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14.1 Introducti on

Ne gative bias temperat ure instabil ity (NBTI) has been known for 40 year s [1] and is
attra cting an ever gro wing industrial and scie nti fic attentio n as one of the mo st impo rtant
reliability issues in modern complementary metal-oxide semiconductor (CMOS) technology.
It affects mostly p-metal-oxide-semiconductor field-effect transistors (pMOSFETs) at elevated
temperatures with a large negative voltage applied to the gate. While the typical NBT setup
requires the other terminals to be grounded, an application of a larger voltage at the drain
creates interesting mixed patterns with hot-carrier degradation (HCI) and a large voltage at
the bulk contact can be used to investigate the dependence of NBTI on hot or cold holes.
Altogether, as a result of this stress condition, a shift in the threshold voltage is observed [2,3].
In addition to this threshold voltage shift, other crucial transistor parameters degrade as well,
such as the drain current, the transconductance, the subthreshold slope, the gate capacitance,
and the mobility [2,3].

The evol ution of the thresho ld voltage during stress is commo nly described by a pow er
law of the form:

D Vth ( t ) ¼ A ( T ,E ox ) t n , (14: 1)

with the prefacto r A stro ngly depen ding on the temperat ure and the elect ric field . The
actu al dependenci es of the power-law expo nent n are still not full y clari fied with some
gro ups [4,5] reporting a tem perature- and tech nology-ind epend ent value aro und n � 0.15,
while recent publications show considerably smaller values [6,7]. Alternatively, some
groups have reported a log-like dependency [6,8,9], for instance of the form:

DVth(t) ¼ A(T,Eox) log (1þ t=t), (14:2)

at le ast at ear ly times. A typical scenar io is dep icted in Figu re 1 4.1 where the same data are
shown once on a lin–log and on a log–log plot. Depending on the accuracy of the initial
threshold voltage determination or, in that example, the initial drain current in the linear
regime, different interpretations seem possible [6].

The detailed microscopic physics behind NBTI are not yet fully understood [10–14] but
the creation of interface states seems to be a universally acknowledged feature of NBTI
[2,15]. A growing number of recent publications, however, attribute at least a part of the
degradation to positive charge generation in the oxide bulk [11,13,16,17]. Possible positive
charges that have been suggested include holes trapped in either preexisting traps [11,16]
or in traps generated by the hydrogen species released during the creation of the interface
states [13].

Other potential contributions to a threshold voltage shift like mobile charges are com-
monly assumed to be negligible for NBTI [2] and the total threshold voltage shift is thus
given by

DVth(t) ¼ �DQit(t)þ DQox(t)
Cox

, (14:3)

with DQit and DQox being the effective charges due to interface and oxide states and Cox the
gate capacitance per area.

The fundamental problem in the context of NBTI is given by the fact that the degradation
created during the stress phase begins to recover immediately once the stress is removed.
This makes the classic measurement technique where the stress is interrupted during the
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 14.1
(a) Degradation of the drain current in the linear regime during stress (VG ¼ Vstress

G ). The measurement is
periodically interrupted to record the drain current around VG¼Vth. The initial degradation appears to be linear
on a lin–log scale and any uncertainty in the initial drain current results in a shift of the whole curve. (b): Same
data on a log–log plot. When the drain current measured at ts¼ 1 ms is directly used for ID0, a power-law exponent
of n¼ 0.11 is obtained. An uncertainty in ID0 of �1% changes the slope to 0.08 and 0.16, thereby making the
interpretation of the data extremely difficult.
extraction of the threshold voltage problematic [9,18]. In particular, the value of the
extracted power-law exponent depends significantly on the delay introduced during the
measurement [5,14,19]. Experimental results obtained with delayed measurements show a
linear increase of the exponent with temperature [5,8,14] with values around 0.2–0.3. In
contrast, temperature-independent exponents in the range 0.07–0.2 have been extracted
from recent delay-free measurements [4,6,20].

Of particular interest is the question related to the origin of this extremely fast relaxation
[9,14,21]. While some authors assume that hole trapping is negligible and both degradation
as well as relaxation are determined by the temporal change of the interface state density
and an associated back- and forth-diffusion of hydrogen [5], others acknowledge at least
partial importance of trapped charges [6,8,13,22]. In the latter case it has been assumed that
trapped charges either form the fast component of NBTI relaxation superimposed onto
some interface defect relaxation [6,22] or are solely responsible for any recovery while
created interface defects do not recover at all [8,13].
14.2 Interface States

The most commonly and earliest reported effect related to NBTI is the creation of defects at
the fundamentally important Si=SiO2 interface. These interface states are often assumed to
be Pb centers [23–25] which are known to have electrically active levels within the silicon
band gap. In particular, for industrially relevant samples with (100) surfaces, two variants
of Pb centers have been identified [24], the Pb0 and the Pb1 center. Both defects are silicon
dangling bonds, with the Si atom backbonded to three other Si atoms [26]. While some
researchers argue that only the Pb0 is electrically active [27], others have observed
additional electrically active peaks which were claimed to originate from Pb1 centers [26].
� 2008 by Taylor & Francis Group, LLC.



A recent study suggests that in nitrided oxides the role of the Pb center is taken over by K
centers, which are silicon dangling bonds backbonded to three nitrogen atoms [28].
K centers are located inside the nitrided oxide, rather than at the interface as Pb centers.
As such, a model relating NBTI to K centers could be different from the available theories,
a question open to future research.

Pb centers are present in a considerable number at every Si=SiO2 interface with a
concentration in the order of 1012 cm�2. During device fabrication these defects have to
be passivated through some sort of hydrogen anneal [2], thereby reducing the electrically
active trap levels to a value below 1010 cm�2. The electrically active trap levels are of
amphoteric nature, meaning that each interface state can accommodate two electrons.
Possible transitions are from the positive to the neutral state (þ=0), which appears as a
donor-like trap level in the lower half of the silicon band gap, and the neutral to negative
charge state (0=�) which is commonly assumed to act as an acceptor-like trap level in the
upper half of the band gap.

