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14.1 Introduction

Negative bias temperature instability (NBTI) has been known for 40 years [1] and is
attracting an ever growing industrial and scientific attention as one of the most important
reliability issues in modern complementary metal-oxide semiconductor (CMOS) technology.
It affects mostly p-metal-oxide-semiconductor field-effect transistors (pMOSFETs) at elevated
temperatures with a large negative voltage applied to the gate. While the typical NBT setup
requires the other terminals to be grounded, an application of a larger voltage at the drain
creates interesting mixed patterns with hot-carrier degradation (HCI) and a large voltage at
the bulk contact can be used to investigate the dependence of NBTI on hot or cold holes.
Altogether, as a result of this stress condition, a shift in the threshold voltage is observed [2,3].
In addition to this threshold voltage shift, other crucial transistor parameters degrade as well,
such as the drain current, the transconductance, the subthreshold slope, the gate capacitance,
and the mobility [2,3].

The evolution of the threshold voltage during stress is commonly described by a power
law of the form:

AV (t) = A(T Exx) 1", (14.1)

with the prefactor A strongly depending on the temperature and the electric field. The
actual dependencies of the power-law exponent 7 are still not fully clarified with some
groups [4,5] reporting a temperature- and technology-independent value around n ~ 0.15,
while recent publications show considerably smaller values [6,7]. Alternatively, some
groups have reported a log-like dependency [6,8,9], for instance of the form:

AVin(H) = A(T,Eox) log (1 + t/7), (14.2)

at least at early times. A typical scenario is depicted in Figure 14.1 where the same data are
shown once on a lin-log and on a log-log plot. Depending on the accuracy of the initial
threshold voltage determination or, in that example, the initial drain current in the linear
regime, different interpretations seem possible [6].

The detailed microscopic physics behind NBTI are not yet fully understood [10-14] but
the creation of interface states seems to be a universally acknowledged feature of NBTI
[2,15]. A growing number of recent publications, however, attribute at least a part of the
degradation to positive charge generation in the oxide bulk [11,13,16,17]. Possible positive
charges that have been suggested include holes trapped in either preexisting traps [11,16]
or in traps generated by the hydrogen species released during the creation of the interface
states [13].

Other potential contributions to a threshold voltage shift like mobile charges are com-
monly assumed to be negligible for NBTI [2] and the total threshold voltage shift is thus
given by

AQit(t) + AQox(t)

(14.3)

with AQ;: and AQ, being the effective charges due to interface and oxide states and C,y the
gate capacitance per area.

The fundamental problem in the context of NBTI is given by the fact that the degradation
created during the stress phase begins to recover immediately once the stress is removed.
This makes the classic measurement technique where the stress is interrupted during the
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FIGURE 14.1

(a) Degradation of the drain current in the linear regime during stress (Vg = V&™*). The measurement is
periodically interrupted to record the drain current around Vi = Vi,. The initial degradation appears to be linear
on a lin-log scale and any uncertainty in the initial drain current results in a shift of the whole curve. (b): Same
data on a log-log plot. When the drain current measured at ¢, = 1 ms is directly used for In, a power-law exponent
of n=0.11 is obtained. An uncertainty in Iy of +1% changes the slope to 0.08 and 0.16, thereby making the
interpretation of the data extremely difficult.

extraction of the threshold voltage problematic [9,18]. In particular, the value of the
extracted power-law exponent depends significantly on the delay introduced during the
measurement [5,14,19]. Experimental results obtained with delayed measurements show a
linear increase of the exponent with temperature [5,8,14] with values around 0.2-0.3. In
contrast, temperature-independent exponents in the range 0.07-0.2 have been extracted
from recent delay-free measurements [4,6,20].

Of particular interest is the question related to the origin of this extremely fast relaxation
[9,14,21]. While some authors assume that hole trapping is negligible and both degradation
as well as relaxation are determined by the temporal change of the interface state density
and an associated back- and forth-diffusion of hydrogen [5], others acknowledge at least
partial importance of trapped charges [6,8,13,22]. In the latter case it has been assumed that
trapped charges either form the fast component of NBTI relaxation superimposed onto
some interface defect relaxation [6,22] or are solely responsible for any recovery while
created interface defects do not recover at all [8,13].

14.2 Interface States

The most commonly and earliest reported effect related to NBTI is the creation of defects at
the fundamentally important Si/SiO, interface. These interface states are often assumed to
be Py, centers [23-25] which are known to have electrically active levels within the silicon
band gap. In particular, for industrially relevant samples with (100) surfaces, two variants
of Py, centers have been identified [24], the P9 and the Py, center. Both defects are silicon
dangling bonds, with the Si atom backbonded to three other Si atoms [26]. While some
researchers argue that only the Py is electrically active [27], others have observed
additional electrically active peaks which were claimed to originate from P} centers [26].
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A recent study suggests that in nitrided oxides the role of the P}, center is taken over by K
centers, which are silicon dangling bonds backbonded to three nitrogen atoms [28].
K centers are located inside the nitrided oxide, rather than at the interface as P}, centers.
As such, a model relating NBTI to K centers could be different from the available theories,
a question open to future research.

Py, centers are present in a considerable number at every Si/SiO, interface with a
concentration in the order of 10'* cm 2. During device fabrication these defects have to
be passivated through some sort of hydrogen anneal [2], thereby reducing the electrically
active trap levels to a value below 10" cm 2. The electrically active trap levels are of
amphoteric nature, meaning that each interface state can accommodate two electrons.
Possible transitions are from the positive to the neutral state (+/0), which appears as a
donor-like trap level in the lower half of the silicon band gap, and the neutral to negative
charge state (0/—) which is commonly assumed to act as an acceptor-like trap level in the
upper half of the band gap.

Although the P,H bonds obtained after the passivation step are relatively stable, they can
be broken at elevated temperatures and higher electric fields, thus reactivating the electric-
ally active trap levels. In our analysis, we will denote the time-dependent density of interface
states as Nj(t) = [P;]. Depending on the trap occupancy, the initial value of N = Nj(to) is
inherently visible in the reference threshold voltage Vi (fo) and the change in the density of
interface states is given through AN;(t) = Nj(f) — Nj. It is normally assumed that charging
and discharging of these interface states is very fast, and consequently that the positive
charge in these interface states immediately follows the Fermi-level via

AQu(H) = g j ADy(Eq b (Er Ex ). (14.4)

Here, ADj, is the time-dependent density of interface states in the units of cm 2 eV~!, which
is by a still to be quantified relation [29] directly linked to AN;j(t), and f;(E;) their occupancy
with holes. In addition to the exponential band-tail states of a passivated Si/SiO, interface,
the Py, centers create Gaussian peaks in the Si band gap where the broadening is probably
linked to the disorder at the interface [30]. As an example, the measured concentration of
Py centers as obtained by Ragnarsson and Lundgren [31] is shown in Figure 14.2 for an
initially unpassivated interface and after a short hydrogen passivation step. This may
correspond to the inverse process occurring during NBT stress, that is, the relaxation
part which we have argued to be of fundamental importance for the understanding of
NBTI [32]. The measurement data can be nicely fitted by two Gaussian peaks or by using a
Fermi-derivative function [33] (which can be analytically integrated):

wp(B25)
1
gr(EEp,0) = — 7 ; (14.5)
7 <1 + exp <EP _ Et))
g
as
ADy(Ey) = Nit(gp(Et,Ep1,01) + gp(Et,Ep2,02)). (14.6)

Note that in order to fit the data of Ragnarsson and Lundgren, the variances of the two
peaks have to evolve differently in time, with the acceptor-like peaks becoming narrower
sooner (Figure 14.2). In contrast, other groups have reported a similar time evolution
of both peaks [30]. This disorder-induced broadening of the electrical active levels is
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FIGURE 14.2

(a) Measured density of interface states supposedly related to P, centers before and after a short hydrogen
passivation process [31]. The symbols are the measurement data, the solid lines give the analytic fit, while the
exponential band-tail states are schematically represented by the dotted lines. The donor-like peak is located ~0.24 eV
above the valence band edge, while the acceptor-like peak is at ~0.85 eV. Note that the variance of the
unpassivated sample is o3 =0, =0.085 eV? while after the passivation step one obtains o; =0.074 eV? and
0,=0.062 eV?, a fact to be included into a model. (b) Influence of the interface state occupancy on the observed
threshold voltage shift using on-the-fly measurements. During stress, nearly all interface traps are positively
charged. When a different gate voltage is used during relaxation, only a fraction of the traps are visible which
must be separated from the real relaxation. Schematically shown is the density-of-states typically associated with
Py and Py centers [26]. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)

suspected to be closely related to a disorder-induced Gaussian variation of the binding
energies of the Si-H bonds at the interface [30,34,35].

