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Discretization of Macroscopic Transport Equations
on Non-Cartesian Coordinate Systems
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Abstract—We discuss discretization schemes for the Poisson
equation, the isothermal drift-diffusion equations, and higher
order moment equations derived from the Boltzmann transport
equation for general coordinate systems. We briefly summarize the
method of dimension reduction when the problem does not depend
on one coordinate. Discretization schemes for dimension-reduced
coordinate systems are introduced, which provide curvilinear co-
ordinate systems. In addition to the reduction of the dimension-
ality, another benefit of these curved coordinate systems is that
the domain approximation is more accurate, and therefore, the
mesh point density can be kept smaller compared to the original
problem. We obtain a discretization scheme for the isothermal
drift-diffusion equation in closed from. For higher order transport
equations, we use the approximation method of optimum artificial
diffusivity and generalize it for non-Cartesian coordinate systems.
For the special case of cylindrical coordinates, we can show that it
is not necessary to introduce special discretization schemes apart
from the standard Scharfetter–Gummel scheme.

Index Terms—Coordinate systems, device simulation, dis-
cretization, higher order transport models, rotational symmetry,
TCAD, transport models.

I. INTRODUCTION

IN ORDER to solve the Poisson equation and the drift-
diffusion equations, finite differences or the method of

finite volumes [1] are commonly applied. Due to a particular
device design, for instance of short-channel large-width MOS
transistors, it is often justified to assume that the electrical
behavior is independent of the third coordinate. Thus, the
problem can be reduced to two dimensions in a straightforward
way. The same principle can be applied to other separable
orthogonal coordinate systems. However, to the best of our
knowledge, only rotationally symmetric cylindrical coordinate
systems have been used so far in the context of semiconductor-
device simulation. If the material parameters and boundary
conditions are independent from a coordinate, it is possible to
simplify the problem by elimination.

For the special case of cylindrical structures, rotational sym-
metry can be exploited (see Fig. 1). In this case, the problem
can easily be described in polar cylindrical coordinates, because
the geometry is completely independent of the azimuthal angle
ϕ. Several attempts have been made to reduce the calculation
effort of a 3-D problem to two dimensions by taking advan-
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Fig. 1. Rotational symmetry.

tage of this cylindrical symmetry. For instance, the simulator
BAMBI [2] approximates the Poisson equation as well as
the continuity equations for rotational symmetric structures
using standard finite boxes. This approach is based on using
discretized cylindrical differential operators in the equation sys-
tems but relies on orthogonal grids and is limited to Manhattan-
like geometries, and grid refinement inevitably leads to an
unnecessary large number of grid points.

The simulation tool TRINE [3] introduces geometry adap-
tation for the method of finite volumes. This approach is
limited to orthogonal grids and results in algebraically different
formulas than the Scharfetter–Gummel scheme. A different dis-
cretization scheme is obtained, because the drift-diffusion equa-
tion is solved assuming a linear potential distribution instead
of the consistent logarithmic distribution, which is obtained
from the Poisson equation. As a consequence, the discretization
scheme contains elliptic integrals.

Commercial simulators like Dessis [4] and Medici [5] offer
simulation in a cylindrical coordinate system, without going
into details on the implementation.

The various issues regarding discretization schemes for gen-
eral coordinate systems will be thoroughly investigated in the
following. In addition, the discretization of higher order mo-
ment equations [6], [7] is discussed.

II. EQUATION TYPES

In the following section, the mathematical problem is spec-
ified. The equations we have to solve are the Poisson equation
as well as the transport equations for electrons and holes, which
can be written in terms of general self-adjoint operators and,
therefore, can be transformed into integral form by applying
the Gauß integral theorem so as to discretize the equations by
finite volumes.