Although the PbH bonds obtained after the passivation step are relatively stable, they can
be broken at elevated temperatures and higher electric fields, thus reactivating the electric-
ally active trap levels. In our analysis, wewill denote the time-dependent density of interface
states as Nit(t) ¼ [P�

b]. Depending on the trap occupancy, the initial value of Nit0¼Nit(t0) is
inherently visible in the reference threshold voltage Vth(t0) and the change in the density of
interface states is given through DNit(t)¼Nit(t)�Nit0. It is normally assumed that charging
and discharging of these interface states is very fast, and consequently that the positive
charge in these interface states immediately follows the Fermi-level via

DQit(t) ¼ q
ð
DDit(Et,t)fit(EF,Et,t)dEt: (14:4)

Here, DDit is the time-dependent density of interface states in the units of cm�2 eV�1, which
is by a still to be quantified relation [29] directly linked to DNit(t), and fit(Et) their occupancy
with holes. In addition to the exponential band-tail states of a passivated Si=SiO2 interface,
the Pb centers create Gaussian peaks in the Si band gap where the broadening is probably
linked to the disorder at the interface [30]. As an example, the measured concentration of
Pb0 center s as obtain ed by Ragn arsson and Lundgre n [31] is sh own in Figu re 14.2 fo r an
initially unpassivated interface and after a short hydrogen passivation step. This may
correspond to the inverse process occurring during NBT stress, that is, the relaxation
part which we have argued to be of fundamental importance for the understanding of
NBTI [32]. The measurement data can be nicely fitted by two Gaussian peaks or by using a
Fermi-derivative function [33] (which can be analytically integrated):

gP(Et,EP,s) ¼ 1
s

exp
EP � Et

s

� �

1þ exp
EP � Et

s

� �� �2 (14:5)

as

DDit(Et) ¼ Nit
�
gP(Et,EP1,s1)þ gP(Et,EP2,s2)

�
: (14:6)

Note that in order to fit the data of Ragnarsson and Lundgren, the variances of the two
peaks have to evolve differently in time, with the acceptor-like peaks becoming narrower
sooner (Figure 14.2). In contrast, other groups have reported a similar time evolution
of both peaks [30]. This disorder-induced broadening of the electrical active levels is
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 14.2
(a) Measured density of interface states supposedly related to Pb0 centers before and after a short hydrogen
passivation process [31]. The symbols are the measurement data, the solid lines give the analytic fit, while the
exponential band-tail states are schematically represented by the dotted lines. The donor-like peak is located�0.24 eV
above the valence band edge, while the acceptor-like peak is at �0.85 eV. Note that the variance of the
unpassivated sample is s1¼s2¼ 0.085 eV2 while after the passivation step one obtains s1¼ 0.074 eV2 and
s2¼ 0.062 eV2, a fact to be included into a model. (b) Influence of the interface state occupancy on the observed
threshold voltage shift using on-the-fly measurements. During stress, nearly all interface traps are positively
charged. When a different gate voltage is used during relaxation, only a fraction of the traps are visible which
must be separated from the real relaxation. Schematically shown is the density-of-states typically associated with
Pb0 and Pb1 centers [26]. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)
suspecte d to be clos ely relate d to a disorder- induce d Gau ssian vari ation of the bindi ng
energie s of the Si–H bonds at the int erface [30,34,3 5].

Never theles s, duri ng NB T stress, the Ferm i-level EF is clos e to the valence ba nd edg e and
fit( E t) � 1 throug hout the silicon band gap. Thus, unde r the assu mption that Pb centers
introd uce state s only wi thin the silico n band ga p, see Ref. [13] for a differe nt interpretat ion,
all newl y generat ed int erface st ates D Nit are positivel y charged and one obtain s DQ it (t ) �
q DNit( t ), indep endently of the exact form of the density-o f-states. This is the usu al assump -
tion employed for insta nce in the wi dely use d rea ction –diffu sion (RD) model and quite
reasona ble during the stress phase. Ho wever, in or der to measu re the degrad ation, the
stress is often interrupte d and the vari ous forms of degradat ion are asse ssed usi ng different
poss ible tech niques. Regardless of the actual measure ment techni que employe d, be it a
complete or partial IDVG sweep, single point Vth d e t e r m i n at io n [ 9, 14 ], u l tr af as t p u ls e IDVG [16],
capa citance –v oltage ( CV ), DC IV [36], or charge -pumpi ng (CP) [37] measu remen ts, the trap
occupancy change s signi fi cantly becaus e a different fraction of the traps is charged duri ng
stress and measure ment. Furt hermore , this Fermi-le vel dep endence causes a change in
the subthreshol d slope duri ng ID VG measure ments and humps in the CV charac teristics ,
in con trast to cons tant sh ifts indu ced by fi xed positive charge s, see Figure 14.3 for a
qualit ative des cription.

Alter natively, in the model of Zafar [13], a differe nt interpretat ion is introd uced. Zafar
assume d that a large number of dan gling bonds alw ays exists but that only a fract ion can
be observe d in electri cal m easuremen ts, whil e the maj ority is too clos e to the band -edges to
contrib ute. During NBT st ress the to tal num ber of inter face state s is inc reased and only thi s
increase is visible during measurements. To properly account for this partial contribution
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 14.3
(a) Simulated influence of fixed charges on the IDVG characteristics of a PMOS transistor. (b) Simulated influence
of interface states on the IDVG characteristics of a PMOS transistor. Depending on the form of the trap density-
of-states, a different shift in DVth and a different change in the subthreshold slope are obtained.
of the generated interface states to the observable threshold voltage shift, the occupancy of
the interface states as a function of the Fermi-level position has to be introduced.
14.3 Oxide Charges

On the top of generated interface defects, charge may be stored in existing or newly created
oxide traps. Although some of these traps may still be considered fast, they are more
difficult to charge and discharge, that is, have larger time constants than interface states
due to their location inside the oxide bulk. It has also been suggested that holes trapped in
energetically deep levels give rise to practically permanent charge contributions which can
only be neutralized through the application of unusual bias conditions [38]. Altogether, the
occupancy of oxide traps cannot follow the Fermi-level immediately and DQox(t) will be
governed by different dynamics. The contribution of the oxide charges to the threshold
voltage shift is formally written as

DQox(t) ¼ q
ð ð

DDox(x,Et,t)fox(x,Et,t)(1� x=tox)dxdEt, (14:7)

where
DDox is the spatially and energy-dependent density-of-states in the oxide
fox is the hole occupancy of these traps
tox is the oxide thickness

Note that the issue of whether oxide charges are important during NBTI or not is currently
one of the most debated ones [5,11,13,16]. Also, the question whether DDox consists mainly
of preexisting traps [11,16] or traps that are created during stress [13] remains to be
answered.
� 2008 by Taylor & Francis Group, LLC.



