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The lowest conduction band of Si is often approximated by three pairs of equivalent parabolic valleys
located near the X-points of the Brillouin zone. There are recent experimental indications that the effec-
tive mass depends on shear strain and the silicon film thickness. The parabolic band structure ignores
these effects completely. By comparison with numerical pseudopotential calculations, we show that
the recently evaluated two-band k - p model accurately describes the dependences of the valley shifts
and the effective masses on the shear strain component. Furthermore, we demonstrate that the two-band
model is valid in a larger portion of the Brillouin zone as compared to the parabolic approximation with
strain dependent effective masses and can be successfully used to describe analytically the subband dis-
persions in ultra-thin Si films, with or without strain. In the latter case, the model provides an analytical
expression for the thickness-dependent non-parabolicity parameter in the unprimed subbands. Finally,
the low-field mobility with the dependence of the non-parabolicity parameter on the film thickness taken
into account is compared with the mobility computed with the bulk value of the non-parabolicity
parameter.

Monte carlo simulations

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Continuing downscaling of transistor feature size is the key for
the tremendous success of CMOS technology [1]. The scalability al-
lows to put more transistors per unit area, while increasing transis-
tor performance and reducing costs per operation. An anticipated
performance enhancement was achieved at the expenses of the in-
crease in subthreshold and gate leakage currents. Keeping power
dissipation due to leakage currents under control forced device
engineers to look for new technological solutions in order to deli-
ver projected performance gain. At the 90 nm technology node,
stress technique was introduced to enhance performance while
keeping the MOSFET design intact. Since then, stress-induced
mobility engineering has become a key technique to increase the
performance of modern CMOS devices.

In biaxially stressed devices the electron mobility can be nearly
doubled [2]. The reason for the mobility enhancement is the stress-
induced band structure modification. The conduction band in Si is
commonly approximated by three pairs of equivalent valleys with
their minima located close to the X-points of the Brillouin zone.
Close to the minima the electron dispersion is well described by
the effective mass approximation. The degeneracy between the
six equivalent valleys is lifted due to stress-induced valley shifts.
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This reduces inter-valley scattering. In case of tensile biaxial stress
applied in the (100) plane the four in-plane valleys move up in en-
ergy and become depopulated. The two out-of-plane valleys be-
come more populated. Since electrons in the out-of-plane valleys
have favorable conductivity mass and because of reduced inter-
valley scattering between out-of-plane and in-plane valleys, the
electron mobility is increased [3].

Biaxial stress is usually introduced globally by growing Si epitax-
ially on a relaxed SiGe substrate. This method, however, cannot pro-
vide comparable on-currents in n- and p-MOSFETs required by
CMOS technology and is not used in mass production. Instead, the
semiconductor industry employs stress techniques compatible with
existing CMOS fabrication process. Stress in the channel of a MOS-
FET is created by using local stressors in the source and drain and
additional cap layers. Although already successfully used in mass
production, the technologically relevant [110] stress has received
little attention within the research community. Only recently the
electron mobility modification under stress was systematically
investigated experimentally [4].

A shear distortion of the Si crystal lattice inherent to [110] uni-
axial stress induces, apart from the nonlinear valley shift [5-7], a
more pronounced modification in the conduction band. Shear
strain changes substantially both the longitudinal [6,7] and trans-
versal [4,6-8] effective masses in the out-of-plane valley minima.
The decrease of the mass in the transport direction along tensile
[110] stress and the valley repopulation due to the valley shifts
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lead to the mobility enhancement [4,6,7]. The mobility increase is
slightly hampered by an increase of the non-parabolicity parame-
ter with shear strain [7].

