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A deeper understanding of quantum effects in nano-electronic devices helps to improve the per-
formance and to develop new device types. Carbon nanotube-based transistors have been studied
in recent years as potential alternatives to CMOS devices. The performance of carbon nanotube
field-effect transistors is studied using the non-equilibrium Green’s function formalism. Electron—
phonon interaction parameters, such as electron-phonon coupling strength and phonon energy,
strongly depend on the chirality and the diameter of the carbon nanotube. Therefore, the steady-
state and dynamic response of carbon nanotube based transistors are studied for a wide range of

electron—phonon interaction parameters.
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Device Simulation.

1. INTRODUCTION

Tremendous advances have been achieved in semiconduc-
tor technology during the past decades. With continuing
efforts to improve speed and functionality of integrated cir-
cuits, the requirement of higher integration densities forces
device dimensions to shrinks to the scale of the wave
length of electrons.

Exceptional electronic and mechanical properties
together with nano-scale diameter make carbon nanotubes
(CNTs) promising candidates for nano-scale transistors.
Ballistic transport in short CNT based transistors at room
temperature has been reported.! CNTs can be considered
as a graphene sheet which has been wrapped into a tube.
The way the sheet is wrapped is represented by a pair
of indices (n, m) called the chiral vector. The integers n
and m denote the number of basis vectors along two direc-
tions in the honeycomb crystal lattice of graphite. The
CNT is called zigzag, if m =0, armchair, if n = m, and
chiral otherwise. CNTs with n —m = 3 are metals, oth-
erwise they are semiconductors.” Semiconducting CNTs
can be used as a channel for transistors,” whereas metal-
lic CNTs can serve as interconnect wires.* In this work
we consider transistors based on semiconducting zigzag
CNTs. Depending on the work function difference between

“Author to whom correspondence should be addressed.
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the metal contact and the CNT, carriers at the metal-CNT
interface encounter different barrier heights (see Fig. 1).
Fabrication of devices with positive (Schottky type)® and
zero (Ohmic)® barrier heights for holes have been reported.

With the aid of numerical analysis one can get a deeper
insight into device operation and investigate methods to
improve the device performance. Calculations based on
the non-equilibrium Green’s function formalism (NEGF)
of current through electronic devices was first described
in a series of papers in the early 1970s.' The NEGF
technique has widely been used to study quantum trans-
port of electrons and holes in a variety of materials and
devices, such as I1I-V resonant tunneling diodes,''"? elec-
tron waveguides,” Si tunneling diodes?"?? ultra-scaled Si
MOSFETs,”** CNTs,*** metal wires,*** and organic
molecules.* " We employed the NEGF formalism to per-
form a comprehensive numerical study of CNT based
transistors.

The outline of the paper is as follows. In Section 2, the
NEGF formalism is briefly described. The implementation
of this method for CNT based transistors is presented in
Section 3. The electron—phonon interaction parameters of
a CNT depend on the chiral vector, which implies that
many different parameter values exist. In Section 4 the
device response is studied for a wide range of electron—
phonon interaction parameters. After a brief discussion in
Section 5, conclusions are drawn in Section 6.
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Fig. 1. Cross section of the investigated CNT based transistor and the
band-edge profile at the source sided metal-CNT interface. Depending on
the work function difference between metal and CNT, a positive, zero,
or negative barrier height for electrons or holes can be achieved. In this
work we assume electrons as majority carriers. Due to the symmetric
band structure, the conclusions also hold for holes.

2. GOVERNING EQUATIONS

The NEGF technique initiated by Schwinger’' and
Kadanoff and Baym®® allows one to study the time evo-
lution of a many-particle quantum system. Knowing the
single-particle Green’s functions of a given system, one
may evaluate single-particle quantities like carrier density
or current. The many-particle information about the system
is cast into self-energies, which are part of the equations
of motion for the Green’s functions. Perturbation expan-
sion of the Green's functions is the key to approximate the
self-energies. Green’s functions provide a powerful tech-
nique to evaluate the properties of a many-body system
both in thermodynamic equilibrium and non-equilibrium
situations. Non-equilibrium conditions can be due to, e.g.,
an applied electric field, a light excitation pulse. or cou-
pling to contacts at different electro chemical potentials.