14 .4 Measurement Iss ues

The unde rstandi ng and charac terizat ion of NBTI is con siderably hamper ed by the
dif ficulti es arising duri ng measure ment. Cu rrently, two techniq ues are often used to
charac terize NBT I: the classic measure ment =stress =measu remen t (MSM ) techniq ue,
which is hand icapped by unde sired relaxa tion, and on-the- fly (OTF) measu remen ts,
which avoid any relaxa tion by maintai ning a high stress level throu ghout the measure ment
and directly mo nitor the drain cur rent in the linea r regime , DIDlin . Si nce the thres hold
voltage shift D Vth is m ore suitable to study the creation of charge s, DIDlin has to be
conve rted to DVth which is commonl y done using the simple SP ICE Level-1 model [8] or
an empi rical formal ism [39]. The applicabi lity of the OTF techni que is par ticularl y trouble -
some when on e switche s from stress to relaxa tion. When VG is left at V relaxG , the interface
trap occup ancy is cons iderably lower than during the st ress pha se [29], result ing in
spuriou s additi onal relaxa tion (Figure 14.2). Conve rsely [4], when VG is bro ught back to
V stressG , one faces the opp osite probl em one is trying to avo id duri ng the st ress pha se, since
now additio nal uncon trolled st ress is intro duced duri ng the m easuremen t cycles. Even
more imp ortant is the fact that the initial value of IDlin is ext remely dif ficult to determine a s
it is already obt ained at the stress voltage. Conve ntionally , the tim e require d for thi s is in
the milli seconds range where already signi fi cant deg radatio n can be observe d [6] but any
uncertainty in ID0 modifies the time exponent (the slope) of DVth on a log–log plot in a
somew hat arb itrary manner, see also Figure 14.1. This may render m any resu lts obta ined
by the OTF technique questionable.

In contrast, the MSM technique probes the interface under comparable conditions during
both the stress and relaxation phase. In addition, the voltage applied to the gate can be kept
close to the threshold voltage where only negligible degradation can be expected. How-
ever, as has been pointed out [7,32,40], it is probably very difficult to minimize the
measurement delay in such a way that the true degradation is observed.
14.5 Characterization of Relaxation

In order to properly understand and characterize NBTI it is mandatory to take a close look
at the relaxation behavior. Particularly noteworthy are the long tails of logarithmic-like
nature that may cover more than 12 decades in time [9,14,42,43]. In order to formalize the
description, we use the term S(ts)¼DVth(ts) for the real degradation accumulated during
the stress phase. As soon as the stress voltage is removed, relaxation sets in as a function of
the accumulated stress time ts and the relaxation time tr¼ t� ts. In the following, we will
assume that the accumulated degradation S(ts) consists of a recoverable component R(ts)
and a permanent component [8,38] P(ts) as

S(ts) ¼ R(ts)þ P(ts): (14:8)

As the recoverable component depends on the recovery time tr, any measurement con-
ducted with a certain delay tr¼ tM observes only

SM(ts,tM) ¼ RM(ts,tM)þ P(ts) � S(ts), (14:9)

with the subscript M indicating quantities observed in a measurement. Of course,
SM(ts,0)¼ S(ts) and RM(ts,0)¼R(ts) hold.
� 2008 by Taylor & Francis Group, LLC.
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Demonstration of universal recovery for the OTF data of Denais et al [41]. The left figure shows a conventional view
of the fractional recovery as a function of the relaxation time tr. Apparently, data obtained after longer stress times
seem to relax more slowly than data obtained at shorter times. The right figure, on the other hand demonstrates the
universality of relaxation when the relaxation data are normalized to the last stress value and plotted over the ratio
j¼ tr=ts [41]. Also shown are some possible empirical expressions which can be fit to the data. (From Grasser, T.,
et al., Proc. IRPS, 268, 2007. With permission.)
Due to the onset of rec overy which may occur a t tim escales possibly sh orter than nano-
or even pico seconds [7,9], a rigorous character ization of the relaxa tion phase is extre mely
chal lenging [4,21,40 ,41]. Typ ically, the relaxa tion data R( ts ,t r ) recor ded at different stress
tim es ts have been normal ized to the first measure ment point t M as

rf ( t s ,t r ) ¼ SM ( t s ,t r )
SM ( t s ,t M ) 

, (14: 10)

giving the fract ional measu rable recovery, and aligned as a function of the ab solute
relaxa tion time tr [9,14,21 ,40], see Figu re 14.4. The functi onal form of the relaxa tion remain s
elusi ve in such a plo t.

Inste ad, it has been demo nstrat ed that it is highly advantage ous to study the recovera ble
com ponent in its unive rsal represen tation [32] whic h is based on the observat ion that all
indivi dual relaxa tion curves obt ained at different stress tim es ts,i can be represen ted by a
singl e univers al curve when [41]

. Relaxatio n data are normal ized to the last stress value S( ts, i ) ¼ SM ( ts, i ,0) rather than
the first measure ment point SM( t s, i ,t M)

. Relaxatio n tim e tr is normal ized to the last st ress tim e t s, i as j ¼ tr =t s, i

The above results in the de fi nition of the unive rsal relaxa tion function as [32]:

r (j ) ¼ RM ( ts ,tr )
R( ts )

¼ SM ( t s ,t r ) � P( t s )
S( ts ) � P ( ts )

, (14: 11)

which is a fun ction of j only. For the spe cial ca se of a negli gible perman ent component ,
note the relationshi p betwe en the unive rsal rec overy fun ction and the fract ional recovery
given by rf (t s ,t r ) ¼ r ( j ) =r (j M ) with  j M ¼ t M =ts . This concept is visualize d in Figure 14 .5.
� 2008 by Taylor & Francis Group, LLC.
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Schematic view of universal relaxation. The stress is interrupted three times to record relaxation data on the
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the interruption. Note how for larger stress times the relaxation data move to smaller normalized relaxation times
j¼ tr=ts and how the relative recovery becomes less significant. Also indicated is a possible permanent=slowly
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Because the bulk of relaxation data available in the literature do not allow a definite
identification of the permanent component, which requires very detailed data [7], we will
consider the permanent component to be negligible in the following and assume P(ts)¼ 0.
Recent studies have shown how more detailed data allow for a clear identification of a
permanent component and the extension of the method presented here [7,43].
14.5.1 Functional Form of the Universal Relaxation Function

Lacking a universally accepted and valid theory for NBTI, the exact form of the universal
relaxation function r(j) remains illusive at this point and empirical functions have to be
used. So far, excellent results have been obtained with the power-law-like expression:

r(j) ¼ (1þ Bjb)�1, (14:12)

where the parameters B and b are in the range B � 0.3–3 and b � 0.15–0.2 for most of the
data available. Of particular interest is the relaxation predicted by the RD model which is
well described by Equation 14.12 using B¼ 1 and b¼ 1=2. However, we have to point out
that the available data are not conclusive at the time being, making alternative expressions
such as the logarithmic dependence suggested by Denais et al. [41]:
� 2008 by Taylor & Francis Group, LLC.



r ( j ) ¼ 1 � b log (1 þ B j ), (14: 13)

or the freq uently used st retched -exponent ial [44]:

r ( j ) ¼ exp ( � Bj b ) : (14: 14)

viable altern ativ es as well [32]. We remark that Equatio n 14.13 is nonp hysical at larger
tim es, mak ing a reformu lation mandatory.

