of the exponents in the pre-RDD
and RDD regimes is two, so with a dispersion parameter of
α = 0.3(H+) or α = 0.6(H0) a transition from 0.3 to 0.15
would be predicted. The full solution of this transition for a = 1
can be directly transferred from the generalized RD result (30)
and B = λ. A possible transition between the pre-RDD and the
RDD regime is shown in Fig. 6.
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C. Conduction State Hydrogen BC, RDD Regime

The previous two models were based on the assumption that
all hydrogen (mobile and trapped) can participate in the NBTI
reverse rate. In contrast, if we now assume that only the mobile
hydrogen can participate in the reverse rate, that is, Hit =
Hc(0), which appears to be the “natural” boundary condition
for the MT model [55], one obtains [see Appendix, (93)]

∆Nit(t) =
aλ(t)
τ(t)

×


(1 + a)

(
kf

kr
N0

)a
t∫

t0

(
τ(t′)
aλ(t′)

)a

dt′


1/1+a

(79)

For neutral particles, (79) results in

∆Nit(t) = ARD

(
Dc

ν

Nt

Nc

)1/(2+2a) (
1 + a

1 + aα/2

)1/(1+a)

×(νt)(1−α/2)/(1+a). (80)

For atomic hydrogen, the exponent n = 1/2 − α/4 is obtained,
whereas H2 results in n = 1/3 − α/6. Hence, for increased
dispersion, the exponents now become larger than their RD
equivalents. Furthermore, when the trap density is increased,
the degradation increases. This is in agreement with the
previously stated result that the inclusion of traps into a
standard RD model increases the exponent [7], [12].

Interestingly, for H+, the time dependence of λ(t) cancels
with τ(t), thereby reducing (93) to

∆Nit(t) =
(

2
kfN0

kr
Dc

Eox

VT

)1/2

t1/2 (81)

with an exponent n = 1/2, incompatible with measurements.
This is equal to the classic result (25) obtained from the
more exact flux formulation and independent of the dispersion
parameter.

Again, qualitatively, in this model, the newly released hy-
drogen quickly falls into the traps, but for times larger than
1/ν, most hydrogen resides in deep traps and is therefore not
as easily available for the reverse rate in (3). This suppresses
the reverse reaction and consequently enhances the net interface
state generation and results in a larger exponent.

In contrast to the total hydrogen boundary condition, now the
exponent decreases with increasing temperature through

n2 =
1 − α/2

1 + a
=

2E0 − kBTL

2E0(1 + a)
=

1
1 + a

− n1. (82)

This is in contradiction to currently available observations
[3], [9], [17]. Note, however, that this particular temperature
dependence is a consequence of the exponential trap density-
of-states, and a hardly noticeable temperature dependence has
been reported [12] using a Gaussian distribution on top of the
exponential density-of-states.

D. Conduction State Hydrogen BC, Pre-RDD Regime

The last case that we consider is the pre-RDD regime ob-
tained under the assumption that only hydrogen in the conduc-
tion state can contribute to the reverse reaction. As shown in the
Appendix [see (95)], for ∆Nit(t) � Nit0, we obtain

∆Nit = AP
λ(t)
τ(t)

t. (83)

For neutral species, this gives

∆Nit(t) = AP

(
Dc

ν

Nt

Nc

)1/2

(νt)1−α/2. (84)

As in the RD case, the exponent is independent of the kinetic
exponent a and is solely given by the shape function λ. For the
proton, one obtains

∆Nit(t) = AP Dc
Eox

VT
t. (85)

Again, the exponent is independent of the dispersion parameter
and is equal to one. As such, this regime would be similar to
the reaction-limited phase of the standard RD model. Also, the
temperature dependence of the exponent is in contradiction to
the measurement data, as are the very large exponent values,
making the applicability of this particular model rather unlikely.

V. COMPARISON AND DISCUSSION

In the following, the analytical NBTI models using the
possible combinations of boundary and initial conditions given
in the previous section will be compared to their corresponding
numerical solution. For the numerical solution, the trap density-
of-states was discretized using 20 energy points, whereas the
energy range was limited to the interval Emax = 0 eV and
Emin = −20 E0. This implies that, as soon as the demarcation
energy Ed reaches Emin, a transition from the nonequilibrium
dispersive to the equilibrium diffusive regime is observed. Note
that this transition is, of course, not available in the approximate
solutions described earlier. As the exact value of Emin is
essentially unknown, it was set to a value small enough so
as not to influence the numerical solution. Furthermore, the
numerical solution considers the trap occupancy in the capture
rate of (40), which is also not contained in the approximate
solutions. In addition, this trap occupancy results in a transition
from dispersive to conventional diffusion as soon as all traps
are filled. Such a transition might be relevant and can also
be experimentally observed in hydrogen diffusion experiments
for hydrogen concentrations larger than the trap density [20].
However, this effect is neglected here for the sake of a straight-
forward comparison.