2.1. I'he Mon-Equilibrium Green’s Function

The contour-ordered non-equilibrium Green’s function is
defined as

G(1,2) = —ih (Tl (D) (2)}) (1

where the abbreviation | = (r,.1,) is used, iy, and Uy,
are field operators in the Heisenberg picture, (...) is
the statistical average with respect to the density opera-
tor, and the contour ordering operator 7. orders the time
labels according to their order on the contour C. The so
defined Green’s function satisfies the following equations
of motion (Dyson equation)®*>

G(1,2) =G,(1,2) + [ d3 [ d4G,(1,3)2(3,4)G(4,2)
JC JC
)
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where G, is the single-particle (non-interacting) Green's
function. and the self-energy X describes the renormal-
ization of G, due to the interaction with the surrounding
many-particle system. The differential form of the Dyson
equation is achieved by multiplying both sides of (2) by

G,'(1,2) = [ihd, — Hy(1)]8(1 —2) (3)

where H, is the single-particle Hamiltonian. The general
form of the single-particle Hamiltonian is given by

h* .
Hy(r, 1) = ==V, + U(r.1) (4)

where the potential energy U includes the effects of the
Crystal potential and the Hartree potential which is in fact
the solution of the Poisson equation.

The contour representation is rather impractical for cal-
culations, and one prefers to work with real time integrals.
The different forms of non-equilibrium theory employ
different methods for converting the contour into usual
time integration. Neglecting initial correlations,” Keldysh
introduced the contour Cy which consists of two parts:*
C, extending from —oco to oo and C, extending from
oo 10 —oo. Each of the time arguments ¢, and 1, in (1) can
reside either on the first or the second part of the contour.
Therefore, the contour-ordered Green’s function contains
four functions G, (time-ordered), G; (anti time-ordered),
G~ (greater), and G= (lesser), which are defined as®

G(1,2) 1.1 €eC,
G;(1,2) 1.1, €C,
G(1,2)= (5)
G>(1,2) t€C1,€C
G=(1,2) 1 eC,.,eC,

Since G, + G; = G+ G~ there are only three linearly
independent functions, reflecting a freedom of choice. For
our purpose the most suitable Green’s functions are the
G=> and the G" (retarded) and G* (advanced), which are
defined as

G'(1,2) = 6(t, —1,)[G>(1,2) - G=(1,2)]  (6)
G*(1,2) =0(t,—1,)[G=(1,2) - G>(1,2)]  (7)

G™* deal with the dynamics of carriers and G> with
the statistics. The Dyson equations for G5 and G™* are
obtained from the Dyson equation for the contour ordered
Green's function (2) by applying the rules of Langreth.*

Under steady state condition the Green’s functions
depend only on time differences. One usually Fourier
transforms the time difference coordinate, 7 =1 — 1,
to energy. Any Green’s function G transformed as
G(ry,ry: E) = [dre™"G(r),ry; 7). Under steady-state
condition the Dyson equation for the Green’s functions can
be written as:’

(E — Hy(r;))G"*(r,,13; E)

— [f:‘r_;);r"‘{r].r3: E)G"*(ry.1y: E)=06(r, —r,) (8)
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G>(r,.r,: E) =fdr_;fdr4G’(r;,r3: E}ZA(0, 1. E)
2 G, b E) (9)

where H, is the single-particle Hamiltonian operator
defined in (4).