On e dif ficulty in determi ning the corre ct cho ice of the empi rical function is the fact that
relaxa tion may occ ur over more than 12 decade s in time [9]. As the dela y times in
conve ntion al measure ments are around 1 ms and relaxa tion data are not no rmally
rec orded fo r tr > 10 5 s, only eight decad es in tim e is commo nly availabl e. By empl oying
fast measu remen ts which start at tr ¼ 1 m s 12 decad es has been repo rted [42]. Intere stingly,
the measu remen t dat a availabl e beha ve logari thm-lik e over most of the rec orded regime
and exc ellent fi ts with Equations 14 .12 throu gh 14.14 can be obta ined [32]. On ly mo re
detailed relaxation data and a solid theoretical description will allow to differentiate
between possible expressions which differ mostly in the behavior at extremely short and
long times. This is illustrat ed in Figure 14.4 where poss ible empi rical express ions for the
universal relaxation function are compared. All expressions can be fit to the measurement
data and give fits of practically the same accuracy. However, they result in different
extrapolations for large and small relaxation times, the consequences of which need to be
carefully investigated.
14.6 Characterization of MSM Data

Although more delicate to apply, universal relaxation is of particular interest for data
obtained by the MSM technique. For the normalization needed in Equation 14.11 one has to
keep in mind that the value of S(ts)¼RM(ts, 0) is essentially unknown, one only knows
RM(ts, tM) determined at the first measurement point available after a short but probably
nonnegligible relaxation period tM. However, making use of the universal relaxation
expression 14.11 and assuming for the time being that r(j) is known, S(ts)¼RM(ts, 0) can
be obtained as

S(ts) ¼ R(ts) ¼ RM(ts,tM)
r(tM=ts)

: (14:15)

Inserting the above into the universal relaxation relation 14.11 we obtain

r(j)
r(jM)

¼ RM(ts,tr)
RM(ts,tM)

: (14:16)

From Equation 14.16 the as of yet unknown parameters B and b can be easily determined
from a measured sequence of relaxation data R(ts,i, tr) obtained after N stress intervals ts,i,
by minimizing for instance

«t ¼
XN
i¼1

ð
r(tr=ts,i)
r(tM=ts,i)

� SM(ts,i,tr)
SM(ts,i,tM)

� �2

d log (ji): (14:17)
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Note that the parameter extraction is independent of the functional form of R and that the
final form of R is directly related to the measurement data through the universal relaxation
relation as R(ts)¼RM(ts,tM)=r(tM=ts) [32].

Naturally, in contrast to data obtained by OTF measurements where RM(ts,0) is known,
the analytical expression determines the final value of RM(ts,0) through the extrapolation
given by Equation 14.16. This results in a floating behavior of r(jM) which reflects the
uncertainty of this approach [32].

A particularly intriguing feature of Equation 14.16 is that it can be applied to a whole
sequence of stress and relaxation sequences as typically encountered duringMSMmeasure-
ments. This is because during MSM sequences the duration of the stress intervals
usually grows exponentially while the measurement interval tM is short and of constant
duration. This implies that after a certain stress time, which we determined empirically to
be of the order ts >� 10� tM, the relaxation during the measurement does not significantly
alter the degradation at the end of each stress phase, meaning that the degradation relaxed
during each measurement interval is mostly restored during the next stress phase. This is
in agreement with the reports of Reisinger et al. [9] who report that ‘‘the sample completely
forgets the effect of the interruption’’ provided the stress phase following the interruption
is by a factor of 100 longer than the interruption.

Consequently, Equation 14.15 holds for every stress point ts, where ts is now the
accumulated net stress time. The applicability of the procedure outlined above to the
detailed relaxation data published by Reisinger et al. [9] and for the IMEC data other-
wise published in Ref. [14] is outlined in Figure 14.6. For the IMEC data the universality is
also shown at three different temperatures, 508C, 1258C, and 2008C.
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FIGURE 14.6
(a) Application of universal relaxation to the fast MSM data obtained by Reisinger et al. [9]. Depending on the
choice of the universal relaxation function, the individual data points can be mapped onto the respective universal
curve, in this case Equation 14.12. Note the linear behavior of 1=r� 1 shown in the upper plot. The slight deviation
for j> 102 is introduced by a permanent component P(ts), see Ref. [43]. (b) Same as (a) but with data from IMEC
[14]. Relaxation data of three devices stressed in a single MSM sequence were recorded at 10 different stress
times in the interval 10–104 s at three different temperatures. The values of B and b (given in parenthesis) depend
on the temperature, b even in a nonmonotonic manner which may indicate the existence of two different processes
with different temperature dependencies. (From Reisinger, H. et al., Proc. IRPS, 2006.)
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Unive rsal relaxa tion thus result s in the inter esting possibi lity to rec onstru ct the true
(und elayed) measure ment curve from del ayed dat a sets. Th is sugg ests a novel measu re-
men t techni que:

(1A) De termine RM ( ts ,t M ) usi ng a singl e del ay time and add a long relaxa tion pe riod at
the end. In case a permanen t component is present, multi ple devi ces can be
sub jected to different stress inter vals for an accurate dete rminatio n of the tim e-
dep endence of P [7].

(1B) Al ternative ly, one may determi ne RM ( ts ,t M ) usi ng differe nt dela y tim es. This
app roach probabl y only work s for stress cas es were neglig ible permanen t degrad-
ation is cre ated [7].

(2) Fro m that data determi ne B and b.

(3) Fina lly, calcul ate the true degrad ation using Equati on 14.15.

Variant A, where B and b have been obtained from detailed relaxation data, has already
been demonstr ated in Figure 14.6. Ho wever, the met hod a lso works for MSM dat a
obtained with different delay times where no relaxation data are available (Variant B). In
that case the parameters A, n, B, and b can be directly extracted through fitting of Equation
14.18. This is demonstrated in Figure 14.7 for the data published by Li et al. [45]. Again, the
extracted parameter values agree very well with the cases where we had access to the full
relaxation data.
14.6.1 Influence of Measurement-Delay on the Power-Law Parameters

Next, we show that the universal relaxation expression naturally connects individual stress
curves obtained using the MSM technique with different delay times. For simplicity,
we assume that the true degradation behavior follows a power law as S(ts) ¼ Atns and
that the universal relaxation is given by Equation 14.12. Due to the measurement delay one
observes instead of the power law

SM(ts,tM) ¼ S(ts)r(ts,tM) ¼ Atns
1þ B(tM=ts)b

: (14:18)
FIGURE 14.7
Reconstruction of the true degradation from
MSM data obtained by Li et al. [45] with four
different delay times without the knowledge of
the detailed relaxation behavior. Again, a cor-
rected slope of about n � 0.15 is obtained. Note
that even at ts¼ 104 s the lines do not merge and
the impact of the delay is still clearly visible.
(From Grasser, T., et al., Proc. IRPS, 268, 2007.
With permission.)
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FIGURE 14.8
Comparison of the analytic model for MSM measurements based on the universal relaxation to the data of
Reisinger et al. [9] (a) and Kaczer et al. [14] (b). Excellent accuracy of the analytic model is obtained for all
available delay times. In addition, the true NBTI degradation can be recovered by extrapolating to tM ¼ 0 s. (From
Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)
Equatio n 14.1 8 is validate d against the In fineon a nd IME C data in Figure 14.8 where the
parame ters B and b are given by the universal relaxation law. The anal ytic expre ssion 14.18
exactl y reprod uces the del ayed measure ment result s for vari ous delay tim es tM and
there by convincin gly con firms our assump tions sta ted abov e.