Nevertheless, during NBT stress, the Fermi-level Ey is close to the valence band edge and
fit(Ey) = 1 throughout the silicon band gap. Thus, under the assumption that Py, centers
introduce states only within the silicon band gap, see Ref. [13] for a different interpretation,
all newly generated interface states ANj;; are positively charged and one obtains AQj(t) ~
gAN;(t), independently of the exact form of the density-of-states. This is the usual assump-
tion employed for instance in the widely used reaction—diffusion (RD) model and quite
reasonable during the stress phase. However, in order to measure the degradation, the
stress is often interrupted and the various forms of degradation are assessed using different
possible techniques. Regardless of the actual measurement technique employed, be it a
complete or partial In Vs sweep, single point Vi, determination [9,14], ultrafast pulse Ip Vs [16],
capacitance-voltage (CV), DCIV [36], or charge-pumping (CP) [37] measurements, the trap
occupancy changes significantly because a different fraction of the traps is charged during
stress and measurement. Furthermore, this Fermi-level dependence causes a change in
the subthreshold slope during IpVs measurements and humps in the CV characteristics,
in contrast to constant shifts induced by fixed positive charges, see Figure 14.3 for a
qualitative description.

Alternatively, in the model of Zafar [13], a different interpretation is introduced. Zafar
assumed that a large number of dangling bonds always exists but that only a fraction can
be observed in electrical measurements, while the majority is too close to the band-edges to
contribute. During NBT stress the total number of interface states is increased and only this
increase is visible during measurements. To properly account for this partial contribution
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(a) Simulated influence of fixed charges on the IV characteristics of a PMOS transistor. (b) Simulated influence
of interface states on the IV characteristics of a PMOS transistor. Depending on the form of the trap density-
of-states, a different shift in AV}, and a different change in the subthreshold slope are obtained.

of the generated interface states to the observable threshold voltage shift, the occupancy of
the interface states as a function of the Fermi-level position has to be introduced.

14.3 Oxide Charges

On the top of generated interface defects, charge may be stored in existing or newly created
oxide traps. Although some of these traps may still be considered fast, they are more
difficult to charge and discharge, that is, have larger time constants than interface states
due to their location inside the oxide bulk. It has also been suggested that holes trapped in
energetically deep levels give rise to practically permanent charge contributions which can
only be neutralized through the application of unusual bias conditions [38]. Altogether, the
occupancy of oxide traps cannot follow the Fermi-level immediately and AQ«(t) will be
governed by different dynamics. The contribution of the oxide charges to the threshold
voltage shift is formally written as

AQw(h) = g jJADOX<x,Et,tyox<x,Et,t)<1 — x/to)dxdE,, (14.7)

where
AD,, is the spatially and energy-dependent density-of-states in the oxide
fox is the hole occupancy of these traps
tox 18 the oxide thickness

Note that the issue of whether oxide charges are important during NBTI or not is currently
one of the most debated ones [5,11,13,16]. Also, the question whether AD,,, consists mainly
of preexisting traps [11,16] or traps that are created during stress [13] remains to be
answered.
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14.4 Measurement Issues

The understanding and characterization of NBTI is considerably hampered by the
difficulties arising during measurement. Currently, two techniques are often used to
characterize NBTL the classic measurement/stress/measurement (MSM) technique,
which is handicapped by undesired relaxation, and on-the-fly (OTF) measurements,
which avoid any relaxation by maintaining a high stress level throughout the measurement
and directly monitor the drain current in the linear regime, Alpy,. Since the threshold
voltage shift AVy, is more suitable to study the creation of charges, Alpy, has to be
converted to AVy, which is commonly done using the simple SPICE Level-1 model [8] or
an empirical formalism [39]. The applicability of the OTF technique is particularly trouble-
some when one switches from stress to relaxation. When Vg is left at Vrcelax, the interface
trap occupancy is considerably lower than during the stress phase [29], resulting in
spurious additional relaxation (Figure 14.2). Conversely [4], when Vg is brought back to
VEress one faces the opposite problem one is trying to avoid during the stress phase, since
now additional uncontrolled stress is introduced during the measurement cycles. Even
more important is the fact that the initial value of Ipy, is extremely difficult to determine as
it is already obtained at the stress voltage. Conventionally, the time required for this is in
the milliseconds range where already significant degradation can be observed [6] but any
uncertainty in Ipp modifies the time exponent (the slope) of AVy, on a log-log plot in a
somewhat arbitrary manner, see also Figure 14.1. This may render many results obtained
by the OTF technique questionable.

In contrast, the MSM technique probes the interface under comparable conditions during
both the stress and relaxation phase. In addition, the voltage applied to the gate can be kept
close to the threshold voltage where only negligible degradation can be expected. How-
ever, as has been pointed out [7,32,40], it is probably very difficult to minimize the
measurement delay in such a way that the true degradation is observed.

14.5 Characterization of Relaxation

In order to properly understand and characterize NBTI it is mandatory to take a close look
at the relaxation behavior. Particularly noteworthy are the long tails of logarithmic-like
nature that may cover more than 12 decades in time [9,14,42,43]. In order to formalize the
description, we use the term S(fs) = AVy(ts) for the real degradation accumulated during
the stress phase. As soon as the stress voltage is removed, relaxation sets in as a function of
the accumulated stress time ¢, and the relaxation time t, =t — t,. In the following, we will
assume that the accumulated degradation S(t;) consists of a recoverable component R(f;)
and a permanent component [8,38] P(t;) as

S(ts) = R(ts) + P(ts). (14.8)

As the recoverable component depends on the recovery time f,, any measurement con-
ducted with a certain delay f, =ty observes only

Smlts,tm) = Rm(fs,tm) + P(ts) < S(ts), (14.9)

with the subscript M indicating quantities observed in a measurement. Of course,
Sm(ts,0) = 5(ts) and Ry(ts,0) = R(ts) hold.
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Demonstration of universal recovery for the OTF data of Denais et al [41]. The left figure shows a conventional view
of the fractional recovery as a function of the relaxation time ¢,. Apparently, data obtained after longer stress times
seem to relax more slowly than data obtained at shorter times. The right figure, on the other hand demonstrates the
universality of relaxation when the relaxation data are normalized to the last stress value and plotted over the ratio
£=t,/ts [41]. Also shown are some possible empirical expressions which can be fit to the data. (From Grasser, T.,
et al., Proc. IRPS, 268, 2007. With permission.)

Due to the onset of recovery which may occur at timescales possibly shorter than nano-
or even picoseconds [7,9], a rigorous characterization of the relaxation phase is extremely
challenging [4,21,40,41]. Typically, the relaxation data R(tt,) recorded at different stress
times t; have been normalized to the first measurement point t\; as

SM(tS/tr)
re(ts tr) Snilts inn)” (14.10)
giving the fractional measurable recovery, and aligned as a function of the absolute
relaxation time t, [9,14,21,40], see Figure 14.4. The functional form of the relaxation remains
elusive in such a plot.

Instead, it has been demonstrated that it is highly advantageous to study the recoverable
component in its universal representation [32] which is based on the observation that all
individual relaxation curves obtained at different stress times t,; can be represented by a
single universal curve when [41]

e Relaxation data are normalized to the last stress value S(f ;) = Sm(fs ;,0) rather than
the first measurement point Sn(ts,i,fn)

e Relaxation time ¢, is normalized to the last stress time f; as é =1t,/ts;

The above results in the definition of the universal relaxation function as [32]:

_ RM(tsztr) _ SM(tS/tr) _ P(ts)
"O="Rey St - PE)

(14.11)

which is a function of ¢ only. For the special case of a negligible permanent component,
note the relationship between the universal recovery function and the fractional recovery
given by re(ts,t,) =r(§)/r(énm) with v = fu/ts. This concept is visualized in Figure 14.5.
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FIGURE 14.5

Schematic view of universal relaxation. The stress is interrupted three times to record relaxation data on the
relative time scale t, =t — t,. For stress intervals considerably larger than the relaxation intervals, the device forgets
the interruption. Note how for larger stress times the relaxation data move to smaller normalized relaxation times
&£=t,/t; and how the relative recovery becomes less significant. Also indicated is a possible permanent/slowly
relaxing component P.

Because the bulk of relaxation data available in the literature do not allow a definite
identification of the permanent component, which requires very detailed data [7], we will
consider the permanent component to be negligible in the following and assume P(t;) =0.
Recent studies have shown how more detailed data allow for a clear identification of a
permanent component and the extension of the method presented here [7,43].

14.5.1 Functional Form of the Universal Relaxation Function

Lacking a universally accepted and valid theory for NBTI, the exact form of the universal
relaxation function r(§) remains illusive at this point and empirical functions have to be
used. So far, excellent results have been obtained with the power-law-like expression:

r(€) = (1+ B¢k, (14.12)

where the parameters B and $ are in the range B ~ 0.3-3 and 8 ~ 0.15-0.2 for most of the
data available. Of particular interest is the relaxation predicted by the RD model which is
well described by Equation 14.12 using B=1 and 8 =1/2. However, we have to point out
that the available data are not conclusive at the time being, making alternative expressions
such as the logarithmic dependence suggested by Denais et al. [41]:
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1) =1—Blog (1l + BE), (14.13)
or the frequently used stretched-exponential [44]:
r(€) = exp (—B&P). (14.14)

viable alternatives as well [32]. We remark that Equation 14.13 is nonphysical at larger
times, making a reformulation mandatory.