Double-gate silicon-on-insulator (SOI) transistors with ultra-
thin Si body (UTB) are good candidates for the far-end ITRS
roadmap scaling [9]. Superior electrostatic channel control helps
reducing the leakage current and allows scaling the channel length
down to 2.5 nm [10], while maintaining reasonable subthreshold
slope, satisfactory DIBL, and acceptable gain. Due to size quantiza-
tion in thin Si films the energy spectrum of each valley is split into
a set of two-dimensional subbands. In [001] Si films two sets of
subband ladders are formed. The unprimed ladder originates from
the two out-of-plane valleys and is therefore two-fold degenerate.
The primed ladder is obtained from the four in-plane valleys and is
four-times degenerate. Due to the large quantization mass m, the
subband energies in the unprimed ladder are lower than that in
the primed ladder, where the quantization mass is smaller, m; < m;.
Because of the large separation between primed and unprimed
subbands only the unprimed ladder is occupied in UTB FETs. The
smaller transversal mass m; is the conductivity mass of unprimed
subbands, which favors their superior mobility over the primed
ones. If we now apply tensile uniaxial stress in the [110] transport
direction, the electron mobility enhancement is due to the shear
strain induced decrease of the conductivity mass [4,6,7]. The role
of shear strain in determining the subband energies has not yet
been analyzed.

We demonstrate that the two-band k-p model [7,8,11] not
only describes accurately the dependences of the valley shifts
and the effective masses on the shear strain component. By com-
paring the model to results from the empirical pseudopotential
method (EPM) we show that the two-band k- p model predicts
the correct energy dispersion in a wider range of momenta in the
Brillouin zone capturing non-parabolicity effects due to the inter-
action between the two lowest conduction bands. Because the
model provides an analytical expression for the energy dispersion
also in the presence of shear strain, it allows to explore analytically
the quantized subband dispersion in UTB FETs. An example of the
dependence of subband energy on shear strain is presented. The
model also predicts the dependence of the subband non-parabolic-
ity parameter on UTB film thickness t. This dependence leads to a
pronounced suppression of the low field mobility in UTB FETs,
which helps to bring the simulated UTB FET mobility, with scatter-
ing parameters calibrated to reproduce the inversion layer mobil-
ity, closer to the measured quantities and, therefore, must be
taken into account.

In the next section, we briefly outline the analytical two-band
k - p model and verify it against the EPM numerical calculations.
Then we discuss the influence of shear strain on subband structure.
Finally, we investigate the dependence of the non-parabolicity
parameter on film thickness and how it may affect the low-field
mobility.

2. Comparison of the two-band k - p model with EPM results

The dispersion relations of the first two conduction bands in the
vicinity of the [001] X-point can be obtained for arbitrary stress
within the two-band k - p model [7,8,11]:
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The minus sign denotes the lowest (4;) and plus the second (45)
conduction band. In this expression the values of energy E(Kk) and
k, are measured from the X-point, m; stands for the transversal
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and m, for the longitudinal effective masses, ko = 0.15 x 27/a, where
a is the Si lattice constant, is the position of the energy minimum of
(1) relative the X-point in unstrained Si, 4 = 2h*k%/m, = 0.53 eV is
the energy gap between the conduction bands 4; and 4, at ko,
and the parameter M is determined by the interband matrix
elements:
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The value of M is computed using the pseudopotential method at
the valley minimum k, = ko. Obtained value M =0.235m, is close
(but not equal) to M = m,/(1 — m¢/mg) reported in [8].

The dispersion relation (1) describes the dependence of E(k) on
the strain tensor &g, where o, § =X, y, z. The shift 6Ec of the [001]
valley depends linearly on diagonal strain components:

O0Ec = Eq(exx + &yy + 822) + Bty

where &4 is the dilation and =, the uniaxial deformation potential
for the conduction band minimum.

The shear strain component &, which is created by [110] uni-
axial stress, lifts the degeneracy of the conduction bands 4; and 4
at the X-point (k, = 0). The gap
|E2(0) — E1(0)] = 2D|ey|
opens, where the shear deformation potential D =14 eV is intro-
duced. From (1) it follows that the minimum ki, along the k, axis

of the [001] valley depends on shear strain. First, it moves closer to
the X point:

kmin = kov/1—102%, |yl <1, (2)
where a dimensionless shear strain # is introduced as