0278-0070/$25.00 © 2007 IEEE
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A. Problem Formulation

The Poisson equation describes the relation between the
charge and the electrostatic potential and reads for inhomoge-
neous and anisotropic media

D = ε
˜
gradψ (1)

div(D) = �. (2)

Here, ε
˜

is a material parameter, and � denotes the charge
density. The flux term of a fairly general drift (convection)-
diffusion equation can be written as [7]

J(k) = A(k)
(
grad

(
ξ(k)T (k)

)
− L(k)ξ(k)gradψ

)
(3)

while the associated stationary-balance equation reads [7]

divJ(k) = gradψ · J(k−1) + ξ
T (k) − T (k)

eq

τ (k)
. (4)

Equations (3) and (4) cover the drift-diffusion current relations
[1], energy-transport models [6], [8], [9], and higher order
moment models [7] as special cases. For the isothermal drift-
diffusion equations, ξ is the carrier concentration n, and the
temperature is assumed equal to the lattice temperature being
constant all over the simulation domain. For the electron current
and the energy-flux relation of the energy-transport model, one
obtains ξ(0) = n, T (0) = Tn, ξ(1) = nTn, and T (1) = Tn.

B. Metrics and Separation

In the following, it is clarified under which circumstances
an equation system is separable for a certain kind of equation.
This means that the equation can be solved with a separation
ansatz. We use a weaker formulation, because we only separate
one coordinate. Each coordinate system can be described by
a continuous transformation as well as a back transformation
to a reference system. In general, the new coordinates xi are
obtained from the Cartesian coordinates ci via the nonlinear
coordinate transformation

xi = Θi(c1, c2, c3). (5)

Each coordinate system can be represented locally by the
position vector r. The metric tensor g

˜
of the coordinate system

can be obtained from

g2ij = ∂xi
r · ∂xj

r. (6)

If only the diagonal elements gii are nonzero, g
˜

is a diag-
onal tensor and the coordinate system is locally orthogonal
or orthogonal. In the following, we will restrict our discus-
sion to orthogonal coordinate systems and denote the diagonal
elements of the metric tensor as gi = gii (see Table I for
some examples). For such a coordinate system, the divergence
operator is expressed as

div(F) =
1

g1g2g3

(
∂x1(g2g3F1)

+ ∂x2(g1g3F2) + ∂x3(g1g2F3)
)

(7)

TABLE I
TABLE OF THE METRIC COEFFICIENTS OF COMMON COORDINATE

SYSTEMS. NOTE THAT THE h PARAMETERS ARE INTRODUCED IN (21)

while the gradient operator reads

grad(f) =
d∑
i=1

1
gi
∂xi
fei. (8)

Physical and mathematical problems can be simplified using
separation methods, if all geometrical and physical quantities
are independent from the value of a coordinate. In general, the
separation ansatz implies that the solution is of the form

ξ(x1, x2, x3) = ξS(x1, x2)ζ(x3). (9)

A necessary criterion for the separability of a coordinate
is that the metric coefficients g1 and g2 do not depend on
x3. Otherwise, the self-adjoint equation would contain x3,
which is a contradiction to basic assumptions of separability.
One coordinate system, which fulfills this criterion, is the
cylindrical system.

III. DISCRETIZATION

In the following section, we present discretization schemes
for (2) and (4). As the main part of this paper, the discretiza-
tion of the flux relations (1) and (3) will be given in the
next section. The given simulation domain is separated into
a finite number of subdomains, so-called box volumes by the
Voronoi tessellation [10]. The differential equations are written
in integral form, and the Gauß integral theorem can be applied
to the divergence integrals. The volume integration can be
transformed into a boundary integration, which is approximated
by a piecewise multiplication of fluxes and boundary areas. The
discretization of the fluxes is treated in Section IV.

After the discretization, we obtain a set of coupled nonlinear
ordinary differential equations. Usually, they are solved with
the Newton method. We briefly outline the linearization proce-
dure, and as a final result, we obtain the Jacobian matrix of the
nonlinear problem.