2.2. Boundary Conditions and Contact
Self-Energies

In order to solve the system of equations discussed above
in a finite system, boundary conditions have to be speci-
fied. The boundary conditions of (8) and (9) have to model
the contacts, which act as a source or drain for elec-
trons. Due to the transitions between the device and the
lead, this type of boundary condition can be imposed by
adding contact self-energies to the total self-energy.'* 257
The self-energies due to contacts are only non-zero at the

boundaries®’
E:,d(E) = 'T:gs.d (10)
qu(ﬁ) = _25\“-’”[21,d1.ﬁ,d(E) (L)
%0 a(E) = +2i3m[ 2 4](1 = f, «(E)) (12)

where 7 is the coupling matrix between the device and the
contact, f.(FE) is the Fermi-Dirac distribution function at
the contact ¢, and g, is the surface Green’s function. The
calculation of the surface Green’s function is described in
Refs. [37,41,45,57].

2.3. Scattering Self-Energies

Using a perturbation expansion one can define the self-
energy X as an irreducible part of the Green’s function.
An exact evaluation of the self-energy is possible only
for some rather pathological models. For real systems one
has to rely on approximation schemes. In this work, the
lowest-order self-energy for electron—phonon interaction
within the self-consistent Born approximation has been
applied.”’

ig-(r—r")

< ! {iq - lr—r'
2opn(r, I E) = Z[Wf' D,
i

x (n(ﬁwq‘j) - % + %)

x G*(r,1'; EX hay ;) (13)

dq it
ol ph(l' I" E) Zf (2 }% ql }Dq.j

1 1
X (n(ﬁ.wq'}-) + 5 + E)

x G7(r,r'; EF hag ;) (14)
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|.I ph(r I‘ E) L| pll(r l' E)
IE' Ty pn(r, 1’5 E')
4P f dE Lup(r. I E) (15)
E—FE'
Here, hw, ; denotes the phonon energy of branch ;j at the

wave-vector (. n(hw, ;) is the average phonon occups
tion number, D ; is the the electron—phonon interaction
strength, Iy, = i(25 , — =g ,,) defines the broadening,

and P [ represents the principal part of the integration. The
imaginary part of the retarded self-energy broadens the
density of states, whereas the real part shifts it in energy.
The plus and minus signs in (13) and (14) denote the
phonon emission and absorption processes, respectively.
Assuming that the bath of phonons is maintained in ther-
mal equilibrium, n(hw, ;) is given by the Bose-Einstein
statistics

|

n(haoy, ;) = exp(hiy JkgT) = 1 (16)

3. IMPLEMENTATION

In Graph three o bonds hybridize in an sp® configuration,
whereas the other 2p. orbital, which is perpendicular to
the graphite layer. forms 7 covalent bonds. The 7 energy
bands are predominantly determining the solid state prop-
erties of graphite. Similar considerations hold for CNTs.
We use a nearest-neighbor tight-binding 7-bond model.”
Each atom of an sp?-coordinated CNT has three nearest
neighbors, located a,, = 1.42 A away. The band-structure
consists of mr-orbitals only, with the hopping parameter
t=V,,~—=2.71eV and the on-site potential €,, = 0. The
tight-binding Hamiltonian matrix for a (n, 0) zigzag CNT,
shown in Figure 2. can be written as

(UI t1 \

t,T U, t
H— 2 3 1 (17)
t; Uy 1,

\ )

where the entries U; and t; denote matrices. Equal elec-
trostatic potential for all carbon atoms within a ring is
assumed, therefore U; = U,I. The first and second kind
of interaction matrices between the neighboring rings are
denoted by t; and t,. Only the nearest neighbor interaction
between carbon atoms is considered. The coupling matrix
between layers 1 and 2 (see Fig. 2) is diagonal, t; = 11,
where 7 is the hopping parameter. However, the coupling
matrix between layers 2 and 3 is non-diagonal

J. Comput. Theor. Nanosci. 5, 1128-1137, 2008
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Fig. 2. Layer layout of a (n,0) zigzag CNT. The coupling matrices
between layers are denoted by t, and t,, where t, is a diagonal matrix
and t, includes off-diagonal elements.

t, = (18)

The eigen-vectors of the matrix t, represent plane waves
around the circumference of the CNT with the quantized
wave-vectors k, = 2mv/+/3a..n, where v =1,2,...n%
and the eigen-values 2t cos (v /n). By transforming from
real space into eigen-mode space,” the subbands become
decoupled and the Hamiltonian can be written as H =
> ,H". The Hamiltonian of the subband », H", is
given by