One difficulty in determining the correct choice of the empirical function is the fact that
relaxation may occur over more than 12 decades in time [9]. As the delay times in
conventional measurements are around 1 ms and relaxation data are not normally
recorded for t,>10° s, only eight decades in time is commonly available. By employing
fast measurements which start at . =1 s 12 decades has been reported [42]. Interestingly,
the measurement data available behave logarithm-like over most of the recorded regime
and excellent fits with Equations 14.12 through 14.14 can be obtained [32]. Only more
detailed relaxation data and a solid theoretical description will allow to differentiate
between possible expressions which differ mostly in the behavior at extremely short and
long times. This is illustrated in Figure 14.4 where possible empirical expressions for the
universal relaxation function are compared. All expressions can be fit to the measurement
data and give fits of practically the same accuracy. However, they result in different
extrapolations for large and small relaxation times, the consequences of which need to be
carefully investigated.

14.6 Characterization of MSM Data

Although more delicate to apply, universal relaxation is of particular interest for data
obtained by the MSM technique. For the normalization needed in Equation 14.11 one has to
keep in mind that the value of 5(;) = Ru(ts, 0) is essentially unknown, one only knows
Rml(ts, tv) determined at the first measurement point available after a short but probably
nonnegligible relaxation period ty.. However, making use of the universal relaxation
expression 14.11 and assuming for the time being that 7(¢) is known, S(t;) = Rum(ts, 0) can
be obtained as

RM(tS/tM)
St = Rt =77 2 (14.15)
Inserting the above into the universal relaxation relation 14.11 we obtain
") _ Rultt) 1416

rév)  Rwiltsbn)’

From Equation 14.16 the as of yet unknown parameters B and 8 can be easily determined
from a measured sequence of relaxation data R(f, t.) obtained after N stress intervals
by minimizing for instance

= S r(tr/tsri) SM(ts,i/tr) 2
" ; J (r(tM/ ti) SM(ts,i,tM)> dlog (&:)- (14.17)
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Note that the parameter extraction is independent of the functional form of R and that the
final form of R is directly related to the measurement data through the universal relaxation
relation as R(fs) = Ra(ts, tn)/7(bw/ts) [32]-

Naturally, in contrast to data obtained by OTF measurements where Ry(f,0) is known,
the analytical expression determines the final value of Ry(t;,0) through the extrapolation
given by Equation 14.16. This results in a floating behavior of r(&\) which reflects the
uncertainty of this approach [32].

A particularly intriguing feature of Equation 14.16 is that it can be applied to a whole
sequence of stress and relaxation sequences as typically encountered during MSM measure-
ments. This is because during MSM sequences the duration of the stress intervals
usually grows exponentially while the measurement interval ty; is short and of constant
duration. This implies that after a certain stress time, which we determined empirically to
be of the order £, > 10 X ty;, the relaxation during the measurement does not significantly
alter the degradation at the end of each stress phase, meaning that the degradation relaxed
during each measurement interval is mostly restored during the next stress phase. This is
in agreement with the reports of Reisinger et al. [9] who report that “‘the sample completely
forgets the effect of the interruption’” provided the stress phase following the interruption
is by a factor of 100 longer than the interruption.

Consequently, Equation 14.15 holds for every stress point t;, where t; is now the
accumulated net stress time. The applicability of the procedure outlined above to the
detailed relaxation data published by Reisinger et al. [9] and for the IMEC data other-
wise published in Ref. [14] is outlined in Figure 14.6. For the IMEC data the universality is
also shown at three different temperatures, 50°C, 125°C, and 200°C.
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(a) Application of universal relaxation to the fast MSM data obtained by Reisinger et al. [9]. Depending on the
choice of the universal relaxation function, the individual data points can be mapped onto the respective universal
curve, in this case Equation 14.12. Note the linear behavior of 1/ — 1 shown in the upper plot. The slight deviation
for £> 10 is introduced by a permanent component P(t;), see Ref. [43]. (b) Same as (a) but with data from IMEC
[14]. Relaxation data of three devices stressed in a single MSM sequence were recorded at 10 different stress
times in the interval 10-10* s at three different temperatures. The values of B and g (given in parenthesis) depend
on the temperature, 8 even in a nonmonotonic manner which may indicate the existence of two different processes
with different temperature dependencies. (From Reisinger, H. et al., Proc. IRPS, 2006.)

© 2008 by Taylor & Francis Group, LLC.



Universal relaxation thus results in the interesting possibility to reconstruct the true
(undelayed) measurement curve from delayed data sets. This suggests a novel measure-
ment technique:

(1A) Determine Ry(ts,tv) using a single delay time and add a long relaxation period at
the end. In case a permanent component is present, multiple devices can be
subjected to different stress intervals for an accurate determination of the time-
dependence of P [7].

(1B) Alternatively, one may determine Rp(fsty) using different delay times. This
approach probably only works for stress cases were negligible permanent degrad-
ation is created [7].

(2) From that data determine B and S.
(3) Finally, calculate the true degradation using Equation 14.15.

Variant A, where B and 8 have been obtained from detailed relaxation data, has already
been demonstrated in Figure 14.6. However, the method also works for MSM data
obtained with different delay times where no relaxation data are available (Variant B). In
that case the parameters A, 1, B, and B8 can be directly extracted through fitting of Equation
14.18. This is demonstrated in Figure 14.7 for the data published by Li et al. [45]. Again, the
extracted parameter values agree very well with the cases where we had access to the full
relaxation data.

14.6.1 Influence of Measurement-Delay on the Power-Law Parameters

Next, we show that the universal relaxation expression naturally connects individual stress
curves obtained using the MSM technique with different delay times. For simplicity,
we assume that the true degradation behavior follows a power law as S(t;) = At! and
that the universal relaxation is given by Equation 14.12. Due to the measurement delay one
observes instead of the power law

At

Swllo ) = Sttt = 37505

(14.18)
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Reconstruction of the true degradation from
MSM data obtained by Li et al. [45] with four
different delay times without the knowledge of
the detailed relaxation behavior. Again, a cor-
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Comparison of the analytic model for MSM measurements based on the universal relaxation to the data of
Reisinger et al. [9] (a) and Kaczer et al. [14] (b). Excellent accuracy of the analytic model is obtained for all
available delay times. In addition, the true NBTI degradation can be recovered by extrapolating to ty; =0 s. (From
Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)

Equation 14.18 is validated against the Infineon and IMEC data in Figure 14.8 where the
parameters B and $ are given by the universal relaxation law. The analytic expression 14.18
exactly reproduces the delayed measurement results for various delay times t,; and
thereby convincingly confirms our assumptions stated above.

As a consequence of the measurement delay, the observed power-law exponent 1y, will
be time-dependent and given through Equation 14.18 as

tM/ts_n+ BB

r B+ (t/tm)P (1419

mi(ts,tv) = 1 — ' (bw/ts)

with /(&) = (&) / 0¢.

It is worthwhile to point out that although many groups report a constant measured power-
law exponent over three to four decades which varies as a function of the temperature and
delay time, this can of course only be approximately correct. The fact that all curves obtained
with different delay times have to merge at larger times, makes a time-dependent slope a
necessity. However, depending on the actual values of B and 8 this time-dependence will be
more-or-less visible in a log-log plot. In general, the smaller 3, the less visible the time-
dependence will be. A comparison of measured power-law exponents as a function of the
delay time f\; and temperature is given in Figure 14.9. Most of the data show an apparently
constant power-law exponent (within the measurement accuracy) over three to four decades.
Clearly, the measured power-law exponents, and consequently B and/or B8 (see Table 14.1),
depend on temperature, on the particular technology, and/or the measurement technique.

14.7 Modeling of NBTI

As has been detailed in the previous sections, the fundamental dilemma encountered
during the development of NBTI models is the question of what exactly should be
modeled. While conventional models for semiconductor device simulation can rely on a
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(a) Influence of the measurement delay on the measured slope as reported by various groups [5,10,14,19,45,46].
The solid lines are given by a fit to Equation 14.19 using the parameters in Table 14.1. Note that the strong
temperature-dependence of the reported slopes and that the slopes were found to be constant over three to four
decades in many measurements. Clearly, there is a large spread in the measurement data indicating a technology
dependence. The dotted lines show the slopes predicted by the RD model at t; =100 s and t;= 10,000 s. Note that
the RD slope changes considerably within two decades, is per construction temperature independent, and cannot
be adjusted to the technology. (b) Observed slope in a delayed measurement as a function of the measurement delay
[7]. The symbols are the measurement data while the lines give the extrapolation to the true slope using our algorithm.
Note that according to the power-law and stretched-exponential model only for delay times in the picosecond range
the true slope could be measured. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)

rather robust set of measurement data which need to be captured by the models, the modeling
of NBTI has been plagued by a still open definition of what NBTI degradation actually is. The
question of whether the model should result in a power law or a logarithmic evolution of
the threshold voltage, whether it should predict a temperature-dependent slope, or whether it
should relax universally is of fundamental importance to any modeling attempt.