A. Calculation of Surfaces and Volumes

First, the box volumes and surfaces are calculated in ar-
bitrary coordinates. Both can be derived by integration in a
straightforward manner. As mentioned, the separation ansatz
is only possible if the geometry of the simulation domain is
invariant with the coordinate x3. The geometric structure re-
maining after separation of the third coordinate is called Γ. The
partition of the simulation domain in box volumes is performed
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on Γ. The box volumes can be calculated by the following
integration:

V =
(
x+

3 − x−3
) ∫
A
g1g2g3dx1dx2 (10)

S =
(
x+

3 − x−3
) ∫
∂A
g1g2g3ds (11)

where A is the projection of the box volume to the cross section
Γ. The separated coordinate x3 is bounded by the interval
[x−3 , x

+
3 ]. For cylindrical coordinate systems with separated x3

component, (10) and (11) give the well-known Guldin rules

S = 2πrmSΓ and V = 2πrsVΓ (12)

where rm denotes the line baricenter and rs the volume baricen-
ter of the rotated volume. The volumes VΓ and SΓ denote the
volumes and surface elements, respectively, on the structure Γ
after dimension reduction.

B. Continuity Equations

For the discretization of the flux equation (3), we use a
generalized Scharfetter–Gummel discretization. The original
1-D solution procedure is adapted for 2-D meshes, and a new
discretization scheme is derived.

The general discretized flux-conservation equation for the ith
box volume is thus obtained as

Fψi
=

n∑
j=1

Dij
Aij
dij

− qVi(ni − pi +NAi
−NDi

) = 0. (13)

Analogously, the balance equations associated with the higher
order moment fluxes are treated in their integral forms. The flux
(3) is rewritten by the use of the Gauß integral theorem

∮
∂V

J(k)ds =
∫
V

gradψ · J(k−1)dV +
∫
V
ξ(k)

T (k) − T (k)
eq

τ (k)
dV.

(14)

The discretization of the integral of the force term (gradψ ·
J(k−1)) is discussed in [7]. Using (10) and (11), we calculate
the surfaces and box volumes, which are inserted into the
discretized balance equations. As a final discretization, we thus
obtain

F
(k)
ξi

= −
N∑
j=1

AijJ
(k)
ij +

N∑
j=1

(ψj − ψi)AijJ (k−1)
ij

− Viξ(k)i

T
(k)
i − T (k)

i,eq

τ
(k)
i

=0. (15)

IV. FLUX-DENSITY-INTERPOLATION SCHEMES

In the following section, the electrical displacement flux D
relation as well as the higher order flux relations are considered.

Fig. 2. Rotated coordinate system (w, u) with rotation angle α.

In order to keep the ansatz as consistent as possible, the solution
of the local Poisson equation is used to derive the electric
field in the macroscopic-transport equations. Consistent with
the standard Scharfetter–Gummel method, we assume the pro-
jected flux to be constant on an edge. For any flux-conservation
equation, the flux density F varies with the component of
the metric tensor of the separated variable. For instance, for
rotationally cylindrical coordinates, where gαα = r holds, we
obtain rF = const.

A. Flux Projection

After the separation of the invariant coordinate x3, we have
reduced the original 3-D problem to two dimensions. Now,
the edges, which connect two neighboring points, have to be
considered. Note that edges are affine under the back trans-
formation Θ, for instance an isocoordinate line for orthogonal
grids. In general, however, these edges are not isocoordinate
lines. To facilitate the solution of the differential equations on
these edges, a rotated coordinate system is introduced which
guarantees that each edge can be described by a longitudinal
and a normal component w and u (see Fig. 2)

x1 =w cos(α)− u sin(α) (16)

x2 =w sin(α) + u cos(α). (17)

The coordinate variable is normalized to length so as to obtain
dimensionless metric coefficients. An edge between the two
points then can always be described by a common u coordinate
and two boundary coordinates w1 and w2. As the flux vector is
projected on the edge, the derivative ∂u vanishes for isotropic
media. The gradient can be written in terms of the longitudinal
derivative as