As a consequ ence of the measu remen t delay, the obse rved pow er-law exponent nM will
be tim e-depende nt and give n throu gh Equatio n 14.18 as

nM ( t s ,t M ) ¼ n � r 0 ( t M =t s )
tM =t s
r

¼ n þ bB

B þ ( ts =t M ) b 
, (14 : 19)

with r 0 ( j ) ¼ @ r (j ) =@ j .
It is worthwhile to point out that although many groups report a constant measured power-

law exponent over three to four decades which varies as a function of the temperature and
delay time, this can of course only be approximately correct. The fact that all curves obtained
with different delay times have to merge at larger times, makes a time-dependent slope a
necessity. However, depending on the actual values of B and b this time-dependence will be
more-or-less visible in a log–log plot. In general, the smaller b, the less visible the time-
dependence will be. A comparison of measured power-law exponents as a function of the
delay time tM and temperature is given in Figure 14.9. Most of the data show an apparently
constant power-law exponent (within the measurement accuracy) over three to four decades.
Clearly, the measured power-law exponents, and consequently B and=or b (see Table 14.1),
depend on temperature, on the particular technology, and=or the measurement technique.
14.7 Modeling of N BTI

As has been detaile d in the previ ous sectio ns, the fund amental dilemm a enc ountered
during the develop ment of NB TI mo dels is the ques tion of what exactl y sh ould be
model ed. While conventional models for semiconductor device simulation can rely on a
� 2008 by Taylor & Francis Group, LLC.
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(a) Influence of the measurement delay on the measured slope as reported by various groups [5,10,14,19,45,46].
The solid lines are given by a fit to Equation 14.19 using the parameters in Table 14.1. Note that the strong
temperature-dependence of the reported slopes and that the slopes were found to be constant over three to four
decades in many measurements. Clearly, there is a large spread in the measurement data indicating a technology
dependence. The dotted lines show the slopes predicted by the RD model at ts¼ 100 s and ts¼ 10,000 s. Note that
the RD slope changes considerably within two decades, is per construction temperature independent, and cannot
be adjusted to the technology. (b) Observed slope in a delayed measurement as a function of the measurement delay
[7]. The symbols are themeasurement datawhile the lines give the extrapolation to the true slope using our algorithm.
Note that according to the power-law and stretched-exponential model only for delay times in the picosecond range
the true slope could be measured. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)
rather robust set ofmeasurement datawhich need to be captured by themodels, themodeling
of NBTI has been plagued by a still open definition of what NBTI degradation actually is. The
question of whether the model should result in a power law or a logarithmic evolution of
the threshold voltage, whether it should predict a temperature-dependent slope, or whether it
should relax universally is of fundamental importance to any modeling attempt.

In contrast to previous model validation attempts that have focused almost exclusively
on the stress phase, we put a special emphasis on the analysis of the model prediction
TABLE 14.1

Parameters for Equation 14.19 Used to Fit the Data in Figure 14.9 Assuming ts¼ 1000 s

Reference T N B b

Ershov et al. [19] 105 0.15 (fixed) 1.49 0.179
Kaczer et al. [14] 125 0.15 (fixed) 1.29 0.136
Li et al. [45] 125 0.15 (fixed) 4.08 0.163
Alam et al. [5] 50 0.155 4.79 0.611
Alam et al. [5] 100 0.177 40.23 0.973
Alam et al. [5] 150 0.186 102.2 1.048

Source: From Grasser, et al., Proc. IPRS., 2007, With permission.
Note: The fit was obtained using a fixed n¼ 0.15 with a simple least-square algorithm. However, in order to fit

the data of Ref. [5], which are somewhat different from the other sources considered in this study, n had to
be included as a free parameter. Interestingly, this results in a significant temperature-dependence of the
zero-delay slope, well described by a linear relationship for n reported in Refs. [8,14] for delayed
measurements. Keep in mind that these values should be taken with care, since they were extracted by a
fit to three or four rather inaccurate slope values using two=three free parameters. The inaccuracy of the
slope values is a result of both the measurement uncertainty as well as the time-dependence of the slope.
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during the relaxation pha se. Th ereby two features are of int erest, name ly the large dis tri-
bution of timescal es and the unive rsal beha vior. For the analy sis, the m odels unde r
cons ideratio n have been implement ed into a partia l-differe ntial-equ ation solver and solved
numer ically in order to rule out a ny unc ertain ties related to appro ximate anal ytic expre s-
sions. Si nce mo st of the pub lished NBTI mo dels ca n be deriv ed fro m a generali zed RD
formal ism [7], a short review of the assu mptions empl oyed in this mo del is give n.
14.7.1 Reaction- Dif fusion Models

RD-like mo dels cons ist basical ly of an el ectroche mical rea ction at the semi cond uctor –oxide
inter face which is coup led to a transpo rt equati on in the oxide bulk . We rem ark that
the question s whether the depas sivation process is fi eld-d riven [10,47] , why hole s at the
inter face are requi red and how the y in fluence the reaction [48], and in which charge state ,
neutr al or positive, the create d trap and the released hydro gen species a re, are highly
controve rsial and are put asid e fo r the mom ent. Never theles s, for the discussi on of the
basic prope rties it is instruct ive to write the electroche mical reaction at the interface , which
create s a dangling bond Si � from a pass ivated interface defect SiH, as

Si � H Ð Si � þ Hc þ H t : (14 : 20)

Ther eby we differe ntiate betw een hydro gen in a cond uction =mob ile st ate, Hc , and trappe d
hydro gen [49], Ht. Su ch a distinctio n is importan t, since in dis persive transp ort models
most hydrogen become s trapped quickly and migh t no t be availab le for the reverse
reaction . We also note that a large backgroun d con centration of hydrogen may exis t in
the vicinity of the int erface , poss ibly in the order of 10 19 cm � 3 [50], which, if assumed to be
freely availabl e, coul d dominat e the reverse rea ction and comple tely compensate the
forwa rd reaction in a st andard RD model .