_ 2Dey
n=—

For |n| > 1 the valley minimum rests at the X-point: Kk, = 0. The
minimum of the [001] valley also moves down in energy with re-
spect to the remaining four fold degenerate valleys. For |n| < 1 the
n dependence of the valley shift is quadratic [7,6,5], while it be-
comes linear for |y| > 1:
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The analytical conduction band model (1) allows to obtain the
dependences of the effective masses on shear strain &, in the
[001] valleys [4,6-8,11]. The transversal mass develops strong
anisotropy for nonzero &,,. At the band minimum the mass mgy
across and my, along the [110] stress direction are:

I <1
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Here, sgn is the sign function. The dependence of the longitudinal
mass on shear strain can also be obtained:

mi() _ U—W{; Il <1, .
m, (1—‘#) .1

The analytical expression (1) predicts dispersions not only close to
the band minimum. Comparison of the analytical k, dispersion (1)
to the results of the numerical empirical pseudopotential calcula-
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Fig. 1. Comparison of the k, dispersions obtained from the analytical model (1)
(lines) and the EPM calculations (symbols), for several values of shear strain. In the
analytical dispersion (1) k, is counted from the X-point (k,=27/a — K;), D= 14 eV
and m; = 0.9my.

tions for the [001] valley are displayed in Fig. 1 for several values of
shear strain. For EPM calculations the pseudopotential parameters
from [12] are used. In order to fit the analytical dispersion to the
EPM data, the value m; =0.9my, where mg is the electron mass,
was chosen for all strain values. It is seen that the analytical disper-
sion (1) (lines) reproduces the EPM data (symbols) excellently in a
large interval |k, — ko| < 0.25(27/a) around the minimum value ko
even at large strain &, = 2%, when the valley minimum is at the
X-point. Therefore, we conclude that (1) describes the k, dispersion
up to the energy of approximately 0.5 eV from the valley minimum.
We also notice that the dispersion relation (1) describes accurately
the band degeneracy lifting at the X-point, where the form (1) is dic-
tated by symmetry [11] and is therefore exact.

In order to validate the use of (1) in a larger portion of the Brill-
ouin zone, we now compare the dispersions in xy plane. Results of
(1) and numerical EPM calculations are shown in Fig. 2. Panel (a)
displays a good agreement between the analytical and numerical
dispersions up to 0.5 eV from the valley minimum in unstressed
Si. Panel (b) demonstrates a good agreement of analytical band
structure to the numerical one in the case when the tensile stress
of 150 MPa in [110] is combined with compressive stress in [110]
direction. The chosen strain configuration allows to generate only
the shear strain component. Comparison with the analytical band
structure within the parabolic effective mass approximation with
strain-dependent masses (4) and (5) is added to panel (c). Agree-
ment between all the three methods is good for energies close to
the valley minimum. At energies larger than 40 meV the parabolic
approximation becomes less accurate, while the analytical two-
band k - p model (1) closely follows the numerical dispersion. Be-
cause the k- p model is valid in a larger portion of the Brillouin
zone, we use the model to investigate the dispersion of the quan-
tized subbands in UTB FETs in the next section.

3. Subband structure in strained UTB FETs

Shear strain may affect the subband energies in UTB Si films. In
order to estimate this effect, we assume that the potential inside
the Si film of thickness t can be approximated by the square well
potential with infinite walls at the Si/SiO, interfaces. The wave
function in the conduction band is taken of the form:
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Fig. 2. Comparison between the analytical model (1) (dashed lines) and the EPM
calculations (solid lines). The contour lines are spaced at 50 meV for panels (a) and
(b) and 20 meV for panel (c). No stress is applied at panel (a) tensile stress in [110]
and compressive stress in [110] direction of 150 MPa in each direction is applied at
the panels (b) and (c), respectively. The parabolic approximation with strain
dependent effective masses is also shown in panel (c) (dotted lines).

Y(x,y,2) =AD" (1) exp(ikiz) exp(ikex + ikyy). (7)

j=12

It has the usual plane wave structure in the x, y plane with fixed k,,
ky. The values k; of the wave function in the quantization direction
must be determined from the conditions that the wave function
must vanish at the interfaces:
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Y(x.y,£t/2) =0
and that the corresponding energies are equal:
E(ky, ky, k1) = E(ky, ky, ko) = E.