In the first step, the applicability of the Arkhipov–Rudenko
model to NBTI is investigated. For this, the numerical solu-
tions of the MT equations and the extremely nonequilibrium
approximation (EN-MT) are compared in Fig. 7, where good
agreement is observed for each boundary condition, thereby
justifying the underlying approximations. Next, the analytical
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Fig. 7. Interface state density as a function of the boundary condition cal-
culated numerically by solving the MT and extremely nonequilibrium MT
(EN-MT) equations with Nit0 = 0. Saturation occurs as soon as the hydrogen
diffusion front reaches the other side of the oxide layer, where a perfectly
reflecting boundary condition was used in the numerical solutions. The approx-
imations underlying the EN-MT equations seem to be well justified.

Fig. 8. Interface state density as a function of the boundary condition calcu-
lated numerically by solving the MT equations in comparison to the analytical
expressions (74) and (80) for Nit0 = 0. Again, good agreement is obtained for
both boundary conditions.

expressions (74) and (80) are compared to the numerical so-
lutions of the MT equations in Fig. 8. Again, good agreement
is obtained in the quasi-equilibrium (diffusion-limited) regime.
Of course, no reaction-limited regime and saturation can be
observed in these analytical models.

The temperature dependence of the exponents predicted by
the analytical expressions (74) and (80) is compared to the
full numerical results in Fig. 9. Note that the system is only
dispersive as long as the characteristic energy E0 in the density-
of-states (41) is larger than the thermal energy kBTL [25]. In
terms of the dispersion parameter α, this means α < 1. This

Fig. 9. Temperature dependence of the exponent for the two boundary condi-
tions. As expected from the derivation, the EN-MT model breaks down for the
case when the trap density-of-states becomes too narrow for dispersive transport
to occur (α > 1), whereas the MT model correctly reproduces the diffusive
limit with n = 1/4.

also implies that, for increasing temperature, a transition to
classic transport is observed as soon as E0 becomes smaller
than the thermal energy kBTL, that is, α > 1. Since the dis-
persive models are derived under the assumption α < 1, they
can, of course, not reproduce the full numerical results in that
regime, but give excellent agreement for α < 1.

The good agreement between the numerical and analyti-
cal result indicates that the simplifying assumptions in the
derivation of (74) and (80) are well justified, which are worth
summarizing.

1) The dynamics are solely determined by carrier trapping
and detrapping.

2) The continuous injection of particles is too slow
(∂Nit/∂t ≈ 0) to seriously disrupt the extremely non-
equilibrium assumption with a single demarcation energy.

3) The amount of hydrogen that is allowed to participate in
the NBTI reverse reaction determines the overall dynam-
ics, that is, this boundary condition determines whether
an increase or a decrease in the exponent is observed.

4) The interface reaction is in quasi-equilibrium.

The possible exponents for the various combinations of
boundary condition and species are compared in Fig. 10. The
fractional power-law exponents obtained from the various com-
binations of boundary and initial conditions are summarized in
Table II. The darker the box around a particular combination,
the less likely the model is to be correct. This assessment
is based on the ability of the model to reproduce results of
measurements with delay. We repeat that these models cannot
reproduce a temperature-independent power-law exponent in
delay-free measurements.
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Fig. 10. Possible exponents for the two boundary conditions and the three
investigated species (H+, H0, and H2). The top figure shows the result for the
pre-RD regime, whereas the bottom figure gives the traditional RD regime. For
the boundary condition Hit = Hc, an exponent larger than the RD equivalent
is obtained, whereas the boundary condition Hit = H results in the opposite
behavior. Also, (roughly) indicated is the range of exponents observed during
on-the-fly measurements n ≈ 0.1−0.2.

TABLE II
POSSIBLE POWER-LAW EXPONENTS

VI. ALTERNATIVE MODELS

In addition to the MT-based models discussed so far, formu-
lations using alternative dispersive hydrogen transport models

Fig. 11. Comparison of the calculated interface state density obtained by
numerically solving the diffusion equation with a time-dependent diffusivity
for Nit0 = 0. Good agreement for the case Hit = H is obtained.

have been developed. These are summarized in the following
and compared to the previously derived models.