∂xi
f = ∂wf∂xi

w. (18)

Together with the unity vector ew, we obtain [11]

gradf = ew∂fw

(
cos2(α)
g1

+
sin2(α)
g2

)
. (19)

The Laplace operator results in [11]

div(gradf) =
1

h1h2h3

(
cos2(α)∂w(h1∂wf)

+ sin2(α)∂w(h2∂wf)
)

(20)
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with the auxiliary quantities

hn =
Π3
j=1gj

g2n
. (21)

B. Poisson Equation

The local flux of the Poisson equation is the dielectric
displacement, which is proportional to the gradient of the
potential. It has to be derived from the center point values of
the electrostatic potential ψ. We interpolate the electrostatic
potential on a mesh edge, which allows us to calculate the
displacement.

In the finite-volume method, the source terms are moved
to the center points. Therefore, the interpolation scheme is
derived from the homogeneous equation div(ε

˜
· gradψ) = 0,

from which follows that charge is concentrated in the center
points. In the case of an isotropic medium ε

˜
= const, the equa-

tion simplifies to div(gradψ) = 0. The electric field, which
is calculated between the two neighboring volume centers, is
obtained from the projection of the field strength onto the
normalized edge-direction vector n. Thus, we obtain

1
h1h2h3

(∂x1(h1∂x1ψ) + ∂x2(h2∂x2ψ)) = 0. (22)

Even though the Poisson equation is assumed to be isotropic
in the following sections, the extension to anisotropic media is
straightforward. However, the solution of the total equation sys-
tem can only be rotationally symmetric if the material tensors
fulfill the following conditions: All tensor components with the
separated coordinate except the diagonal element g3 have to
vanish and, in addition, the tensor components must not depend
on the separated coordinate x3. The matrix representation of a
tensor meeting these requirements is

g
˜
=


 g1 g12 0
g12 g2 0
0 0 g3


 . (23)

Assuming a diagonal tensor in the coordinate directions, these
assumptions are met while the anisotropic behavior between
the coordinates x1 and x2 is neglected. Then, the material
parameters and the metric coefficients can be written as one
combined tensor. For the following considerations, however, we
continue with the isotropic case.

By inserting the rotated coordinate projection, the Poisson
equation simplifies to

∂wψ
∂wH

H
+ ∂wwψ = 0 (24)

with

H(w) =
(
cos2(α)h1 + sin2(α)h2

)−1
. (25)

By introducing the boundary conditions at the end points of the
edge, we obtain

ψ =ψi +∆ψ

w∫
wi

Hdw′

wj∫
wi

Hdw′
(26)

gradψ =G∆ψ
H

wj∫
wi

Hdw′
(27)

where

G(w) =
cos2(α)
g1

+
sin2(α)
g2

. (28)

In Cartesian coordinates, H = G = 1, and we obtain the stan-
dard linear interpolation of the potential, which corresponds
to the conventionally used finite-difference approximation.
With the coefficients for cylindrical coordinates (see Table I),
the discretization for arbitrary mesh lines in the (r, z) plane
results in

gradψ
∣∣∣∣
ra

=
∆ψ
∆w

rj − ri
ln(rj/ri)

2
rj + ri

=
∆ψ
∆w

rl
ra
. (29)

Here, ra and rl denote the arithmetic and the logarithmic mean,
respectively, which are generally defined as

xa =
xi + xj

2

xl =
xi − xj
ln(xi/xj)

. (30)

This is equivalent with the result obtained by Matsumoto
et al. [3]. To quantify the deviation from the Cartesian case, we
define a geometry G as the ratio between the general coordinate
and Cartesian coordinate discretization of the flux, which is
proportional to the gradient operator for the Poisson equation
(see Fig. 3). For cylindrical coordinates, we obtain

Gcyl
P = gradψ

∆w
∆ψ

=
rl
ra
. (31)

Such a factor will also be introduced for the transport equations
and describes the influence of the geometry-corrected interpo-
lation (26).