The values of k; are found from (1), when it is resolved for k.. The
corresponding equation is

hkd — 4(mE + WK + 4m? (E* — 6%) = 0, (8)
where § is defined as:
5 = h*kyk, /M — Deyy. 9)

The solution for k, is easily found when 6 = 0:

2
I = (koﬂ: 2;"2'E+k§> : (10)

By choosing the values ki, = ko & \/Zm]E/I’l2 + k2, the wave func-
tion (7) becomes zero at the interfaces if

2mE, 5, Tn
VT =T

from which the standard subband dispersions are
(ki + K2)
2m1

n=1,2,3,...

E2 (ky, ky) = EO + , (11)

where
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are the subband energies relative to the X-point.
By analogy, for 5 # 0 one looks for a solution of (8) in the form:

., Tn
kio=¢xr. (12)
The subband energies are
? 1

En(ky, ky) = Eg(kmky) T4 (13)

2.2
kgt

while ¢ depends on 6:

45> 1
TR
0

The obtained expressions (13) and (14) are valid when (8) has got
four real roots, which results in the conditions

2n? 2|9
< T

ket 4

i N (15)
2n? - 1+2\b\

T

We note that the dispersion relation (13) may become less accurate
close to its validity region defined in (15) due to the used ansatz (7)
for the wave function. In this approximation the two valleys with
the dispersion (1) are considered to be independent. Coupling be-
tween the valleys introduces the valley splitting in a confined sys-
tem and prevents from finding simple analytical expressions for
subband dispersions. At the same time the valley splitting does
not significantly affect the subband effective masses, at least for
small and moderate strain values. In order to obtain the analytical
expression for the subband effective masses and the non-parabolic-
ity parameter we neglect the valley splitting in this study.
Examples of quantization for 6 =0 and 6 = 53 m eV for a film of
the thickness t = 4.9 nm are shown in Fig. 3. By means of Fig. 3 the

solution of (8) in the form (12)-(14) allows a simple graphic inter-
pretation: the energy E, and the position ¢ are determined from the
condition:

e+ ) =5(e- ) - 5.

Depending on the parameters, Eq. (8) may have either four or two
real roots. In case of four roots, they are combined in pairs (12)
around the corresponding minimum (14) in such a way that within
the pair each member has the group velocity of opposite sign. In
case of only two real roots, the minimum ¢ = 0, and the subband en-
ergy is determined by (1) with k, = w n/t. These solutions may exist
only for finite § when the gap at the X-point is opened.

Eq. (13) provides the non-parabolic dispersion relation of the
unprimed subbands. In particular, the subband energy in strained
Si film is shifted with respect to E2:

1
2n2 °
1 — zn
k3t

4
En() =By — 37

(16)

Taking the bulk band shift (3) into account (16) can be rewritten for
(mnfkot)? < 1 as

T2n?

:77AE5 ear 17
2my(n)t? " {17

En(1)
where my(#n) is defined by (6). Shear strain also modifies the in-
plane effective mass m,, making it anisotropic. Interestingly, the
modification of the effective mass also depends on UTB thickness
t. As in the bulk case, the principal axis of anisotropy are [110]
and [110]. The mass across m,; and along m,, the [110] stress
direction now are

-1
mnl(”ht) my 1
= ey | (18)
-1
M (1,t) me 1
T (l—s—nM]_Tl?:22 . (19)
0

Expressions (13), (18) and (19) are subject to the conditions || < 1
and (15).