It has been claimed that the binding energies of the Si–H bonds display a Gaussian broad-
ening [8,35]. Previously published dispersive NBTI models consider either a dispersion in the
forward rate [8] or a dispersion in the transport properties [13,14,51]. Models based on these
assumptions will be discussed in Section 14.7.4. In particular, the variations in the energy
barrier for the reverse reaction is important for the investigation of dispersive transport.
14.7.1. 1 Standar d RD Model

In the stand ard RD fo rmulation the dissociati on barri er is con sidered to be single valued
(disp ersion-fr ee) and Ht ¼ 0, meanin g that all released hydro gen rema ins in the cond uction
state . The kinetic equatio n descri bing the inter face reaction is commo nly assume d to be of
the form [46,52,5 3]:

@ Nit

@ t
¼ kf ( N 0 � N it ) � k r N it H 1= ait , (14 : 21)

where Nit ¼ [Si � ] is the interface state densi ty, N0 ¼ [Si –H] 0 is the initial density of passiv ated
inter face defects, Hit is the hydro gen concen tration at the semi cond uctor –ox ide interface ,
kf and k r are the temperat ure and pos sibly field -depen dent rate coef ficients, while a gives
the order of the reaction (1 for H 0 and H þ  , 2 for H2, assumi ng an instantan eou s conve rsion
of H 0 to H2, cf. Ref. [5,46,54 ]). In our conte xt it is impo rtant to recall that the usual
assumptions are that Nit0¼Nit(t0)¼ 0 at the beginning of the stress period and that all
generated Nit contribute equally to the threshold voltage shift. A somewhat unappreciated
featur e of the RD equati ons is, as will be sh own in Secti on 14.7.4.2, that by allowing for a
larger number of initial interface defects, a completely different behavior is obtained.
� 2008 by Taylor & Francis Group, LLC.



Hydrogen motion is assumed to be controlled by conventional drift–diffusion [53]:

@Hc

@t
¼ �r 	 Fc þ Gc, (14:22)

Fc ¼ �Dc rHc � Z
Eox

VT
Hc

� �
, (14:23)

with the (possibly unrealistic) assumption of a negligible initial hydrogen concentration,
Hc(x,0)¼ 0. Hydrogen transport is postulated to occur on a single energy level, which will
be referred to as the conduction state, with Hc, Dc, and Gc the hydrogen concentration,
diffusivity, and generation rate in the conduction state, Fc the particle flux, Z the charge
state of the particle, VT¼ kBTL=q the thermal voltage, TL the lattice temperature, and Eox the
electric field inside the oxide.

The generation rate Gc is given by the interface reaction and reads for the usually
considered one-dimensional problem:

Gc(x,t) ¼ 1
a
@Nit

@t
d(x) (14:24)

with the interface assumed to be located at x¼ 0.
For the calculation of the time-dependent density of interface states, Nit, Equations 14.21

and 14.22 can be solved numerically on an arbitrary geometry. Although the solution of the
RD model depends on the underlying geometry [55], it is commonly assumed that NBTI is
a one-dimensional problem. In particular, for some special cases analytical approximations
can be given [46,56,57] which are helpful for understanding the basic kinetics.

Depending on the parameter values and boundary conditions, different phases are
observed which are shown in Figure 14.10 for the three most commonly used species
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FIGURE 14.10
Five phases of the standard RD model obtained from a numerical solution of Equations 14.21 and 14.22 on a 2 nm
oxide, using the parametersN0¼ 1012 cm�2 andNit0¼ 0. Shown are the results for the three species Hþ, H0, and H2.
The time exponent n¼ 1 is the signature of the reaction-limited phase while n¼ 1=4 . . . 1=2, n¼ 1=4, and n¼ 1=6 are
observed for the three species in the diffusion-limited phase. At the beginning of the diffusion-limited phase Hþ

behaves like H0. Furthermore, in the nonself-consistent simulation, where the feedback of the charges on the field
distribution is neglected, Hþ does not show a soft saturation since all hydrogen is pulled away from the interface.
(From Grasser, T., et al., Trans. Dev. Mater. Reliab., 8(1), 79, 2008. With permission.)
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H þ  , H0, and H2: (1) The reaction -dom inated regime wi th an expone nt n ¼ 1, where the
reverse rate is negl igible due to the lack of availabl e Hit . (2) De pending on the parame ter
value s, a transi tion regime where @ Nit =@ t ¼ 0 which gives an expo nent n ¼ 0. (3) The
quasi equilibr ium regi me where @ Nit =@ t is much sma ller than the gene ration and passiv -
ation terms . This is assu med to be the dominan t regime and displays the charac teristi c time
expone nt depen ding on the created spe cies. (4) A satur ation regime which coul d for
insta nce be a soft saturati on due to a refl ecting bounda ry cond ition or a hard sat uration
result ing from the depas sivation of all passiv ated inter face states [58].

The RD mo del assume s the quasi equilibr ium of the int erface rea ction ( @ Nit =@ t � 0) to be
the dominan t regime [10,13,1 4]. Conse quently , we obtain from Equati on 14.21 together
with the assump tion DNit ( t) 
 Nit0 the standard RD mo del as

DNit ( t ) ¼ A RD C1 =(1 þ a ) ( t ), (14 : 25)

with the species -depend ent prefacto r

ARD ¼ a
kf
kr
DNit, max

� �a� �1 =(1 þ a )

(14 : 26)

and the maxim um valu e of DNit given by DN it,max ¼ N 0 � N it0. For nond ispersive transp ort
C( t ) ¼ Dc Eox t =VT for the proton case whil e C (t ) � ffiffiffiffiffiffiffi

Dc t
p

for the neutr al species H 0 and H2

[10,59] . This results in the well-kno wn expone nts 1 =2, 1=4, and 1=6 for proton , atomi c, and
molecu lar hyd rogen transpo rt, resp ectively. These expo nents do not dep end on tempera-
ture nor is it possibl e to includ e proce ss dependenci es. We recall that such an expone nt of
1=2 obtain ed for Hþ  transpo rt is not obse rved expe rimen tally which led research ers to
discard the poss ibility of driftin g protons.
14.7.1. 2 Pre-RD Regim e

Interes tingly, by all owing a relati vely large initi al concen tration of int erface state s Nit0 and
by assuming DNit(t) � Nit0, a completely different solution is obtained [59],

DNit(t) ¼ APC(t), (14:27)

with the prefactor

AP ¼ a
kf
kr

DNit,max

Nit0

� �a

¼ A1þa
RD N�a

it0 : (14:28)

This regime is termed pre-RD regime [59], because for intermediate concentrations of Nit0

the number of created interface states DNit will eventually become larger than Nit0,
changing the overall behavior to that of the standard RD model. This is demonstrated in
Figure 14.11 fo r the H2-RD model.