C. Isothermal Drift-Diffusion Equations

We now turn to the discretization of the transport equations.
The isothermal drift-diffusion equations are considered first,
because the solution of the resulting ordinary differential equa-
tion can be written in an explicit form using integrals. Due to
the assumption of T = const, the temperature gradients vanish,
and we obtain

J = A (T grad(n)− Ln grad(ψ)) . (32)
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Fig. 3. Geometry factor Gcyl
P as a function of ri/rj on a semilog scale. The

region of a properly designed mesh is also shown. The bounds of the radius
ratio for a proper mesh definition is determined by the section area.

Projection onto the normalized edge-direction vector ew gives

Jw
ATG(w)

= ∂wn− nL∂wψ
T

. (33)

As in the conventional Scharfetter–Gummel scheme, we as-
sume Jw/(AT ) to be constant. With the Dirichlet boundary
conditions ni and nj in the center points, we obtain the
projected flux density which can be rewritten in terms of
the Bernoulli function so as to obtain a Scharfetter–Gummel-
like form

Jw =
1
Λ
(MnjB(Λ)− niB(−Λ)) (34)

with the auxiliary quantities

M =exp (K(wmid)−Λ(wmid)) (35)

K(w) =

w∫
wi

L∂wψ

T
dw′=

L

T
(ψ(w)−ψi) (36)

Λ = −ln
(
exp

(
L∆ψ
T

)
AT

wj∫
wi

1
G(w′)

× exp (K(w′)) dw′+1

)
. (37)

In contrast to the standard Cartesian Scharfetter–Gummel
schemes, an additional term appears in front of nj . Generally,
the integrals cannot be evaluated analytically and, therefore,
closed-form solutions of (34) do not exist for every coordi-
nate system. However, for some important coordinate systems,
analytic solutions exist.

For Cartesian coordinates, we obtain the familiar result

Jcart
w =

AT

∆w
(niB(Λ)− njB(−Λ))

Λ =
L∆ψ
T

(38)

while, for rotational cylindrical coordinates, we have

Jcyl
w =

AT

∆w
rl
ra

(niB(Λ)− njB(−Λ))

Jcyl
w =

rl
ra
Jcart
w . (39)

Note that the method proposed by Matsumoto et al. [3] is based
on a linear potential interpolation between the box volumes.
This ostensibly simpler interpolation leads to elliptic integrals
for cylindrical coordinates and cannot be described in terms
of analytical functions nor can it be written in a form similar
to a Scharfetter–Gummel scheme. It is indeed remarkable that
the geometry factor, which appears for the Poisson equation on
cylindrical coordinates, is the same as the geometry factor of
the isothermal drift-diffusion model

Gcyl
DD =

rl
ra
. (40)

D. Higher Order Moment Equations

The projection of the higher order moment equations or the
nonisothermal drift-diffusion equations on rotated coordinates
yields equations of the form

Jw
AGT

= ξ
(∂wT − L∂wψ)

T
+ ∂wξ. (41)

Not even for Cartesian coordinates can a closed solution of
(41) be given [12]. Conventionally, the temperature is assumed
to vary linearly between the mesh points [12], [13]. For the
generalization to non-Cartesian coordinates, we note that simi-
larly to the Poisson equation, the temperature flux between the
mesh points is free of divergence, div(grad T ) = 0. Because
of the fact that the homogeneous stationary equations for the
temperature and the potential are of the same form, we obtain
the same interpolation for T as

T = Ti +∆T

w∫
wi

H(w′)dw′

wj∫
wi

H(w′)dw′
. (42)