A. Phenomenological Dispersive RD Model

Based on the phenomenological diffusivity (62), Alam and
Mahapatra first discussed dispersive hydrogen transport in con-
nection with the RD model [2]. By inserting (62) into (15), one
obtains for the area estimator

B(t) = λ0

(
D00

ν0

)1/2

(ν0t)β/2 (86)

which is essentially the same as (68), except for a time-
independent prefactor. For the proton, one obtains with (17)

B(t) =
D00

ν0

Eox

VT
(ν0t)β (87)

which is also essentially the same as (69). Consequently, as
the power-law exponents are determined through the hydrogen
profile shape functions λ, the same time dependence as in the
simplified MT models based on the total hydrogen boundary
condition is obtained from that treatment, both for the pre-RDD
and the RDD regime. The values of B for the three species are
compared to the other theories in Table I.

The numerical solution of a standard RD model with such a
time-dependent diffusivity is shown in Fig. 11. As also demon-
strated in the analytical analysis, the simple phenomenological
model captures the case where the total hydrogen participates
in the reverse rate (Hit = H) very well.

B. Statistical Mechanics Proton Transport Model

As in the discussion on dispersive transport by Alam and
Mahapatra, the model proposed by Zafar [11] also uses the phe-
nomenological description of the diffusivity (62). The electro-
chemical reaction at the interface is replaced by invoking
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assumptions based on statistical mechanics, which for protons
results in

Ni exp
(
− Ei

kBTL

)
N0 − Nit

Nit
= Hit. (88)

Here, Ni is the total density of interstitial sites at the interface,
and Ei is the energy required to create interstitial hydrogen
at the interface. Comparison with the standard RD interface
reaction in quasi-equilibrium (9) shows that (88) is equivalent
provided that

kf

kr
= Ni exp

(
− Ei

kBTL

)
. (89)

As in the RD model, the rates kf and kr are assumed to follow
an Arrhenius activation law [2]. The interface reaction (88)
is equivalent from a mathematical point of view, although the
interpretation of the parameters is somewhat different (see [11]
for additional details).

Since the Zafar model uses the flux-based formalism, it
results in a stretched-exponential, provided that ∆Nit � N0

holds. With C0 = D00ν
β−1Eox/VT and c = β, the results

obtained in Section II-D can be directly transferred, and the
saturation behavior is given by (36).

In Fig. 12, the numerical solution of the MT model is com-
pared to a numerical solution of the implicit solution (33), the
stretched-exponential approximation (36), which is the power-
law-like approximation of the MT model (31) for two different
initial values of interface states Nit0. This comparison confirms
the previously drawn conclusions.

1) The analytical expressions derived from the flux formu-
lation give very accurate results. Only in the saturation
regime, the analytical approximations produce slightly
larger values, whereas the numerical solution gives a
somewhat smoother transition.

2) The stretched-exponential (36) is a good approximation,
provided that Nit0 ≈ N0. In that case, the power-law-like
expression (31) and the stretched-exponential give very
similar results.

3) For Nit0 = N0/10, however, the condition Nit0 � N0 is
not fulfilled, resulting in a large error of the stretched-
exponential approximation. The power-law-like expres-
sion is always correct for small times, whereas it gives a
slight overestimation during saturation.

C. CTRW Model

Instead of the MT model, an approximate solution for the
CTRW model was employed by Houssa et al. [16]. Approxi-
mate CTRW solutions are commonly derived using simplified
trial functions [21], [22]. Again, the approximate solution used
for NBTI [16] was originally devised for the broadening of
an initial sheet of particles created during a radiation pulse.
Since CTRW and MT theory are in many ways compatible
[48], [49], we assume our results of the MT model to also
apply to models derived from the CTRW theory. The derivation
given by Houssa et al. [16] uses dispersive proton transport, the
total hydrogen concentration for the backward rate, and a small