2w P
g U
H' = (19)
P U g

Ul
\ Sy

where U’ = U, t{ =t, and t§ = 2tcos(mwv/n).>"* The
one-dimensional tight-binding Hamiltonian H” describes a

chain with two sites per unit cell with on-site potential

J. Comput. Theor. Nanosci. 5, 1128—-1137, 2008
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U/ and hopping parameters 7; and 13, see Figure 2. The

t

dispersion relation for each subband v is given by

E”(k,}:i.ft,\/l+2cos{3auck,./2)(:05(7?!)/::)+4cos3(7ru,m)

(20)
where £, is the wave-vector along the CNT axis (transport
direction). The plus and minus signs in (20) represent the
valence and conduction bands, respectively. We consider
a (19, 0) zigzag CNT with a band-gap of E; = 0.6 eV.
Here devices with zero barrier height for electrons are con-
sidered. The one-dimensional equation of motion for the
Green'’s functions have to be solved for G** and G=" for
each subband ». We assume bias conditions for which the
first subband contribution need to be considered, therefore
the index v is dropped. To solve (8) and (9) a recursive
Green’s function algorithm has been used.

Because in CNTs two degrees of freedom are confined,
an electron can only be scattered forward or backward
in the axial direction, preserving or changing the sign of
the band-velocity, respectively. The scattering processes
invoke either intra-subband or inter-subband transitions.
The intra-subband processes are important for the elec-
trical and the heat transport in CNTs and for the relax-
ation of an excited electron or hole in the same subband.
The inter-subband processes contribute to the radiation-
less relaxation of electrons (holes) from a given subband
to a subband with a lower (higher) energy.’”

For intra-valley processes, most of the phonons have
q ~ 0 and are referred to as I'-point phonons. Near the
I" point a linear dispersion relation for acoustic phonons
is assumed, @, ; ~ v;|q|, where v; is the acoustic phonon
velocity. For optical phonons the energy is assumed to be
independent of the phonon wave-vector g
const. Similarly, near the I'-point the matrix elements
of electron—phonon interaction® can be approximated as
M, ; ~ M}"|q| for acoustic phonons and M, ; ~ MPF =
const for optical phonons. I'-point phonons belong to
the twisting acoustic (TW), the longitudinal the acoustic
(LA), the radial breathing mode (RBM), the out-of-phase
out-of-plane optical branch (ZO), the transverse optical
(TO). or the longitudinal optical (LO) phonon branch.
Phonons inducing inter-valley processes have a wave-
vector of |q| = ¢, where ¢y corresponds to the wave-
vector of the K-point of the Brillouin zone of graphite.
These K-point phonons belong to the Ej}, A5, E|, or the
A’ phonon branch.” K-point phonons, also referred to as
zone boundary phonons, are a mixture of fundamental
polarizations.

The interaction of electrons with optical phonons is
inelastic inelastic. Assuming that the electron—phonon
interaction occurs Iocally.“" S(r,r'; E)=0 for r £, the
self-energies can be written as

~ wop j =

L B
5"iru.'l(E) = Z‘;:Dinc],j(”B(hwj) = E E = 5)0 (E:i:ﬁwr,)
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. o1\
2a(E)= ZDmcl,j(”B(hw_;')+ 3 == E)G (EFhw))
i

(22)
The electron—phonon interaction strength is given by
op|?
h|MP"| "
inel, j = _7nm' @ (23)

where m_ is the mass of a carbon atom. Interaction with
acoustic phonons can be approximated as elastic scat-
tering, E+ hw; = E, and the ny(hw;) = ny(hw;) +1=
kyT/hv;q can he used. Based on this approximation, the
self-energies for acoustic phonon interaction simplify to

33 (E) = D,G*(E) (24)
ky T|M2®)
Byg= 2L (25)
nm.uv;

The self-energy due to electron—phonon interaction com-
prises the contributions of elastic and inelastic scattering
mechanisms, X, , = X, + ;. The transport equations
are iterated to achieve convergence of the electron—
phonon self-energies, resulting in a self-consistent Born
approximation.