To solve the inhomogeneous first-order differential equation
(41), the optimum-artificial-diffusivity method [13] is general-
ized to orthogonal coordinate systems. For the flux equation, the
mean coefficient parameters have to be determined from (41)
and (42). Following the notation of [13], we write (41) as

a−1Jw = ξb+ ∂wξ

a−1 =(AGT )−1

b =
∂wT − L∂wψ

T
. (43)
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Since we only require the solution of a general first-order
ordinary differential equation, the method proposed in [13] can
be used to obtain

Jw =
(B (〈b〉∆w) ξi − B (−〈b〉∆w) ξj)

〈a−1〉∆w

〈b〉 =
wj∫
wi

∂wT − L∂wψ
T

dw′∆w−1 (44)

〈a−1〉 = 1
A

wj∫
wi

1
GT

dw′∆w−1. (45)

The mean term 〈b〉 can be evaluated exactly and is independent
of the coordinate system

Λ = 〈b〉 = Tl
−1
(∆T − L∆ψ). (46)

The mean term 〈a−1〉 has to be derived with respect to the
coordinate system in use. For Cartesian coordinate systems, we
obtain

〈a−1〉∆w =
1
A

wj∫
wi

(
Ti +

∆T
∆w

(w − wi)
)−1

dw′ (47)

and, therefore

Jw =
TlA

∆w
(ξjB(Λ)− ξiB(−Λ)) (48)

which is of course equivalent to the result obtained by the
method of optimum artificial diffusivity [13]. For other coordi-
nate systems, the integrals cannot be evaluated explicitely. By
the use of the mean-value theorem of integral calculus, we can
split the integrand in two terms: one geometry-dependent term
and a temperature-dependent term. The temperature-dependent
term will be expressed by some kind of mean value and is
denoted as T = T (w). With that assumption, we obtain

wj∫
wi

1
GT

dw′ = T
−1

wj∫
wi

1
G
dw′. (49)

As the metric tensor coefficients g1 and g2 are equal to unity
for Cartesian and cylindrical coordinates, the integral (49) can
be integrated easily. For other coordinate systems, the geometry
correction in 〈a−1〉 can be determined by numerical integration.

For cylindrical coordinate systems, we have

〈a−1〉∆w =
∆w
AT

(50)

and, finally

Jw =
TA

∆w
(ξjB(Λ)− ξiB(−Λ)) . (51)

The only difference found between the Cartesian (48) and
cylindrical coordinate systems (51) is thus the way the average
temperature is determined. In addition, no direct geometry

factor appears due to the averaging procedure introduced in
(49), and the geometry dependence of the interpolation is im-
plicitly contained in T . While for Cartesian coordinate systems
a logarithmic mean of the temperature is obtained, no explicit
expression can be given for T in other coordinate systems.
However, as will be shown in Section V-A, the influence of
the geometry-dependent interpolation is of the order O(h2),
and it is thus justifiable to use the logarithmic mean for other
coordinate systems as well. We, therefore, suggest to use Gcyl

ξ =
1. The degree of approximation introduced by this assumption
is discussed in detail in Section V.

V. DISCUSSION

In the following, we will discuss the influence of the
geometry-dependent interpolation schemes on the resulting
equations. The influence on the numerical properties of the
final-equation system will be estimated. We will restrict our
analysis to the cylindrical coordinates first, because it is the
most relevant non-Cartesian coordinate system and, second,
because it is the only coordinate system where the integrals
are evaluable. Finally, both schemes (with and without the
geometry factors G) have been implemented into our device
simulator MINIMOS-NT [14]. Of course, both schemes calcu-
late the box volumes and surfaces using (12). To evaluate our
theoretical conclusions, a rotationally symmetric thyristor and
a surrounding gate FET are investigated.

A. Numerical Properties

Due to the introduction of the geometry factor G, the result-
ing system matrix of the Poisson equation as well as the conti-
nuity equation are slightly changed. To estimate the influence of
the geometry factors on the final result, the new system matrix
is written as the sum of the original matrix and an incremental
matrix. As the inhomogeneity of the partial differential equa-
tions is not influenced by the geometry-dependent interpolation
scheme, only the influence on the matrix will be considered.