In contrast to previous model validation attempts that have focused almost exclusively
on the stress phase, we put a special emphasis on the analysis of the model prediction

TABLE 14.1

Parameters for Equation 14.19 Used to Fit the Data in Figure 14.9 Assuming t;=1000 s

Reference T N B B
Ershov et al. [19] 105 0.15 (fixed) 1.49 0.179
Kaczer et al. [14] 125 0.15 (fixed) 1.29 0.136
Li et al. [45] 125 0.15 (fixed) 4.08 0.163
Alam et al. [5] 50 0.155 4.79 0.611
Alam et al. [5] 100 0.177 40.23 0.973
Alam et al. [5] 150 0.186 102.2 1.048

Source: From Grasser, et al., Proc. IPRS., 2007, With permission.

Note: The fit was obtained using a fixed n =0.15 with a simple least-square algorithm. However, in order to fit
the data of Ref. [5], which are somewhat different from the other sources considered in this study, # had to
be included as a free parameter. Interestingly, this results in a significant temperature-dependence of the
zero-delay slope, well described by a linear relationship for n reported in Refs. [8,14] for delayed
measurements. Keep in mind that these values should be taken with care, since they were extracted by a
fit to three or four rather inaccurate slope values using two/three free parameters. The inaccuracy of the
slope values is a result of both the measurement uncertainty as well as the time-dependence of the slope.
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during the relaxation phase. Thereby two features are of interest, namely the large distri-
bution of timescales and the universal behavior. For the analysis, the models under
consideration have been implemented into a partial-differential-equation solver and solved
numerically in order to rule out any uncertainties related to approximate analytic expres-
sions. Since most of the published NBTI models can be derived from a generalized RD
formalism [7], a short review of the assumptions employed in this model is given.

14.7.1 Reaction-Diffusion Models

RD-like models consist basically of an electrochemical reaction at the semiconductor-oxide
interface which is coupled to a transport equation in the oxide bulk. We remark that
the questions whether the depassivation process is field-driven [10,47], why holes at the
interface are required and how they influence the reaction [48], and in which charge state,
neutral or positive, the created trap and the released hydrogen species are, are highly
controversial and are put aside for the moment. Nevertheless, for the discussion of the
basic properties it is instructive to write the electrochemical reaction at the interface, which
creates a dangling bond Si* from a passivated interface defect SiH, as

Si—H=Si"+H. + H.. (14.20)

Thereby we differentiate between hydrogen in a conduction/mobile state, H., and trapped
hydrogen [49], H;. Such a distinction is important, since in dispersive transport models
most hydrogen becomes trapped quickly and might not be available for the reverse
reaction. We also note that a large background concentration of hydrogen may exist in
the vicinity of the interface, possibly in the order of 10" cm ™ [50], which, if assumed to be
freely available, could dominate the reverse reaction and completely compensate the
forward reaction in a standard RD model.

It has been claimed that the binding energies of the Si-H bonds display a Gaussian broad-
ening [8,35]. Previously published dispersive NBTI models consider either a dispersion in the
forward rate [8] or a dispersion in the transport properties [13,14,51]. Models based on these
assumptions will be discussed in Section 14.7.4. In particular, the variations in the energy
barrier for the reverse reaction is important for the investigation of dispersive transport.

14.7.1.1 Standard RD Model

In the standard RD formulation the dissociation barrier is considered to be single valued
(dispersion-free) and H; =0, meaning that all released hydrogen remains in the conduction
state. The kinetic equation describing the interface reaction is commonly assumed to be of
the form [46,52,53]:

ONit
ot

= ke(No — Nit) — k:NuH,/", (14.21)

where N;; = [Si®] is the interface state density, Ny = [Si—H]y is the initial density of passivated
interface defects, H;; is the hydrogen concentration at the semiconductor—oxide interface,
k¢ and k, are the temperature and possibly field-dependent rate coefficients, while a gives
the order of the reaction (1 for H°® and HY, 2 for H,, assuming an instantaneous conversion
of H° to H,, cf. Ref. [5,46,54]). In our context it is important to recall that the usual
assumptions are that Njo=Ni(fp) =0 at the beginning of the stress period and that all
generated Nj; contribute equally to the threshold voltage shift. A somewhat unappreciated
feature of the RD equations is, as will be shown in Section 14.7.4.2, that by allowing for a
larger number of initial interface defects, a completely different behavior is obtained.
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Hydrogen motion is assumed to be controlled by conventional drift—diffusion [53]:

He __y.Fr.+a, (14.22)
ot
E‘OX
F. = —D. (VHC - Z—HC), (14.23)
Vr

with the (possibly unrealistic) assumption of a negligible initial hydrogen concentration,
H.(x,0) =0. Hydrogen transport is postulated to occur on a single energy level, which will
be referred to as the conduction state, with H., D., and G, the hydrogen concentration,
diffusivity, and generation rate in the conduction state, F. the particle flux, Z the charge
state of the particle, V1 =kgT1 /q the thermal voltage, Ty the lattice temperature, and E, the
electric field inside the oxide.

The generation rate G. is given by the interface reaction and reads for the usually
considered one-dimensional problem:

Gc(xrt) = L 82\[“

o 8(0) (14.24)
with the interface assumed to be located at x =0.

For the calculation of the time-dependent density of interface states, Nj;, Equations 14.21
and 14.22 can be solved numerically on an arbitrary geometry. Although the solution of the
RD model depends on the underlying geometry [55], it is commonly assumed that NBTI is
a one-dimensional problem. In particular, for some special cases analytical approximations
can be given [46,56,57] which are helpful for understanding the basic kinetics.

Depending on the parameter values and boundary conditions, different phases are
observed which are shown in Figure 14.10 for the three most commonly used species
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FIGURE 14.10

Five phases of the standard RD model obtained from a numerical solution of Equations 14.21 and 14.22 on a 2 nm
oxide, using the parameters Ny = 102 cm ™2 and Njo = 0. Shown are the results for the three species H', H°, and H,.
The time exponent 1 =1 is the signature of the reaction-limited phase whilen=1/4...1/2,n=1/4,and n=1/6 are
observed for the three species in the diffusion-limited phase. At the beginning of the diffusion-limited phase H"
behaves like H®. Furthermore, in the nonself-consistent simulation, where the feedback of the charges on the field
distribution is neglected, H" does not show a soft saturation since all hydrogen is pulled away from the interface.
(From Grasser, T., et al., Trans. Dev. Mater. Reliab., 8(1), 79, 2008. With permission.)
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H", H°, and H,: (1) The reaction-dominated regime with an exponent n =1, where the
reverse rate is negligible due to the lack of available H;. (2) Depending on the parameter
values, a transition regime where ON;;/0t=0 which gives an exponent n=0. (3) The
quasiequilibrium regime where ON;;/0t is much smaller than the generation and passiv-
ation terms. This is assumed to be the dominant regime and displays the characteristic time
exponent depending on the created species. (4) A saturation regime which could for
instance be a soft saturation due to a reflecting boundary condition or a hard saturation
resulting from the depassivation of all passivated interface states [58].

The RD model assumes the quasiequilibrium of the interface reaction (ON;/0t =~ 0) to be
the dominant regime [10,13,14]. Consequently, we obtain from Equation 14.21 together
with the assumption ANj(f) > Nj the standard RD model as

ANy(t) = ArpCY (1), (14.25)

with the species-dependent prefactor

k a 1/(14a)
Arp = (a (kf ANn,max) ) (14.26)

and the maximum value of ANj; given by ANj; max = No — Niw. For nondispersive transport
C(t) = DcEoxt/ V for the proton case while C(t) ~ /D¢t for the neutral species H’ and H,
[10,59]. This results in the well-known exponents 1/2, 1/4, and 1/6 for proton, atomic, and
molecular hydrogen transport, respectively. These exponents do not depend on tempera-
ture nor is it possible to include process dependencies. We recall that such an exponent of
1/2 obtained for H' transport is not observed experimentally which led researchers to
discard the possibility of drifting protons.

14.7.1.2 Pre-RD Regime

Interestingly, by allowing a relatively large initial concentration of interface states Nj;o and
by assuming AN(t) < Nio, a completely different solution is obtained [59],

ANy (t) = ApC(t), (14.27)

with the prefactor

a
Ap=a (ﬁ ANM“) = ARHNLS. (14.28)
ke Nig
This regime is termed pre-RD regime [59], because for intermediate concentrations of Nj
the number of created interface states AN; will eventually become larger than Ny,
changing the overall behavior to that of the standard RD model. This is demonstrated in
Figure 14.11 for the H,-RD model.