To solve the transport equations numerically they need
to be discretized in both the spatial and the energy domain.
The spatial grid corresponds to the circumferential rings
of carbon atoms and is assumed to be uniform. The carrier
concentration at some node / of the spatial grid and the
current density at the edge between the nodes / and /+ 1
are given by

IE
n = —4fff—c,1(5) (26)

4 dE
Jie1 = = f_zq‘ et (E)t 1} (27)

where the factor 4 is due to the spin and band degen-
eracy. In the Poisson equation, carriers are treated as a
sheet charge distributed uniformly over the surface of the
CNT.®" The coupled system of the transport and Poisson
equations has to be solved self-consistently.® The conver-
gence of the self-consistent iteration is a critical issue. To
achieve convergence, fine resonances in G~(E) at some
energies have to be resolved accurately.®>®' For that pur-
pose an adaptive method for selecting the energy grid is
essential !

4. THE EFFECT OF
SCATTERING PARAMETERS

The electron—phonon coupling strength and the phonon
energy depend on the chirality and the diameter of the
CNT. The calculation of these parameters is presented
in Refs. [59,62]. In this section the device response is
studied for a wide range of electron—phonon interaction
parameters.
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Fig. 3. Ballisticity versus electron—phonon coupling strength for a CNT
of 50 nm length. Results for both elastic and inelastic scattering with
different phonon energies are shown. V; =V, =1 V.

Figure 3 shows the ballisticity as a function of the
electron—phonon coupling strength. The ballisticity is
defined as Ig /Iy, the ratio of the on-current in the pres-
ence of electron—phonon interaction to the current in the
ballistic case.” Elastic scattering conserves the energy of
carriers, but the current decreases due to elastic back-
scattering. Figure 4 shows that for elastic scattering the
source and drain current spectra are symmetric. As the
electron—-phonon coupling strength increases, resonances

= -0.5 0 0.5 1
0.2 T T T T T T T T
- Source current Drain current -
Er‘«
0 -
-0.2 B
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2 04 -
-
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Fig. 4. The spectra of the source and drain currents. The effect of elas-
tic phonon scaitering with different coupling strengths is shown. As the
coupling strength increases resonances in the current spectrum wash out
and the total current reduces due to elastic back-scattering.
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Fig. 5. The spectra of the source and drain currents. The effect of
inelastic phonon scattering with different coupling strengths is shown.
The phonon energy is fiw = 100 meV. Carriers acquiring enough Kinetic
energy can emit phonons and scatter into lower energy states. Since the
energy of electrons is not conserved in this process, the source and drain
current spectrum are not symmetric. As the coupling strength increases
more electrons are scattered into lower energy states.

in the current spectrum are washed out and the total current
reduces due to elastic back-scattering. In the case of inelas-
tic scattering, carriers acquiring enough kinetic energy can
emit a phonon and scatter into lower energy states. There-
fore, as shown in Figure 5, the source and drain current
spectra are not symmetric.
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F —= @ = @ ——=
E, bs fs N
ho ho
VAV AVAVA- 1
bs fs
- -~ 90— — @ q
g T —— _
E Reflection

Source
rain

Dra

Position

Fig. 6. Sketch of phonon emission and absorption processes in the
channel.
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Fig. 7. Ballisticity versus phonon energy for a CNT of 50 nm length.
Results for inelastic scattering with different electron—phonon couplings
are shown. Vo=V, =1 V.

The left part of Figure 6 illustrates an electron losing
its kinetic energy by emitting a phonon. The electron will
be scattered either forward or backward. In the case of
backward scattering the electron faces a thick barrier near
the source contact and will be reflected with high probabil-
ity, such that its momentum will again be directed towards
the drain contact.