4. Dependence of the subband non-parabolicity parameter on
UTB FET thickness

For vanishing shear strain (&, =0) expression (13) provides a
non-parabolic dispersion relation for unprimed subbands as

Rwren? Wk +k) h'kky 1 4

ame | 2m, MA 1-72 4
K3t

En(ke ky) =

(20)

Besides the usual parabolic dependence on ki, ky, the dispersion (20)
contains a fourth order term, which modifies the energy depen-
dence of the density of states. Such deviation is usually accounted
for by the non-parabolicity parameter «,. An isotropic non-para-
bolic dispersion including the non-parabolicity parameter is usually
taken in the form:

(ks +k2)

s = Enlke k) (14 oaEa(l, b)) (1)

Assuming the non-parabolic term in (20) to be small, we average it,
as in [13], over the equienergy surface E0(ky, k,) = E. The obtained
isotropic dependence on ki +k§ is re-expressed via E = Eg(kx,ky).
using again the smallness of the non-parabolic term. As a result
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Fig. 3. Quantization energies of the unprimed ladder fora (001) Si film of t = 4.9 nm.
No strain is applied at panel (a), while a shear strain De,, = 53 meV is set at the
panels (b).

one obtains the following expression for the non-parabolicity
parameter:

(22)

where

1 /mp2
% =57 (31) -
The estimated value of oo = 0.63 eV~ is close to the phenomenolog-
ical value oy = 0.5 eV~" [13] obtained experimentally. It is interest-
ing to note that the non-parabolicity is determined by the strength
of interaction of the lowest conduction band to the closest band,
which is inversely proportional to the gap 4. The dependence of

t [nm]

Fig. 4. Dependence of the non-parabolicity parameter on the film thickness for the
three lowest unprimed subbands.

the non-parabolicity parameter on the film thickness t is shown
in Fig. 4.

5. Low-field mobility in UTB Si films

Through the modification of the density-of states, the non-
parabolicity parameter affects the scattering rates, and therefore
the mobility of the system. As example we consider the mobility
in a double-gate FET with a thin Si body. The subband energies
and the corresponding wave functions are calculated from the
Schrodinger equation using the parabolic approximation also for
the [001] valleys with the effective mass m, defined by (6) and
m; by (18) and (19), respectively. The Schrédinger equation is
solved self-consistently with the Poisson equation for each value
of the effective field [14]. The wave functions obtained are used
to evaluate the scattering rates. Our transport calculations account
for electron-phonon [13,15] and surface roughness scattering. For
the surface roughness scattering matrix elements we use the origi-
nal formulation by Prange and Nee [16-19]. A Gaussian correlation
function [20] for the surface roughness is assumed. The zero-field
Monte Carlo algorithm [21,22] which accounts for the Pauli block-
ing factor in the scattering rates was used to evaluate the low-field
mobility.

Results of the mobility simulations in an UTB FET, with and
without the dependence of the non-parabolicity parameter on
the Si film thickness taken into account, are shown in Fig. 5. For

0 T
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s Te
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3
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Fig. 5. Relative mobility correction due to film thickness dependence of the non-
parabolicity parameter.
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t=2.5nm and t = 3 nm the population of the primed ladder is neg-
ligible if the carrier concentration is not too large. An increase of
the non-parabolicity parameter for the unprimed subbands with
decreased film thickness slightly increases the scattering rates,
resulting in a mobility suppression as compared to the situation
with the constant bulk value o« The mobility correction is about
7% for t =3 nm and it reaches up to 20% at high carrier concentra-
tion for t=2.5 nm. The mobility decrease due to the thickness
dependent non-parabolicity parameter helps to bring the simu-
lated low field mobility in UTB FETs closer to its experimental va-
lue. Otherwise the mobility simulated with the surface roughness
parameters calibrated to reproduce the universal mobility curve
in inversion layers [23] is too high [24] compared to the measure-
ment [25].

6. Conclusion

By comparing with numerical pseudopotential calculations, we
demonstrated that the two-band model is valid in a larger portion
of the Brillouin zone as compared to the parabolic approximation.
The two-band k - p model is then used to analytically describe the
subband dispersion in ultra-thin Si films, including strain. The
model provides an analytical expression for the thickness-depen-
dent non-parabolicity parameter in the unprimed subbands. Final-
ly, the low-field mobility with the dependence of the non-
parabolicity parameter on the film thickness taken into account
is compared with the mobility computed with the bulk value of
the non-parabolicity parameter, and relative corrections are about
7% for t=3 nm and 15% for t= 2.5 nm.
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