In the pre-RD regime the exponents have the values 1, 1/2, and 1/2 for proton, atomic,
and molecular hydrogen transport, respectively. Note that these exponents do not depend
on the kinetic exponent a as in the standard RD model. For classic drift-diffusion, these
resulting exponents are not compatible with measurements. However, as has been shown
[13,59], the introduction of dispersive transport can bring the exponents within the
observed ranges.
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FIGURE 14.11

Two different regimes for a medium number of initial interface defects Njo = 10" ¢m ™2 The transition between
the pre-RD regime and the standard RD regime can be clearly observed. A value of Ny =10"> cm ™ was used in the
simulations. (From Grasser, T., et al., Trans. Dev. Mater. Reliab., 8(1), 79, 2008. With permission.)

The assumption ANy(t) < Njy has originally been introduced by Zafar [13]. This is
based on the (actually mandatory) notion that the occupancy of the interface states
depends on the position of the Fermi-level and that not all interface states are electrically
active. In this context Ny is now the maximum number of hydrogen binding sites rather
than the maximum number of electrically observable interfaces states in a completely
depassivated sample.

14.7.1.3 Relaxation as Predicted by the RD Model

As soon as the stress condition is removed, the forward-rate of the RD model is assumed to
be negligible. Just like during the stress phase, the reaction is in quasiequilibrium, resulting
in the left-hand side of Equation 14.21 to become very small. With k¢ ~ 0, the actual values
of k, and D, become irrelevant, except for a very short and insignificant reaction-limited
initial phase. In addition, the species type has no influence on the relaxation and the overall
behavior is again diffusion-limited. Consequently, the RD model predicts a universal
relaxation practically independent of the species (H and H,) as

r(€) =1/(1+ €7 (14.29)
This analytic expression is compared to the numerical results for both species in Figure
14.12. Also shown is the measurement data of Reisinger et al. [9]. It is worthwhile to realize
that the relaxation predicted by the RD model does not depend on any model parameters.
Consequently, it must be clearly emphasized that since the relaxation predicted by the RD
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(a) Comparison of two analytic expressions for the RD relaxation behavior with numerical results obtained for H
and H, kinetics. The power-law-like expression is accurate for all relaxation times and will be used as reference
throughout this work. Also shown is the analytic expression derived in Ref. [56]. Due to the lack of parameters
there is no way to fit the measurement data with the RD model. (b) Influence of the measurement delay ty as
predicted by the RD model. Comparison of the analytic model (lines) with the numerical solution (symbols)
proves the excellent accuracy of the analytic model for ¢ > t\;. Note that the RD model predicts a very small
influence of delay for longer stress times, in contrast to Figure 14.8. For the sake of comparison, a more realistic
influence of the measurement delay is given by the dotted lines, obtained with typical parameter values B=3
and B=0.18. There the individual curves obtained with different delay times remain clearly separated even
after t,>10% s. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)

model cannot be made to depend on gate bias, temperature, and process conditions, in
stark contradiction to Figure 14.9, there is no way to fit the available measurement data. In
particular, 8 =1/2 is much larger than observed experimentally, leading to a relaxation
which is too slow in the beginning and too fast in the end. This is clearly visible in Figure
14.12 where most of the relaxation occurs within three to four decades whereas the
measurements show relaxation over 12 decades. Consequences of this erroneous relaxation
prediction are a heavily time-dependent but temperature-independent slope in the RD
simulated delayed measurements, and a vanishing influence of the delay on the measure-
ment result for t; > 10 x ty; (Figure 14.12), in contradiction to measurements [14,19], see
also Ref. [6]. The only way to move the relaxation curve to shorter relaxation times is to
bring the forward reaction into the quasisaturation regime where hydrogen has already
piled up considerably in the oxide (assuming for instance a reflecting boundary condition).
However, in addition to the fact that this behavior is not universal, the slope during the
stress phase approaches zero.

14.7.2 Extended Classical RD Models

As the standard form of the RD model has been found to have also limitations during the
stress phase [4,54,60], extended versions have been introduced. However, the question of
whether these extended models are better able to describe the relaxation behavior has so
far only been qualitatively assessed and a rigorous statement is missing. This will be done
in the following.
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14.7.2.1 Two-Region RD Model

First, it has been noted that due to the extremely thin oxides used in modern CMOS
technology, the diffusing hydrogen species may quickly reach the oxide/poly interface
[4]. As a consequence, the degradation will be dominated by the presumably slower
diffusion in the poly gate. We will discuss two variants of RD models extended to account
for such a situation. The first variant assumes the oxide/poly interface to be a perfect
transmitter. At short times the oxide will be filled with H,. At later times, the overall
hydrogen diffusion is dominated by the slower diffusion inside the polygate and the model
behaves just like the standard H,-RD model. One might suspect that the hydrogen stored
inside the oxide, where the diffusivity has been assumed to be larger, modifies the
relaxation behavior. Under certain conditions this is indeed the case, with undesired
properties, though, as shown in Figure 14.13. For large stress times, most hydrogen is
stored in the poly and the model predicts the same relaxation as the RD model. Thus, in
order to see the influence of the two regions we have to look at shorter stress times, in our
particular case ;=10 s and t;=100 s, where the population in both regions is of the same
order of magnitude. However, as show in Figure 14.13, the shape of the relaxation
curve does not agree with measurement data. Furthermore, the shape depends on the
ratio of both reservoir occupancies, which changes with time and consequently results
in a nonuniversal relaxation. We also remark that the assumptions underlying this model
are in contradiction to a study which did not show a dependence of NBTI on the
gate material [61].

14.7.2.2 Two-Interface RD Model

Next, we discuss a two-interface model which can be considered a refined form of the two-
region model. It assumes that atomic hydrogen is released from the silicon/oxide interface
which then diffuses through the thin oxide and depassivates defects at the oxide/poly
interface [4,62]. The creation of defects at the opposite interface is supported by SILC
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FIGURE 14.13

Numerical simulation of a generalized RD model with two different diffusion coefficients in the oxide and poly. For
this particular set of parameters and the small stress time required to bring out this effects, no difference is visible
during the stress phase (a), while the relaxation behavior slows down and displays nonuniversal humps (b). (From
Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)
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Numerical simulation of the two-interface RD model stress (a) and relaxation (b) behavior. Although faster
relaxation than with the standard RD model is possible, the relaxation is not universal and the shape of the
relaxation curve starkly disagrees with measurement data. In order to obtain a visible influence on the relaxation
behavior, the hydrogen stored in both regions has to be of the same order of magnitude, which considerably lowers
the power-law slope during the stress phase. (From Grasser, T, et al., Proc. IRPS, 268, 2007. With permission.)

measurements [4]. The hydrogen from the oxide and the released hydrogen at the oxide/
poly interface diffuse as H, through the poly and result in an overall power-law exponent
of 1/6 at large times. It has been suggested that such a two-interface model may predict
a faster recovery compared to the standard RD model [62]. For this to be the case, the
amount of fast hydrogen stored in the oxide must be of the same order of magnitude
compared to the slow hydrogen stored in the poly. As in the case of the two-region RD
model, it is again possible to modify the relaxation behavior to a certain extent, see
Figure 14.14. In this case the relaxation can be made faster than with the standard RD
model because the fast hydrogen concentration inside the oxide is saturated, resulting in a
shift to smaller normalized relaxation times £ on the universal plot. However, just as with
the two-region model, the resulting relaxation is not universal, as the ratio of these two
hydrogen storage areas changes with time, see Figure 14.14.

14.7.2.3 Explicit H-H, Conversion RD Model

Another variant of the classic RD model aims at improving the model prediction at early
times [54]. This is based on the suggestions that measurements might display a power-law
exponent of 1/3 during the initial stress phase [5,40], which is incompatible with the
standard RD model. This has been explained by an extended RD model which explicitly
accounts for the dimerization of H into H, [5,54],

O — Ko [ — kP, (14.30)

rather than assuming an instantaneous transition, in addition to the diffusion of both
hydrogen species. Depending on the values of kg, and kyy, either pure H or H, kinetics
can be observed. In addition, a regime with the aforementioned transitional power-law
exponent of 1/3, which eventually changes to 1/6, is possible. Since recent measurements
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FIGURE 14.15

Numerical simulation of a generalized RD model with explicit H to H, conversion. (a) Depending on the choice of
parameters, the model gives power-law exponents known from the H and the H, models during the stress phase,
in addition to a transitional region with 7 =1/3. (b) Since the model remains within the boundaries set by the pure
H° and H, model (which are equal during relaxation), the overall relaxation behavior cannot be influenced by any
of the available parameters. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)

give a long-term exponent closer to 1/6 than to 1/4, the parameters have to be chosen in
such a way that the total amount of stored [H;] is much larger than [H]. One might
conclude from this that the two distinct reservoirs of H and H, may allow for a modified
relaxation behavior. However, this is not the case for the simple reason that the model stays
within the limits set by pure H and H; behavior, just as during the stress phase. Since the
relaxation of both species is practically equivalent, no influence on the relaxation behavior
is obtained from such a model, see Figure 14.15.