Figure 7 shows the dependence of the ballisticity with
respect to the phonon energy. With increasing phonon
energy the effect of phonon scattering on the current
is reduced, because scattered electrons lose more kinetic
energy and the probability for traveling back to the source

] T T T T T LI T T T T T T T
|« Phonon emi.
0.8 I ==
fgur? R ,
b Phonon emi.
=
“-_5# 0.6
t  |*=— Phonon abs.
0.4 —
Phonon emi. and abs.
02 i { R PO Y UL O (e M | L PP T T Tk 0 i
107 107 10"
ho [eV]

Fig. 8. Ballisticity versus phonon energy with D, = 10~ eV? at the
bias point V;; = V;, = 1 V. The contributions due to phonon absorption
and emission are shown.

1133

)
m
7]
m
>
)
0
- 5
>
)
=|
)
I
m




m
=1
o
l—
c
<
I
&)
o
<
wi
(70)
w
o

Formalism Application of the Non-Equilibrium Green’s Function for the Numerical Analysis

— T =200 meV
=== hiw= 100 meV

0.7 ©im=50 meV Y
(1.6 1 1 1 L 1 i L 1
10 107!

D [eV?]

Fig. 9. The ratio of the device delay time in the presence of electron—
phonon interaction to the device delay time in the ballistic case, 7 /7y,
as a function of the electron-phonon coupling strength. For comparison,
the I /1y is also shown. As the phonon energy increases the device
delay time increases. This behavior is due to the reduction of the electron
velocity in the channel and the resulting charge pile up.

contact decreases. The considerable decrease of ballisticity
for low energy phonons is due to the phonon absorption
process. The right part of Figure 6 shows an electron
absorbing energy from a phonon and scattering into a
higher energy state. In this case, the probability for arriving
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5
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\
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Fig. 10. The spectra of the source and drain currents. The effect
of inelastic scattering with different phonon energies is shown. The
electron—phonon coupling strength is D=2 x 10" eV?, The figure shows
a considerable increase of the electron population close to the conduction
band-edge as the phonon energy increases.
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at the source contact increases. This process can severely
reduce the total current. Figure 8 separately shows the
effects of the phonon emission and absorption processes
on the ballisticity. As the phonon energy reduces, the
phonon occupation number (16) increases exponentially,
and the self-energy contributions of these two components
increase. However, due to the higher probability for back-
scattering of electrons in the case of phonon absorption,
this component reduces the total current more effectively
than the phonon emission process does.

To illustrate the effect of electron—phonon interaction on
the dynamic response of the device, the delay time defined
as 7= (Q,, — Ou)/1,, (Ref. [64]) is considered, where the
quasi-static approximation is assumed. It has been shown

(@) 2.0x10° Y T v T T T T

- Ballistic 1
. I'd
1.5x10° |

hw =50 meV

Electron velocity [m/S]

1.0x10" [~ TR s
Tim = 100 meV i
§ .
so<10F 00 TN e e m
I hw = 200 meV 1

L 1 i 1 M 1 n 1 5
] 5 10 15 20 25

Position [nm]
(b) 10" T T T : . : ;
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P e, A,

J{/' ‘,“'Il'!_{]_)__;__l_f_)?.:tiu\’ %

Electron concentration [m™']

0 10 20 30 40 50
Position [nm]

Fig. 11. (a) The profile of the electron velocity near the source contact.
(b) The profile of the electron concentration along the device. The results
for the ballistic case and for electron-phonon interaction are shown.
As the phonon energy increases the electrons scatter to lower energy
states, electron decreases more. Therefore, the electron velocity decreases
and the carrier concentration increases. The electron—phonon coupling
strength is D = 10" eV? and the bias point is V; =V, = | V.
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that quasi static approximation for CNT based transistors
is justified for frequencies below THz.% Figure 9 shows
the ratio of the device delay time in the presence of
electron—phonon interaction to that in the ballistic case,
Ts./Tm» as a function of the electron—phonon coupling
strength. As the phonon energy increases the device delay
time increases. This behavior can be attributed to the
electron group velocity in the channel, which is high for
ballistic electrons and low for electrons scattered to lower
energy states. Figure 10 shows the spectra of the source
and drain currents for different inelastic phonon energies.
Electrons can emit a single phonon or a couple of phonons
to reach lower energy states. The probability of n sequen-
tial electron—phonon interaction decreases as n increases.
Therefore, as the phonon energy increases, the occupation
of electrons at lower energy states increases. Figure 10
shows a considerable increase of the electron population
close to the conduction band-edge as the phonon energy
increases. Therefore, as the phonon energy increases the
mean velocity of electrons decreases and the carrier con-
centration in the channel increases (Fig. 11). The increased
charge in the channel results in an increased device delay
time.