Fig. 12. (Top) The evolution of ∆Nit with time as obtained from the MT
model with the total hydrogen BC and a large initial density of interface states
(Nit0 = 9 × 1012 cm−2, N0 = 1013 cm−2) in comparison to the analytical
expressions given by the power-law-like expression (31) and the stretched-
exponential given by Zafar (36). A very good agreement is obtained for
t > 0.1 ms (beginning of the diffusion limited phase) and during the saturation
phase. For smaller values of the initial density of interface states, however,
Nit0 = 1012 cm−2, the stretched-exponential becomes rather inaccurate. Note
that the saturation in both models is due to hard saturation. (Bottom) The
evolution of the interfacial hydrogen concentration (total, trapped, and mobile),
which shows that the total hydrogen concentration is roughly constant during
the stress phase.

initial concentration of interface states. As such, the results
should be comparable to the Kaczer–Arkhipov model (75).
Indeed, the exponents given in [16, Fig. 2] roughly follow α/2,
although there appears to be a nonlinearity for intermediate
values of α. This could, for instance, be the result of a simplified
trial function or a numerical artifact.

VII. CONCLUSION

Recently, a large number of NBTI models have been pro-
posed, which owe many of their properties to the drift or
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diffusion of a hydrogen species released from previously passi-
vated dangling bonds. Although relying on seemingly similar
physical assumptions, these models result in rather different
predictions for the creation of interface defects. In order to
understand these differences, we employed a generalized RDD
framework to study the influence of the boundary and initial
conditions on the final NBTI model. It has been shown that
the solutions obtained from the approximate transport models
agree very well with the more rigorous results based on the dis-
persive MT transport model. A clear link between the various
published RDD models could be established, which has been
shown to originate from a different treatment of these boundary
and initial conditions. Clearly, the question of what boundary
condition for the reverse rate in the NBTI model captures the
microscopic physics best is of utmost importance. In addition,
the optimum interpretation of the hard saturation value of the
interface states needs to be clarified.

Under the assumption that the concept of a bulk trap density-
of-states remains valid next to the interface, we have investi-
gated two different boundary conditions: Provided that only
hydrogen in the MT conduction band can passivate dangling
bonds, only H2 in an RDD model gives exponents within
the measurement range and would allow to explain delay-free
exponents larger than 1/6. However, these exponents would
depend on temperature, which has, so far, only been observed
in delayed measurements. The influence of the trap density-of-
states on temperature dependence needs to be investigated in
that context, and an exponential density-of-states gives results
in contradiction with measurements. In contrast, if all the
trapped hydrogen can be involved, the previously published
NBTI models [2], [11], [16], [17] are accurate, reproducing
(temperature dependent) measured exponents also with H0 and
H+ kinetics. Based on the ideas of Zafar, a pre-RDD regime has
been introduced, which shows the same qualitative dependence
on the boundary condition and results in a decreasing exponent
with increasing dispersion for the total hydrogen boundary
condition. It has been shown that, depending on the initial
value of the interface state density, the pre-RDD, the RDD, or a
transition between both regimes is observed. Finally, it has been
shown that the Zafar model can be considered a special case of
the presented generalized RDD model.

APPENDIX

In the following, the solution for the generalized RDD
equation in the diffusion-limited regime is derived using only
the conduction state hydrogen for the reverse rate boundary
condition. We start with

(
kf

kr

N0 − Nit0 − ∆Nit

Nit0 + ∆Nit

)a

=
∂U∆Nit

∂t
(90)

with the auxiliary function U(t) = τ/(aλ), which will be
solved for the two limiting cases ∆Nit�Nit0 and ∆Nit�Nit0

in the following. Saturation effects will be neglected, that is,
∆Nit � N0, in order to obtain meaningful simple analytical
expressions.

A. Small Initial Concentration of Interface States

For ∆Nit � Nit0 and ∆Nit � N0, (90) can be simplified to(
kf

kr

N0

∆Nit

)a

=
∂U∆Nit

∂t
. (91)

After some algebraic manipulations, this can be rewritten as a
first-order ordinary differential equation

U

1 + a

∂∆N1+a
it

∂t
+ U ′∆N1+a

it =
(

kf

kr
N0

)a

. (92)

The aforementioned expression can be solved in a standard
manner to obtain

∆Nit =
1
U


(1 + a)

(
N0kf

kr

)a
t∫

t0

U(t′)adt′


1/(1+a)

.

(93)

B. Large Initial Concentration of Interface States

For ∆Nit � Nit0, (90) can be simplified to(
kf

kr

N0 − Nit0

Nit0

)a

=
∂U∆Nit

∂t
(94)

and solved in a straightforward manner to give

∆Nit =
(

kf

kr

N0 − Nit0

Nit0

)a
t

U
. (95)
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