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Abstract

Full-band Monte Carlo simulation offers a very accurate simulation technique, but is often limited by its high demand on
computation time. The advantage of a numerical representation of the band structure over an analytical approximation is the
accurate representation of the energy bands in the high energy regime. This allows accurate treatment of hot carrier effects in
semiconductors. In this work we outline an efficient full-band Monte Carlo (FBMC) simulator and investigate the accuracy of
simulation results for different meshing approaches for the Brillouin zone.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The VIENNA MONTE CARLO SIMULATOR(VMC) [4] offers simulation algorithms for both bulk semiconductors
and one-dimensional devices based on analytical and full-band models. Additionally, a fast zero-field algorithm is
included [11]. VMC provides a comprehensive set of scattering models including phonon scattering, ionized impurity
scattering, alloy scattering and impact ionization.

For FBMC simulations a numerical representation of the band structure in the unit cell of the reciprocal lattice, the
so-called Brillouin zone, is used to capture the dependence of the carrier energy on the wave vector. Taking advantage
of the periodicity and the symmetry properties of a crystal only a part of the band structure in the first Brillouin zone,
the so-called irreducible wedge has to be considered [9]. For unstrained silicon with its diamond crystal structure this
irreducible wedge is only 1/48 of the Brillouin Zone. Fig. 1 shows the first Brillouin zone and the irreducible wedge
for unstrained silicon.

In this work, we describe the basic layout of a rejection algorithm used by VMC to select the final tetrahedron for a
carrier after a scattering event occurred. It is shown why the use of tetrahedral meshes is convenient for this selection
algorithm. Results of bulk simulations of unstrained silicon are shown, demonstrating the impact of different meshing
strategies on simulation accuracy and computation time.
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Fig. 1. Brillouin zone of silicon highlighting the first octant and the first irreducible wedge.

2. Efficient scattering algorithms

Special attention has been paid to keep the code efficient because the CPU time consumption of FBMC is often
a drawback for practical use. One crucial point is to incorporate efficient scattering algorithms. In VMC scattering
models with constant matrix elements are used [5], so that the scattering rates are proportional to the density of states
(DOS) at the particle’s final energy after scattering εf. Selection of a carrier state after scattering then relies mainly
on fast calculation of the contribution to the DOS of the mesh elements including the particle’s final energy. This is
achieved by using tetrahedral mesh elements and linear interpolation of the energy within the mesh elements. The
contribution to the DOS gi of the i-th tetrahedron is proportional to the intersection of the energy iso-surface Ai(εf)
[8,6].

gi = 1

(2π)3h̄

Ai(ε)

|v(k)| (1)

Here v(k) is the group velocity

v(k) = 1

h̄
∇kε(k) (2)

which is constant within a tetrahedron. It can be precalculated and stored in a table. The whole DOS is given by

g (εf) = 1

(2π)3

∫
BZ

δ(ε − εf(k)) d3k = 1

(2π)3h̄

∫
A(εf)

1

|v(k)| d2k =
∑

i

gi (3)

One superior feature of tetrahedral meshes over cubical-meshes is that an energy iso-surface within the Brillouin zone
is continuous.

The most time consuming task while performing a scattering event is the selection of a final tetrahedron containing
the final energy εf. Several tables are calculated once at start time of the simulation to speed up this selection process.

- Table of sorted tetrahedrons: the tetrahedral mesh elements representing the considered part of the first Brillouin zone
are sorted with respect to their lowest energy values. Additionally, the numbering of the vertices of each tetrahedron
is sorted with respect to increasing energy levels.

- Table of upper bounds for DOS: the maximum DOS within all tetrahedrons within subsequent energy intervals is
stored to build a table of upper bounds DOS(ε).

- Upper bound for energy differences: the largest energy difference within tetrahedrons in a specific energy interval is
stored for subsequent energy intervals to build a list of upper bounds �εmax(ε).

After a scattering event is evaluated the final energy εf of the scattered particle is known and so the search for a
final tetrahedron after scattering can be constricted to the tetrahedrons containing εf. Actually only tetrahedrons with a
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Fig. 2. Rejection technique for the selection of the final state in k-space. r1 and r2 are uniformly distributed random numbers between zero and one.

minimum energy in the range between εmin and εmax from the table of sorted tetrahedrons are considered in this search.