The system matrix itself consists of the linearized equations
resulting from the discretization of the Poisson equation (1),
(2) and the transport equations (3), (4) as well as the associated
boundary conditions.

For a basic analysis, we assume the simulation domain to be
1-D. We then write

AG = A +∆AG (52)

with the original matrix

A =



−1− a1 a1 0 0

1 −1− a2 a2 0
0 1 −1− a3 a3

0 0
. . .

. . .




ai =
Ai/di

Ai+1/di+1
. (53)

Note that each of the matrix lines is multiplied with a factor so
the subdiagonal element becomes unity. Even though it is not
mentioned explicitly, the inhomogeneity is also affected by this
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Fig. 4. Discretization scheme for 1-D cylindrical coordinates.

transformation. However, all these calculations are only for er-
ror estimation and are not used for assembly. For the assembly,
we use, of course, the standard form of the discretization.

As a consequence, the Poisson-system matrix will be tridi-
agonal and can be easily LU-decomposed. From the LU-
decomposition, we can calculate all the eigenvalues of the
matrix, and therefore, the spectral norm of the (nongeometry-
corrected) system matrix can be easily derived. Without giving
a proof, we state that all the eigenvalues are in the interval
[1, amax + 1]. The deviation of the solution created by a slightly
modified matrix can be expressed by the following formula in
terms of matrix norms [15]:

‖∆x‖
‖x‖ ≤ cond(A)

1− ‖A−1‖ ‖∆AG‖
‖∆AG‖
‖A‖ . (54)

As the matrix increment ∆AG , we obtain

∆AG =



γ1a1 −γ1a1 0 0
0 γ2a2 −γ2a2 0
0 0 γ3a3 −γ3a3

0 0
. . .

. . .




γi = 1− Gi
Gi+1

. (55)

We use the spectral norm of both A and ∆AG to evaluate
(54) as

‖∆x‖
‖x‖ ≤ maxiγiai

1−maxiγiai
≤ γmaxamax

1− γmaxamax
. (56)

In typical simulations, the maximal geometry-dependent term
γ2 is about 1− 10−3 to 1− 10−4. As a consequence, we obtain
typical relative deviations in current and charge of 10−3. From
this, we conclude that the geometry factor in the equations can
be neglected.

In the following, we will show that the impact of the geome-
try factor on the solution is smaller than the discretization error.
The geometry factors as well as the box distances and surfaces
are expressed in terms of h, the radial distance between two
mesh points. For the calculation of the factors, we use three
points in a radial line with the radii r, r − h12, and r − h23,
see Fig. 4. The box surfaces and distances go with O(h2) and
O(h), respectively. The geometry factors for the interpolation
correction between the points is then obtained as

G12 =
h12

(r − h12/2) ln ((r − h12)/r)
(57)

G23 =
h23

(r + h23/2) ln ((r + h23)/r)
(58)

where it is assumed that h12 and h23 are either equal (uniform
grid) or of the same order of magnitude (quasi-uniform grid).

The deviation matrix ∆AG is determined by γ2 which reads
for uniform grids

γ2 = 1− G23

G12
= − h3

6r3
+O(h4). (59)

From the Taylor expansion of (59), we obtain the h dependence
of the resulting deviation. After some basic calculations, one
finds an O(h3) dependence for uniform grids and an O(h2)
dependence for quasi-uniform grids. The method of finite vol-
umes, as well as the finite-difference method, lead to numerical
errors going with O(h2) for uniform grids and O(h) for quasi-
uniform grids [1]. Thus, if the grid is refined, the numerical
error will always be larger than the deviation caused by the
geometry factor. Therefore, the use of a properly designed grid
seems to be sufficient to keep the influence of the geometry-
corrected interpolation smaller than the general discretization
error.