14.7.2.4 Vanderbilt Model

By employing first-principles calculations, Tsetseris et al. [48] investigated the electrochem-
ical reaction (Equation 14.20), which is one of the foundations of the RD model. They found
an activation energy of about 2.4 eV, in agreement with measurement data [63]. Such a
barrier is way too large to allow the bond to be broken during typical bias temperature
conditions. Although the presence of holes lowers the activation energy to values around
2.1 eV, this value is still too high for a relevant contribution. Consequently, they suggested
an alternative reaction triggered by protons supplied from the semiconductor bulk

H™ +Si— H=Si"+ H,. (14.31)

Provided H™ is readily supplied from the bulk, the differential equations resulting from
Equation 14.31 combined with the standard diffusion Equation 14.22 are from a mathe-
matical point of view equivalent to the equations resulting from the standard RD model
for atomic hydrogen diffusion [62]. Consequently, the model predicts a slope of 1/4 and
the same relaxation as the RD model and can therefore not be used in this form to
explain NBTL.
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14.7.3 Final Notes on RD Models

We have shown that irrespective of the extensions applied to the RD model, the recovery
behavior observed during measurement cannot be described with the published RD
variants in their present form. The fact that some OTF measurements and the corrected
MSM measurements give exponents of around n=0.15, which is close to the value
predicted by the Hy-based RD model (1 =1/6), should not let one arrive at the conclusion
that the RD model is consequently reasonable. In particular, we think one has to be
extremely cautious with a point of view that the RD model correctly covers the stress
part while only the relaxation part needs to be refined. The point to make here is that the
1/6 exponent during the RD stress phase is a result of a delicate interplay between the
forward and backward reaction [5]. Without the backward reaction, which dominates
the time evolution by inserting the diffusion-limited component into the RD model, the
forward reaction alone would result in n=1. It is only during relaxation, where the
forward rate is suppressed, that the poor performance of the RD reverse reaction becomes
visible. Consequently, we do not see any reason to believe the very same reverse reaction to
be valid during the stress phase to constructively change the reaction-limited exponent of
n=1 to the proposed diffusion-limited value of n=1/6.

14.7.4 Dispersive NBTI Models

It has been clearly shown in the previous sections that the RD model predicts 80% of the
relaxation to occur within three to four decades, while in reality relaxation is observed to
span more than 12 decades [9,14,21]. This indicates some form of dispersion in the
underlying physical mechanism(s). Various forms of dispersion have already been intro-
duced into NBTI models based on either (1) diffusion [12-14], (2) hole tunneling from/into
states in the oxide [16], and (3) reaction rates at the interface [11,64]. The models suggested
to capture these mechanisms will be benchmarked in the following using the universality
as a metric.

14.7.4.1 Reaction-Dispersive-Diffusion (RDD) Models

First, we consider generalized RD models based on dispersive transport of the hydrogen
species [14,65]. These models are obtained by replacing the classic drift-diffusion Equation
14.22 in the RD model by its dispersive counterpart. Several different variants of dispersive
transport equations have been used for the formulation of NBTI models [10,13,14]. It can be
shown that the transport models themselves give practically identical results and that the
differences in the final model prediction can be traced back to different assumptions used
for the boundary and initial conditions [59].

These differences are best studied using the dispersive multiple-trapping (MT) transport
equations [66-68]. In the MT model the total hydrogen concentration H consists of hydrogen
in the conduction states H. and trapped hydrogen as

Hxt) = Ho(x,t) + J p(x,Et)dE,, (14.32)

with p(x,Eyt) being the trapped hydrogen density (cm > eV ') at the trap level E,. Trans-
port is governed by the continuity equation and the corresponding flux relation:

%ij — _V.F 4G (14.33)

© 2008 by Taylor & Francis Group, LLC.



Note that in contrast to Equation 14.22 the time derivative of the total hydrogen
concentration is used in Equation 14.33, which also accounts for the exchange of particles
with the trap levels. The occupancy of the trap levels is governed by balance equations
which have to be solved for each trap level

E.—E;
kBTL

Op(Er) _v

or = N (8(E) — p(E))He — vexp (— >p(Et>, (14.34)

with v being the attempt frequency, N, the effective density-of-states in the conduction
band, and E. the conduction band edge. An exponential trap density-of-states is commonly
used [14,68]:

N, E. — E
S(Ey) = E, ©P < E; ) (14.35)

which, in this particular context, results in a power law [14,67] for the time-dependence of
ANj;. It is also worth recalling that the transport will only be dispersive for Ey > kgT1, that is,
for sufficiently deep trap distributions [68].

As the MT equations are rather complex and can in general only be solved numerically,
simplified equations have been derived by Arkhipov and Rudenko [68,69]. Their approxi-
mate solution relies on the existence of the demarcation energy,

Eq(t) = Ec — kgTy log (vt), (14.36)

separating shallow from deep traps and was derived to describe the broadening of an
initial particle distribution in the conduction band, see Figure 14.16. This is not the case
during NBT stress, however, where we have to deal with a continuous generation of
particles at the interface during the stress phase. An extended model suitable for NBTI

E

o el R ol Y Vol B

Shallow

FIGURE 14.16

Schematic illustration of MT dispersive transport. Particles from the conduction band fall into the traps and are
thermally reemitted into the conduction band. Reemission is more likely for shallow traps. The time-dependent
demarcation energy E4 separates shallow from deep traps. With time, the demarcation energy becomes
more negative, until the bottom of the trap distribution is reached (Eq — Enn) and equilibrium is obtained.
Before equilibrium, the motion of the particle packet slows down with time. Note how the individual trap levels,
which microscopically correspond to the different energy levels of hydrogen in an amorphous material, are
approximated by a macroscopic density-of-states. (From Grasser, T., et al., Trans. Dev. Mater. Reliab., 8(1), 79,
2008. With permission.)
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has been derived in Ref. [59] which, in the highly nonequilibrium regime, describes the
overall motion as

t
H(x,t) — Ho(x) = =V - F(x,t) + JGC(x,t’)dt’, (14.37)

to

with the effective flux of the total concentration of the species H given by
EOX
F(x,t) = —Dc7(t) <VH - ZV—H>. (14.38)
T

Note that Equation 14.37 is basically the time integral of Equation 14.33 and thus does not
contain a time derivative anymore. This is a consequence of the fact that the dynamics of
the system can be incorporated solely into 7(t), which directly depends on the hydrogen
trap density-of-states and the demarcation energy as

1 Ea(®)
14

— = E\dE;. 14.39
5 | sExE (1439)
This is a characteristic feature of any adiabatic process, where the time-dependence of the
whole system is determined by the slowest process, in our case, the thermal equilibration
of hydrogen [70]. For the particular case of an exponential trap density-of-states as in
Equation 14.35, 7 can be evaluated in closed form to

(0 = 0", (14.40)

with the dispersion parameter
o = kBTL/EO. (14.41)

It is also worth pointing out that by introducing a time-dependent diffusivity D(t) = D.7(t),
under certain circumstances a link to empirical dispersive transport models can be estab-
lished [59].

Of particular interest for the derivation of NBTI models is the concentration of the mobile
hydrogen H,, which is directly linked to the total hydrogen concentration H as

Ar(H(x,t)

HC(xlt) = at

(14.42)

This relation will be used for the formulation of the different NBTI boundary conditions.
In order to obtain an NBTI model, the dispersive transport equation has to be coupled to
the electrochemical reaction assumed to take place at the interface. For the present analysis
we remark that the macroscopic hydrogen trap density-of-states is derived for an amorph-
ous bulk material and is unlikely to be valid close to an interface. In that context, the
physical mechanisms justifying the conduction band concept in conjunction with hydrogen
hopping next to the interface need to be evaluated and justified. Published dispersive NBTI
models, however, are based on the validity of this concept, and the different interpretations
explain the discrepancies in these models. As in the RD model, the kinetic equation
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describing the interface reaction is assumed to be of the form Equation 14.21. Also, the
interface reaction is assumed to be in quasiequilibrium.

A crucial question for the formulation of dispersive NBTI models is how to link it to the
interfacial hydrogen concentration Hj. In the following, we will consider two different
models. The first assumes that H;; is given by the total hydrogen concentration H. Thus, in
the RD regime one obtains for neutral particles [14,59]:

1/(2+2a)
AN;(t) = Arp (% %) (vt)/ @2, (14.43)
t

with the same prefactor Agp as in the RD model given through Equation 14.26. For atomic
hydrogen (a2 =1) the exponent is given through n =a/4 while molecular hydrogen (a2 =2)
gives n=a/6 (Figure 14.17).