εmin = (εf − �εmax(εf))

εmax = εf
(4)

The corresponding table indices Nmin and Nmax are calculated by a binary search. Then a tetrahedron Ti is chosen
randomly from this interval. There is a small number of tetrahedrons in the considered interval which do not contain
εf. These are sorted out within a first rejection step. During a second rejection step the DOS within the tetrahedron
has to be evaluated. Fig. 2 shows a flow-chart of the selection procedure with its two step rejection technique. Since
the whole procedure is repeated until the second rejection step is passed, gi(εf) has to be evaluated frequently during
the simulation. In this task tetrahedron meshes perform very efficient because of the efficient way to calculate a
tetrahedron’s contribution to the DOS.

3. Representation of the band structure in momentum-space

In VMC the first octant of the first Brillouin Zone is meshed to represent the band structure of relaxed and biaxially
strained silicon. Because an octant is a larger volume than the irreducible wedge, this approach obviously increases
memory consumption. However, it simplifies the manipulations needed when particles reach a boundary. The energy
bands are calculated for the irreducible wedge using the empirical pseudopotential method [10] and then transformed
by coordinate permutation to completely fill the first octant. Two approaches of mesh generation are used in the VMC,
one providing structured and another providing unstructured tetrahedral meshes.

3.1. Structured tetrahedral mesh

This mesh is based on an octree-based approach. The basic idea behind this method is to divide the whole domain
to be meshed into cubes and afterwards this cubes are divided into six tetrahedrons. To mesh the {1 1 1} surface of the
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Fig. 3. kx– ky plane of the first conduction band in the first Brillouin Zone with (a) structured and (b) unstructured meshes, shown is only one octant.

Brillouin zone either one or five tetrahedrons have to be cut away from the six tetrahedrons forming one cube. The
result is a structured tetrahedral mesh, whose surface is conform with the Brillouin zone boundary.

Fig. 3 (a) shows the kx– ky plane of the first octant of the Brillouin zone with the contour plot of the energy of the
first conduction band. The main drawback of the octree approach is, that it is very challenging to implement a sufficient
and flexible refinement strategy to adjust different mesh densities. In [2], an octree algorithm is proposed which can
deal with different mesh densities, but the refinement zone is limited to a cubical region and therefore not very flexible.

3.2. Unstructured tetrahedral mesh

A very flexible way of generating unstructured meshes is to use a mesh generator which can handle arbitrary point
clouds with different point densities. In this particular work DeLink[3] was used to generate an initial, very coarse,
unstructured mesh. For different energy bands this initial mesh was refined by the so-called tetrahedral bisection
method. The basic idea of this method is to insert a new vertex on a particular edge, the refinement edge, of a
tetrahedron, and to cut the tetrahedron into two pieces.

In literature, one can find different improvements and specifications for this algorithm (see, for example [1]). One
common problem is the detection of the refinement edge, as supporter for the new vertex. In a mesh, tetrahedrons are
not isolated and inserting a new vertex influences the whole refinement edge batch of the tetrahedron if the conformity
of the mesh after the refinement step should be kept, which is normally the case. To guarantee good shaped elements, a
recursive refinement mechanism was chosen. This approach produces very regular, almost isotropic elements. Regimes
of high point densities are pre-defined by the known positions of the band-minima in the Brillouin zone.

3.3. Recursive refinement algorithm

To guarantee a conforming mesh during the refinement procedure, all tetrahedrons sharing a common refinement
edge have to be divided. A tetrahedron is said to be compatibly divisible if its refinement edge is either the refinement
edge of all other tetrahedrons sharing that edge or the edge is part of the boundary of the domain. If a tetrahedron is
compatibly divisible, we divide the tetrahedron and all other refinement edge sharing tetrahedrons simultaneously. If a
tetrahedron is not compatibly divisible, we ignore it temporarily and divide a neighbor tetrahedron by the same process
first. This leads to the atomic algorithm [7]. Fig. 4 illustrates the recursive refinement process, where one new vertex
is inserted.