B. Singularity Treatment

On some coordinate systems, components of the metric
tensor become zero. The regions of the coordinate system in
which metric-tensor components vanish are called singular.
Only when G is included, a special treatment of these points
is necessary. As we only allow diagonal metric tensors, we
just have to consider the direction of the tensor component
that vanishes. In the case of cylindrical coordinates, the axis
is singular and the direction of singularity is radial (e

˜
rr = 0).

Indeed, for symmetry reasons, flux is possible along the axis of
rotation but not through it. For the edge between a singular point
and a neighboring nonsingular point, homogeneous Neumann
boundary conditions can be assumed. For further investigations,
we take a look at the associated boxes. Without geometry cor-
rection, the calculation is straightforward. For singular points,
one solution of the projected Laplace equation div grad f = 0
is singular because of flux continuity. Therefore, the total solu-
tion can either be constant or singular in the point of singularity.

We neglect singular solutions in our numerical simulations,
and therefore, the solution is constant, which means that there
is no flux between the singular point and its neighbor.

C. Examples

In the following section, we present two examples: a sur-
rounding gate FET and a thyristor. Both devices are rotationally
symmetric and are, therefore, simulated in cylindrical coor-
dinates using our device simulator MINIMOS-NT [14]. The
geometry of the investigated FET is shown in Fig. 5. We assume
doping levels of 2× 1020 cm−3 in the source and drain regions,
an intrinsic channel region, an oxide thickness of 1 nm, and a
channel length of 50 nm. The resulting output characteristic for
VG = 1 V as obtained from both methods is shown in Fig. 6.
Also shown is the error introduced when the geometrically
corrected interpolation is neglected. As can be clearly seen, the
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Fig. 5. Surrounding gate FET.

Fig. 6. Surrounding gate FET output characteristics.

Fig. 7. Rotationally symmetric thyristor.

error is extremely small which confirms the theoretical results
given above.

The second example shows a rotationally symmetric thyristor
(see Fig. 7) with n−p−n−p doping levels of 1019, 1017, 1017,
and 1019 cm−3. The device radius is 8 µm and the device
thickness is 5 µm. We simulate the ignition of the thyristor by
applying a voltage pulse of 0.5 V to the gate with a constant-
applied anode voltage of 2 V. As shown in Fig. 8, we obtain a
current of 7 A and a typical difference between the geometry
corrected and the standard discretization of about 10−3, which
further demonstrates the correctness of our initial assumption.

VI. CONCLUSION

We have proposed discretization schemes for general or-
thogonal coordinate systems for the Poisson equation and
macroscopic-transport equations. Based on the result of the
potential interpolation, we obtain a modified-discretization
scheme for the isothermal drift-diffusion model. In contrast to
the scheme of Matsumoto who used a linear potential interpo-

Fig. 8. Thyristor ignition simulated with and without geometry factors.

lation, the use of the solution of the Poisson equation within
the same coordinate metric leads to consistent formulas, which
are of a similar structure as the standard Scharfetter–Gummel
scheme. For the higher order transport equations, we gener-
alized the method of optimum artificial diffusivity and also
obtained schemes of the same algebraical structure. In addition
to the coordinate-system-dependent calculation of the box vol-
umes and surfaces, these methods introduce a geometry factor,
which basically depends on the interpolation scheme of the
electrostatic potential in each coordinate system.

For the most common non-Cartesian case of rotationally
separated cylindrical coordinates, we theoretically investigated
the influence of the geometry factor and implemented lin-
ear and geometrically adapted discretization schemes for the
Poisson equation and the higher order transport equations. This
practical evaluation confirms our theoretical results stating that
the influence of the geometry factor is small compared to the
discretization error of the finite-volume method. In particular,
for properly designed grids and meshes, we conclude that these
geometry factors can be neglected and, therefore, standard
Scharfetter–Gummel schemes together with geometry-adapted
box volumes and surfaces are sufficiently accurate for non-
Cartesian coordinate systems.
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