For the proton, one can show that [14,59]

D N Eox\"?
N > (vt)*/? (14.44)

ANit(t) = Arp (7 ﬁt 7T

holds. Note that the numerical solution for H" may contain a transitional regime with
n=a/4, where the diffusive component still dominates.

Since a equals 1 in the diffusive limit and 0 in the extremely dispersive case, Equations
14.44 and 14.43 imply that with dispersive transport an exponent smaller than the RD
exponents of 1/2, 1/4, and 1/6 can be obtained. Also, for increasing trap density N, the
total amount of degradation decreases.

A qualitative explanation for the reduction of the exponent can be given by noting that
dispersive transport results in most particles being trapped close to the interface, yielding a
steeper profile compared to classic diffusion. As all hydrogen is available for the reverse
rate in Equation 14.21, the net interface state generation is suppressed, resulting in a
smaller exponent.
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Since the dispersion parameter a depends linearly on the temperature, a linear tempera-
ture-dependence of the exponent is obtained as [14]:

o kBTL
_ _ _ 14.4
M= 20 T 2E(1 +a) (1445

This is consistent with experimental results obtained with delayed measurements [8,14].

The previous model was based on the assumption that all hydrogen, mobile and
trapped, can participate in the NBTI reverse rate. In contrast, if we now assume that only
the mobile hydrogen can participate in the reverse rate, that is, H;; = H.(0), which appears
to be the more natural boundary condition for the MT model [71], one obtains for neutral
particles

B [)C N, 1/(2+2a) 14a 1/(1+a) (—a/2/(L4)
ANﬂ(t) - ARD (7 ﬁc) m (Vt) . (1446)

For atomic hydrogen, the exponent n=1/2—a/4 is obtained while H, results in
n=1/3—a/6. Hence, for increased dispersion the exponents become now larger than
their RD equivalents. Furthermore, when the trap density is increased, the degradation
increases. This is in agreement with the previously stated result that the inclusion of traps
into a standard RD model increases the exponent [29,72].

Interestingly, for H" one obtains [59]:

kaO &)l/ztl/2 (1447)

ANj(t) = (Zk—IDC Ve

with an exponent n=1/2. This is equal to the result obtained by the standard RD
model [59].

Again, qualitatively, in this model the newly released hydrogen quickly falls into the
traps, but for times larger than 1/v most hydrogen resides in deep traps and is therefore not
as easily available for the reverse rate in Equation 14.21. This suppresses the reverse
reaction and consequently enhances the net interface state generation and results in a
larger exponent.

In contrast to the total hydrogen boundary condition, now the exponent decreases with
increasing temperature through

L 1-a2 2k kT 1
27 1+a  2E(+a) 1+a

. (14.48)

This is in contradiction to currently available observations [8,14,20]. Note, however, that
this particular temperature-dependence is a consequence of the exponential trap density-
of-states and a hardly noticeable temperature-dependence has been reported [29] using a
Gaussian distribution on top of the exponential density-of-states.

14.7.4.2 Dispersive Pre-RD Regime

For the case that a large initial concentration of interface states is allowed, the pre-RD result
(Equation 14.27) can be directly transferred to the dispersive case and one obtains for the
total-hydrogen-boundary-condition [59]:
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ANy (t) = Ap (& &> (wt)*/2. (14.49)
14 Nt

For the proton one obtains

ANy (t) = Ap <D° Ne E"> (vh)“. (14.50)

v N t VT

As before, the exponents n=a, a/2, and «/2 for H, H° and H, reduce to their pre-RD
equivalents 1, 1/2, and 1/2 for « =1. Also, the exponent increases linearly with tempera-
ture similarly to Equation 14.45, and the same compatibility to measurements is given.

Interestingly, it can be shown that Equation 14.50 is equivalent to the Zafar model, which
also has a slope n=a rather than n=a/2 as obtained in the RD regime [59]. For an
intermediate concentration of interface states, the transition between the pre-RD and the
RD regime is shown in Figure 14.18.

14.7.4.3 Relaxation as Predicted by the RDD Models

A previous analysis of the relaxation behavior predicted by dispersive transport equations [14]
was based on various assumptions (such as pulse-like excitation [65], uncertainties in
the boundary conditions [65], and a neglected history of previously trapped hydrogen
atoms during relaxation) which led to only approximative solutions. As it turned out, a
more rigorous analytic derivation is rather involved. An approximation for £ <1 (f, <t,, as
normally encountered during typical MSM measurements), is given by Equation 14.11
with B and B depending on the boundary condition and the dispersion coefficient «.
Interestingly, for £>1 the behavior changes and different values for B and B8 have to be
used (cf. Figure 14.19).

In order to avoid any uncertainties inherent in approximate analytical solutions, we
numerically solve the full time-dependent multiple trapping model [66] to allow for an
accurate description of both the stress and the relaxation phase. The results shown in
Figure 14.19 display a much broader range of possible relaxation characteristics compared
to classic diffusion. Nevertheless, the dispersive transport models in their present form are
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FIGURE 14.19

Relaxation as predicted by the full numerical solution of the dispersive transport models for various values of the
dispersion parameter a. (a) Shows the universal relaxation function r(¢) while (b) shows 1/r(¢)—1 which should be
close to a straight line according to Equation 14.12. Also shown are the data from Reisinger as a reference. The
model with H;,= H,, always stays below the diffusive (RD) limit, while the model with H;;=H. always stays
above. The diffusive limit is like a watershed which cannot be crossed by either model. Also note that the H;; = Hiot
model appears to have a limit different from unity for £=0, which is a result of an extremely fast relaxation
triggered by the hydrogen stored right at the interface. Note that this component is not universal. (From Grasser,
T., et al., Proc. IRPS, 268, 2007. With permission.)

not able to fully explain the experimentally observed relaxation on their own. They might,
however, be combined with a hole trapping model in order to account for a slow component
during relaxation. Note that the standard RD model is an unlikely candidate for this
slow component since any contribution would be negligible for large relaxation times.

Also note that the H;; = H model appears to have a limit different from unity for #(€ — 0).
This is a result of the extremely fast relaxation triggered by the hydrogen stored directly at
the interface. The exact shape of this initial hump (not shown) depends on the stress time and
the width of the interfacial layer, thereby rendering this model nonuniversal.

14.7.4.4 Dispersive-Rate Coefficients

Next we consider reaction-limited models using a dispersion in the rate coefficients [11,64].
This is based on the observation of Stesmans et al. [35] who could best describe the
dissociation kinetics of hydrogen-passivated Py, centers at the interface using first-order
kinetics and a Gaussian distribution of interface states. A similar observation was
made regarding the passivation of P,y and Py interface defects [34]. Huard et al. [11]
base their permanent component on such a dispersive forward rate, assuming that the
generated interface states do not relax at all, or at least not at shorter and medium
relaxation times [73].

The model derivation uses the RD interface reaction given in Equation 14.21. In contrast
to the RD model, however, it is assumed that the generated interface states are permanent.
Thus, k. can be set to zero and Equation 14.21 has the solution:

Nit = No(1 — exp (— ke(Eq)1)). (14.51)
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By invoking the Arrhenius law for the rate coefficient k;, one obtains the forward rate as a
function of the dissociation energy Eq4 as

E
ke(Eq) = kio exp <— ﬁ) . (14.52)

Assuming a distribution of dissociation energies given by the Fermi-derivative function
(Equation 14.5), which, in contrast to a Gaussian distribution, allows for a closed form
solution, one obtains by summing the individual contributions

AN
No

= JSP(Ed,Edm)(l — exp (—ke(Eq)t))dEq. (14.53)

This integral can be approximated by realizing that Ny(Eq) is close to unity below E*(t) =
kgT1In(ket) and zero otherwise. One can thus approximately write

A E*(t)
Ni¢

~ Eq)dEq =
e | srEadEs

0

(14.54)

.
RO

with 7 = kal exp (Eam(Eox)/ksTr) and a =kgT /oy Note the similarity with the relaxation
expression (Equation 14.12) and the correspondence between E* and the demarcation
energy in the dispersive multiple trapping equations. The median dissociation energy
Eam was assumed to depend on the oxide electric field in order to accommodate for the
reported field dependence. For short stress times, the above simplifies to a power law

ANit(t) = AZ\]it,max (:_) . (1455)

Again, as with the dispersive transport model, a temperature-dependent slope is obtained.
The analytic solution (Equation 14.54) is compared to the numerical solution in Figure
14.20, where excellent accuracy is obtained for o¢> 0.12, which corresponds to a <0.21,
and is thus well within the required regime.