All the above discussed results were calculated for a
device with a CNT length of 50 nm. In case of bal-
listic transport the current is independent of the device
length, but in the presence of scattering it reduces as the
device length increases. Figure 12 shows the ballisticity as
a function of the CNT length in the presence of elastic
and inelastic electron—phonon interaction. An artificially
large value for the electron—phonon coupling strength and
a small value for the phonon energy is chosen to simulate

| T

0,9 -
el.

= = = jnel.

lSu"IIIHI

041 T NN VO N YU SO [N SN VO AT TN S NN SN SN S T N T N Y
50 100 150 200 250 300
Lenr [nm]

Fig. 12. Ballisticity versus CNT length. The electron—phonon coupling
strength for both elastic and inelastic scattering is D = 10~" ¢V?, and
hew =25 meV for inelastic scattering. These scattering parameters sim-
ulated the diffusive regime. In this case the ballisticity is inversely pro-
portional to the device length.
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the diffusive limit. In this case, the current is expected to
be inversely proportional to the device length according to
Ohm’s law.

5. DISCUSSION

In general the electron—phonon interaction parameters
depend on the diameter and the chirality of the CNT.
The calculation of these parameters is presented in
Refs. [59,62]. The band gap of a semiconducting CNT is
inversely proportional to the diameter. A rough estimate
is E; = 0.8 eV/dgyr nm. CNTs with a diameter dpy; >
2 nm have a band gap E; < 0.4 ¢V, which render them
unsuitable as channel for transistors. Since the fabrication
of devices with a diameter doyp < | nm is very difficult,
we limit our study to zigzag CNTs with diameters in the
range deyy = 1-2 nm.

Acoustic phonons scattering is treated as an elastic
process. Inelastic scattering is induced by OP, RBM,
and K-point phonons. Considering the class of CNTs
discussed above. the energies of the these phonons are
hwgp 22 200 meV, hwggy = 30 meV, and hoyg =~ 160 and
180 meV.%*% The corresponding coupling coefficients are
DY ~40 x 1077 eV?, DREM ~ 1073 eV2 and DX, ~ 10~
and 50 x 1073 eV?.9263

As discussed in Section 4, high energy phonons, such
as OP and K-point phonons, reduce the on-current only
weakly, but the device delay time can increase consid-
erably due to charge pileup in the channel. Low energy
phonons, such as the RBM phonon, can reduce the
on-current more effectively, but have a weaker effect on
the device delay time. However, due to weak coupling,
the RBM mode has a negligible effect at room tempera-
ture. The electron—phonon coupling is also weak for acous-
tic phonon modes (DA < 107* eV?), which implies that
elastic back-scattering of carriers is weak. Therefore, the
on-current of short CNT based transistors can be close to
the ballistic limit,! whereas the switching response can be
significantly below that limit.** -

6. CONCLUSIONS

The effect of the electron—phonon interaction parameters
on the performance of CNT based transistors was studied
numerically, using the NEGF formalism. Elastic scattering
is characterized by the electron—phonon coupling strength.
For inelastic scattering not only the coupling strength,
but also the phonon energy is an important parameter.
We showed that elastic back-scattering can reduce the
on-current considerably, but the strength of this process
is weak in CNTs. Inelastic scattering with high energy
phonons reduces the on-current only weakly, whereas it
can increase the device delay time considerably. On the
other hand, inelastic scattering with low energy phonons
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reduces the on-current considerably, but the effect on the
device delay is weak.
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