In the pre-RD regime the exponents have the values 1, 1=2, and 1=2 for proton, atomic,
and molecular hydrogen transport, respectively. Note that these exponents do not depend
on the kinetic exponent a as in the standard RD model. For classic drift–diffusion, these
resulting exponents are not compatible with measurements. However, as has been shown
[13,59], the introduction of dispersive transport can bring the exponents within the
observed ranges.
� 2008 by Taylor & Francis Group, LLC.
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simulations. (From Grasser, T., et al., Trans. Dev. Mater. Reliab., 8(1), 79, 2008. With permission.)
The assump tion DNit( t ) � N it0 has origi nally been introd uced by Zafar [13]. This is
based on the (actual ly mandato ry) notion that the occ upancy of the inter face states
dep ends on the pos ition of the Ferm i-lev el and that not all inter face state s are electri cally
acti ve. In thi s context N0 is now the maxi mum num ber of hydro gen bindi ng sites rather
than the maximu m numb er of electri cally obse rvable inter faces states in a comple tely
dep assivated sam ple.
14.7.1. 3 Relaxa tion a s Predi cted by the RD Mo del

As soon as the stress condition is rem oved, the forward -rate of the RD model is a ssumed to
be neglig ible. Just like during the stress pha se, the reaction is in quasi equilibr ium, resultin g
in the left-h and sid e of Equatio n 14.21 to become very sm all. Wit h kf � 0, the actu al value s
of kr and Dc become irrelev ant, exc ept fo r a very shor t and insig nificant reaction -limite d
initial pha se. In additi on, the spec ies type has no in fluence on the relaxa tion and the overal l
beha vior is again diffus ion-limit ed. Co nsequen tly, the RD model predic ts a universal
relaxa tion pra ctically inde pendent of the species (H and H2) as

r ( j ) ¼ 1=(1 þ j 1= 2 ) : (14: 29)

This analy tic express ion is compared to the numer ical resu lts for both species in Figu re
14.12. Also shown is the measure ment dat a of Reisinge r et al. [9]. It is worth while to reali ze
that the relaxa tion predic ted by the RD mo del doe s not dep end on any mo del par ameter s.
Consequently, it must be clearly emphasized that since the relaxation predicted by the RD
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 14.12
(a) Comparison of two analytic expressions for the RD relaxation behavior with numerical results obtained for H
and H2 kinetics. The power-law-like expression is accurate for all relaxation times and will be used as reference
throughout this work. Also shown is the analytic expression derived in Ref. [56]. Due to the lack of parameters
there is no way to fit the measurement data with the RD model. (b) Influence of the measurement delay tM as
predicted by the RD model. Comparison of the analytic model (lines) with the numerical solution (symbols)
proves the excellent accuracy of the analytic model for t > tM . Note that the RD model predicts a very small
influence of delay for longer stress times, in contrast to Figure 14.8. For the sake of comparison, a more realistic
influence of the measurement delay is given by the dotted lines, obtained with typical parameter values B¼ 3
and b¼ 0.18. There the individual curves obtained with different delay times remain clearly separated even
after ts> 103 s. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)
model cannot be made to depen d on gate bias, tem perature , and proces s cond itions, in
stark contradi ction to Figu re 14.9, there is no way to fit the availabl e measu remen t data . In
partic ular, b ¼ 1=2 is m uch larger than observe d expe rimen tally, leadin g to a relaxa tion
which is too slow in the begi nning and too fast in the end. Th is is clearl y visi ble in Figure
14.12 where most of the relaxa tion occurs within three to four decad es whereas the
measure ments show relaxa tion over 1 2 decade s. Conse quence s of thi s erroneous relaxa tion
predic tion are a hea vily time-dep endent but temperat ure-ind ependen t slope in the RD
simulat ed del ayed measure ments, and a va nishing in fluence of the dela y on the measu re-
ment resu lt fo r ts >� 10 �  t M (Figure 14 .12), in con tradicti on to m easuremen ts [14,19] , see
also Ref. [6]. The only way to mo ve the relaxa tion cur ve to shorte r relaxation tim es is to
bring the fo rward reaction into the quasi satur ation regime whe re hyd rogen has alread y
piled up cons iderably in the ox ide (assumi ng fo r insta nce a re flecting boundar y cond ition).
Howev er, in additio n to the fact that this beha vior is not universal , the slope during the
stress phase approach es zero.
14.7.2 Extended Classi cal RD Models

As the stand ard form of the RD mo del has been found to have also limit ations during the
stress pha se [4,54,60 ], extended versions have bee n introduced . Howeve r, the que stion of
wheth er these ext ended model s are bett er able to descri be the relaxation beha vior has so
far only bee n qualit atively assessed and a rigorou s statemen t is missin g. Th is will be done
in the follo wing.
� 2008 by Taylor & Francis Group, LLC.



14.7.2.1 Two-Region RD Model

First, it has been noted that due to the extremely thin oxides used in modern CMOS
technology, the diffusing hydrogen species may quickly reach the oxide=poly interface
[4]. As a consequence, the degradation will be dominated by the presumably slower
diffusion in the poly gate. We will discuss two variants of RD models extended to account
for such a situation. The first variant assumes the oxide=poly interface to be a perfect
transmitter. At short times the oxide will be filled with H2. At later times, the overall
hydrogen diffusion is dominated by the slower diffusion inside the polygate and the model
behaves just like the standard H2-RD model. One might suspect that the hydrogen stored
inside the oxide, where the diffusivity has been assumed to be larger, modifies the
relaxation behavior. Under certain conditions this is indeed the case, with undesired
properties, though, as shown in Figure 14.13. For large stress times, most hydrogen is
stored in the poly and the model predicts the same relaxation as the RD model. Thus, in
order to see the influence of the two regions we have to look at shorter stress times, in our
particular case ts¼ 10 s and ts¼ 100 s, where the population in both regions is of the same
order of magnitude. However, as show in Figure 14.13, the shape of the relaxation
curve does not agree with measurement data. Furthermore, the shape depends on the
ratio of both reservoir occupancies, which changes with time and consequently results
in a nonuniversal relaxation. We also remark that the assumptions underlying this model
are in contradiction to a study which did not show a dependence of NBTI on the
gate material [61].
14.7.2.2 Two-Interface RD Model

Next, we discuss a two-interface model which can be considered a refined form of the two-
region model. It assumes that atomic hydrogen is released from the silicon=oxide interface
which then diffuses through the thin oxide and depassivates defects at the oxide=poly
interface [4,62]. The creation of defects at the opposite interface is supported by SILC
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the power-law slope during the stress phase. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)
measurements [4]. The hydrogen from the oxide and the released hydrogen at the oxide=
poly interface diffuse as H2 through the poly and result in an overall power-law exponent
of 1=6 at large times. It has been suggested that such a two-interface model may predict
a faster recovery compared to the standard RD model [62]. For this to be the case, the
amount of fast hydrogen stored in the oxide must be of the same order of magnitude
compared to the slow hydrogen stored in the poly. As in the case of the two-region RD
model, it is again possible to modify the relaxation behavior to a certain extent, see
Figure 14.14. In this case the relaxation can be made faster than with the standard RD
model because the fast hydrogen concentration inside the oxide is saturated, resulting in a
shift to smaller normalized relaxation times j on the universal plot. However, just as with
the two-region model, the resulting relaxation is not universal, as the ratio of these two
hydrogen storage areas changes with time, see Figure 14.14.
14.7.2.3 Explicit H–H2 Conversion RD Model