In the above model the backward rate was assumed to be negligible, resulting in an
unrecoverable degradation of ANj. In order to generalize this model to allow at least for
some recovery, one has to account for the reverse rate in Equation 14.21. In contrast to the RD
model, however, where the diffusion of the hydrogen species eventually limits the reverse
rate, it is now assumed that hydrogen at the interface is readily available. Formally, this
may be done by setting H;; constant in Equation 14.21, equivalent to a large background
hydrogen concentration. The solution of Equation 14.21 with k, # 0 is readily obtained as

ka(Eq)

Ni(t,Eq,Ea) = No ka(Eg) + ka(E.)Hi (

1 — exp (~ka(Eq)t — ka(Ea)Hutt)), (14.56)
with the overall time evolution of Nj; given through
Niu(t) = [ dEa [ AEN(tEa Eo)go(Ea Eam)go(En Eam). (14.57)

A numerical solution of Equation 14.57 is given in Figure 14.20 for varying parameters
o¢ and o,. Obviously, the introduced reverse rate strongly influences the stress phase.
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During the relaxation phase an apparently very flexible model behavior is observed and
the model can be nicely fit to a single relaxation curve. Unfortunately, however, the
excellent fit during the single relaxation phase adversely affects the quasi-power-law
exponent during the stress phase which reduces to very small values (n =~ 0.03). Further-
more, the model does not scale universally as demonstrated in Figure 14.21.

14.7.4.5 Simple Dispersive Hole Trapping Model

In addition to the creation of interface states, trapped charges have been made responsible
for the observed threshold voltage shift during NBT stress. In particular, it has been argued
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FIGURE 14.21

The dispersive rate model can be fit to an
individual relaxation curve, t;=100 s in this
case, but does not scale universally. In add-
ition, the calibrated model gives a rather
strong curvature during the stress phase
with a too small power-law exponent n ~
0.03, the variance of the rate coefficients had
to be set to a value considerably larger than
reported (o5 =0.211 eV and op=0.264 €V,
compare Refs. [34,35]), and in general the
model cannot be fit to both the stress and
relaxation phase.



that these charges are responsible for the fast component observed both during stress and
relaxation [11,16]. A simple phenomenological hole trapping model has been used by Yang
et al. [16] based on a broad distribution of trapping times. It is assumed that hole trapping
occurs over a broad spectrum of capture and release times following first-order kinetics

ap (t/TC/Te) _

1 p
7 - (Not =p) =2~ (14.58)

e

Here, p is the hole concentration of a trap with capture and emissions times 7. and 7., while
Ny is the trap density. In order to fit their measurement data, Yang et al. coupled the two
time-constants via 7, = k7. and employed different capture and release times during stress
and relaxation. The overall time evolution of all trapped charges is obtained by weighing
all contributions using a probability density function in a manner similar to the rate-limited
model (Equation 14.53):

p(t) = de Pt (). (14.59)

The probability density function for the relaxation times was assumed to be given by a log
normal distribution:

1 1 (log(r) — w\*
f0) = e (—E(L O=k) ) (14:60)

The numerical solution of Equation 14.59 is shown in Figure 14.22. Although a fast
component can indeed be formed and a single relaxation curve can be nicely fit, no
universality is observed. Note that this was to be expected due to the mathematical
similarity of Equation 14.59 with Equation 14.53. We remark that this is not in disagree-
ment with the good agreement to the measurement data reported in Ref. [16], but possibly
a consequence of the narrow range of stress times employed in that study.
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14.7.4.6 Detailed Dispersive Hole Trapping Model

A more detailed hole trapping model has been derived by Tewksbury [74] based on a
number of possible transitions from conduction, valence, and interface states into bulk
oxide traps. Its use for NBTI has been suggested by Huard et al. [75] to cover the
recoverable part of the degradation. For the following discussion we limit ourselves to
the component of the model which results from charge transfer from an interface state into
an oxide trap and back to the interface state, the other suggested mechanisms behave
similarly [74] and follow analogously. During stress, the threshold voltage shift due to
trapped bulk charge accumulated via transfer from the interface states can be given as
S(ts) = A In(ts/70s) while the absolute relaxation is given by Ry(ts t,) ~ A In(ts7or/ (t:70s)) and
depends (at least in this approximate form) universally on f./ts. However, using the
previous two relations, the relative relaxation function is given by

b)) ~1—1In (t) In! <t) (14.61)

TOr T0s

which cannot be written as a function of f,/f, and is consequently not universal in our
sense. The full numerical solution of the Tewksbury model is given in Figure 14.23 together
with an excellent fit for a single relaxation curve. However, in order to obtain such a fit, the
logarithmic behavior of the hole trapping component results in a slope close to zero during
the stress phase. Also shown in Figure 14.23 is a permanent component modeled by a
numerical solution of a dispersive forward rate only, as suggested by Huard et al. [75].
Note however, that after a certain stress time the degradation will be dominated by AQj;
and the observed relaxation given only through AQ,x will be minimal. This is also not
compatible with the data at hand where even at large stress times considerable relaxation
can be observed.
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FIGURE 14.23

(a) Behavior during stress as predicted by the Tewksbury model on top of the dispersive rate (Equation 14.54).
(b) Relaxation predicted by the Tewksbury model. The model can be fit to the data for an individual relaxation
curve, here again at 100 s, but does not scale universally. Also, the excellent fit comes at the price of a very small
power-law exponent at early times during the stress phase, in contradiction to Figure 14.4 of Ref. [9]. We were not
able to fit both the stress and relaxation phases with the same set of parameters.
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Schematic illustration of the contribution of two processes to the overall NBTI stress and relaxation characteristics.
Process 1 could be the RD model while process 2 might be a simple hole-trapping process. If both processes are of
the same order of magnitude, as is frequently assumed, the relaxation recorded at short stress times will be
considerably different from a relaxation characteristic recorded at later times, in contrast to measurement data
which are universal for usually employed stress times.

14.7.5 Multiple Mechanisms

Since none of the studied mechanisms can fully capture the universal relaxation, we have
considered various combinations in our numerical framework. In order to obtain a uni-
versal behavior, some points need to be considered. Consider the case that the total
observed threshold voltage shift is the result of two independent mechanisms, that is,
S§ =351+ S,. During relaxation one observes R =S + S, and the normalized relaxation
function is given by r=pry + (1 — p)r, with p=S5;/(S1 + S,). If the two degradation mech-
anisms progress differently with time, p will be a function of t; and r cannot be universal,
see Figure 14.24. We thus conclude that for the relaxation to be universal, the two
mechanisms need to be tightly coupled, that is, S;/S, =const, or at least roughly constant
within the range of measured ¢ and within the measurement tolerance. Alternatively, both
mechanisms could relax equally, 1 ~ 15, or one process could be dominant for the range of
recorded stress times. Finally, one process could be permanent or slowly relaxing, forming
the permanent component identified in Ref. [59] which would have to subtracted from the
total relaxation data in order to study the universally recovering component.

14.8 Conclusions

We have thoroughly analyzed the relaxation of NBT stress-induced degradation using data
from various groups. The observed universal relaxation behavior has been quantified and
modeled using possible empirical expressions. It has been demonstrated that data obtained
via conventional MSM sequences can be analytically described as a function of the delay
introduced during the measurement. In particular, this analytic expression allows one to
reconstruct a corrected degradation curve. Using this corrected curve, it might be possible
to more accurately estimate the time-to-failure.
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We have then used the relaxation behavior and in particular the universality as a
benchmark for existing NBTI models. There we have found that none of the existing
models are capable of reproducing both the stress and the relaxation phase with the
same set of parameters. While the classic RD model scales universally, it predicts relaxation
to occur mainly during three to four decades, in contradiction to detailed relaxation
measurements available in literature which span more than 12 decades. No improvement
could be found in extended RD models using two regions, a second interface, or an explicit
transition from atomic to molecular hydrogen. Models based on an extension of the RD
model with dispersive transport somewhat improve on the situation but are still not able to
cover the whole relaxation regime. Other dispersive models, like dispersive forward and
backward rates or dispersive hole-trapping models allow one to fit an individual relaxation
curve only but are not universal. In addition, we were not able to describe both the stress
and relaxation phase with the same set of parameters. This indicates a significant gap in
our current understanding of NBTL

We particularly wish to point out that it is of utmost importance not to consider the
inaccuracies of existing models during the relaxation phase of secondary importance
compared to the stress phase. The reason for this is only partially related to the frequently
quoted fact that continuous DC stress is rarely observed in a circuit and that duty-cycle
dependent corrections have to be applied. The more important point we want to make here
is that during the stress phase the relaxation mechanism in existing models always
interacts with the degradation mechanism, dominating the overall time behavior during
the stress phase. It is only during the relaxation phase, where the degradation mechanism
is more or less absent, that the relaxation mechanism can be studied in full detail, despite
the difficulties arising during measurements. We therefore stipulate that a more complete
NBTI model needs to focus on the relaxation phase first before attempting to cover the
stress phase as well.

It is also important to stress that the observed discrepancies in the available models with
measurement data do not necessarily indicate that the physical processes involved in
NBTI, predominantly hole trapping and interface state generation, have been wrongly
identified. The main finding of this study is that NBTI relaxation, and consequently the
stress phase, are strongly influenced by physical mechanisms that are not yet fully under-
stood and require a refined set of models.
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