As an input to the mesher, regimes of high point densities are pre-defined by the known positions of the band-minima
in the Brillouin zone of silicon. The dimension of this regime is chosen such that the shifted band-minima of strained
silicon are considered and so the same mesh structure is usable with recalculated energy values for different amounts
of strain.
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Fig. 4. The recursive refinement procedure involving four tetrahedrons with one common refinement edge.

Table 1
Parameter values of the meshes used for the first conduction band and CPU time consumption for electron velocity simulations

Group Granularity Data structure points Tetrahedrons Build-up time 200 kV/cm 0.1 kV/cm

Structured Fine 278 166 1 536 134 12′19′′ 18′55′′ 14′49′′
Coarse 37 286 192 618 2′26′′ 4′51′′ 3′12′′

Unstructured Fine 39 330 180 294 1′45′′ 4′57′′ 3′54′′
Coarse 20 346 88 938 1′26′′ 4′11′′ 3′01′′

4. Results

Two meshes, a fine one and a coarse one were generated for each the structured and the unstructured mesh type.
The number of points and tetrahedrons in the first conduction band of these meshes are shown in Table 1.

Fig. 5. Electron mean energy versus field along [1 0 0] direction at 77 K and 300 K.
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Fig. 6. Electron velocity versus field along [1 0 0] direction at 77 K and 300 K.

4.1. High field behavior

Fig. 5 shows the mean electron energy as a function of the electric field for bulk silicon for both structured and
unstructured tetrahedral meshes. As the curves for 300 K and also for 77 K are grouped very close together above
10 kV/cm, it can be concluded that for practical purposes the accuracy of the results in the high field regime is about
the same for all meshes. Fig. 6 shows a similar result for the velocity as a function of the electric field. These results
demonstrate that the unstructured meshes perform very well in the high energy regimes, despite they contain less mesh
elements than the structured meshes in that areas.

4.2. Low field behavior

Fig. 7 shows the normalized mean energy of electrons obtained from FBMC simulation at thermal equilibrium.
The result for the unstructured meshes are in good agreement and converge for low temperatures to the theoretical
equilibrium value of 3kBT/2. While the fine structured mesh is sufficiently accurate at high temperatures, both structured

Fig. 7. Normalized mean energy of electrons at thermal equilibrium versus temperature.
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Fig. 8. Low field mobility of electrons versus temperature.

meshes fail completely at low temperatures. Fig. 8 shows the low field mobility of electrons. Again the coarse structured
mesh fails, while fine structured mesh is in fair agreement with the unstructured meshes.

4.3. Computional costs

Table 1 gives an overview about computation times for different meshes. The computation times are separated into
the mesh data structure build-up times, which is required once at the beginning of the simulation, and two typical field
point calculations, one in the low field regime at 0.1 kV/cm and a second one at 200 kV/cm. For every field point
calculated the total amount of scattering events was set to 5 × 106. For the calculations a commercially obtainable
Intel® Pentium® 4 CPU with 2.4 GHz was used and the user process CPU time was measured.

One can clearly observe that the CPU time consumption is high for the structured meshes. This is mainly due the
higher build-up times. With its much higher amount of mesh elements in the fine structured mesh, it takes a long time
to compute the precalculated tables shown in the last section. The unstructured fine mesh is approximately in the same
range as the coarse structured mesh, but one has to keep in mind, that the structured mesh fails completely for average
kinetic energy at temperatures less than room temperature, where the coarse unstructured mesh still gives reasonable
results.

5. Conclusion

It has been shown that tetrahedral meshes are a convenient choice for meshing the Brillouin Zone for full-band
Monte Carlo simulation. They allow for simple and fast linear interpolation of the energy within the tetrahedrons
and to calculate efficiently the particle group velocity and the density of states, three values needed very frequently
during a full-band Monte Carlo simulation. Tetrahedral meshes offer a very good potential for refinement techniques.
Simulation results in the high field regime show similar accuracy for properly refined meshes as for structured octree-
based meshes with more than ten times the amount of tetrahedral elements. Simulations of electron mobility and
mean electron energy in the low field regime show much better results for refined meshes than octree-based meshes,
particularly for simulations with low lattice temperatures.
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