Another variant of the classic RD model aims at improving the model prediction at early
times [54]. This is based on the suggestions that measurements might display a power-law
exponent of 1=3 during the initial stress phase [5,40], which is incompatible with the
standard RD model. This has been explained by an extended RD model which explicitly
accounts for the dimerization of H into H2 [5,54],

@[H]
@t

¼ kH2[H2]� kH[H]2, (14:30)

rather than assuming an instantaneous transition, in addition to the diffusion of both
hydrogen species. Depending on the values of kH2

and kH, either pure H or H2 kinetics
can be observed. In addition, a regime with the aforementioned transitional power-law
exponent of 1=3, which eventually changes to 1=6, is possible. Since recent measurements
� 2008 by Taylor & Francis Group, LLC.
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Numerical simulation of a generalized RD model with explicit H to H2 conversion. (a) Depending on the choice of
parameters, the model gives power-law exponents known from the H and the H2 models during the stress phase,
in addition to a transitional region with n¼ 1=3. (b) Since the model remains within the boundaries set by the pure
H0 and H2 model (which are equal during relaxation), the overall relaxation behavior cannot be influenced by any
of the available parameters. (From Grasser, T., et al., Proc. IRPS, 268, 2007. With permission.)
give a long-term exponent closer to 1=6 than to 1=4, the parameters have to be chosen in
such a way that the total amount of stored [H2] is much larger than [H]. One might
conclude from this that the two distinct reservoirs of H and H2 may allow for a modified
relaxation behavior. However, this is not the case for the simple reason that the model stays
within the limits set by pure H and H2 behavior, just as during the stress phase. Since the
relaxation of both species is practically equivalent, no influence on the relaxation behavior
is obtained from such a model, see Figure 14.15.
14.7.2.4 Vanderbilt Model

By employing first-principles calculations, Tsetseris et al. [48] investigated the electrochem-
ical reaction (Equation 14.20), which is one of the foundations of the RDmodel. They found
an activation energy of about 2.4 eV, in agreement with measurement data [63]. Such a
barrier is way too large to allow the bond to be broken during typical bias temperature
conditions. Although the presence of holes lowers the activation energy to values around
2.1 eV, this value is still too high for a relevant contribution. Consequently, they suggested
an alternative reaction triggered by protons supplied from the semiconductor bulk

Hþ þ Si�H Ð Siþ þH2: (14:31)

Provided Hþ is readily supplied from the bulk, the differential equations resulting from
Equation 14.31 combined with the standard diffusion Equation 14.22 are from a mathe-
matical point of view equivalent to the equations resulting from the standard RD model
for atomic hydrogen diffusion [62]. Consequently, the model predicts a slope of 1=4 and
the same relaxation as the RD model and can therefore not be used in this form to
explain NBTI.
� 2008 by Taylor & Francis Group, LLC.



14.7.3 Final Notes on RD Models

We have shown that irrespective of the extensions applied to the RD model, the recovery
behavior observed during measurement cannot be described with the published RD
variants in their present form. The fact that some OTF measurements and the corrected
MSM measurements give exponents of around n¼ 0.15, which is close to the value
predicted by the H2-based RD model (n¼ 1=6), should not let one arrive at the conclusion
that the RD model is consequently reasonable. In particular, we think one has to be
extremely cautious with a point of view that the RD model correctly covers the stress
part while only the relaxation part needs to be refined. The point to make here is that the
1=6 exponent during the RD stress phase is a result of a delicate interplay between the
forward and backward reaction [5]. Without the backward reaction, which dominates
the time evolution by inserting the diffusion-limited component into the RD model, the
forward reaction alone would result in n¼ 1. It is only during relaxation, where the
forward rate is suppressed, that the poor performance of the RD reverse reaction becomes
visible. Consequently, we do not see any reason to believe the very same reverse reaction to
be valid during the stress phase to constructively change the reaction-limited exponent of
n¼ 1 to the proposed diffusion-limited value of n¼ 1=6.
14.7.4 Dispersive NBTI Models

It has been clearly shown in the previous sections that the RD model predicts 80% of the
relaxation to occur within three to four decades, while in reality relaxation is observed to
span more than 12 decades [9,14,21]. This indicates some form of dispersion in the
underlying physical mechanism(s). Various forms of dispersion have already been intro-
duced into NBTI models based on either (1) diffusion [12–14], (2) hole tunneling from=into
states in the oxide [16], and (3) reaction rates at the interface [11,64]. The models suggested
to capture these mechanisms will be benchmarked in the following using the universality
as a metric.
14.7.4.1 Reaction-Dispersive–Diffusion (RDD) Models

First, we consider generalized RD models based on dispersive transport of the hydrogen
species [14,65]. These models are obtained by replacing the classic drift–diffusion Equation
14.22 in the RD model by its dispersive counterpart. Several different variants of dispersive
transport equations have been used for the formulation of NBTI models [10,13,14]. It can be
shown that the transport models themselves give practically identical results and that the
differences in the final model prediction can be traced back to different assumptions used
for the boundary and initial conditions [59].

These differences are best studied using the dispersive multiple-trapping (MT) transport
equations [66–68]. In theMTmodel the total hydrogen concentrationH consists of hydrogen
in the conduction states Hc and trapped hydrogen as

H(x,t) ¼ Hc(x,t)þ
ð
r(x,Et,t)dEt, (14:32)

with r(x,Et,t) being the trapped hydrogen density (cm�3 eV�1) at the trap level Et. Trans-
port is governed by the continuity equation and the corresponding flux relation:

@H
@t

¼ �r 	 Fc þ Gc: (14:33)
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Note that in contrast to Equation 14.22 the time derivative of the total hydrogen
concentration is used in Equation 14.33, which also accounts for the exchange of particles
with the trap levels. The occupancy of the trap levels is governed by balance equations
which have to be solved for each trap level

@r(Et)
@t

¼ n

Nc

�
g(Et)� r(Et)

�
Hc � n exp �Ec � Et

kBTL

� �
r(Et), (14:34)

with n being the attempt frequency, Nc the effective density-of-states in the conduction
band, and Ec the conduction band edge. An exponential trap density-of-states is commonly
used [14,68]:

g(Et) ¼ Nt

E0
exp �Ec � Et

E0

� �
, (14:35)

which, in this particular context, results in a power law [14,67] for the time-dependence of
DNit. It is also worth recalling that the transport will only be dispersive for E0> kBTL, that is,
for sufficiently deep trap distributions [68].

As the MT equations are rather complex and can in general only be solved numerically,
simplified equations have been derived by Arkhipov and Rudenko [68,69]. Their approxi-
mate solution relies on the existence of the demarcation energy,

Ed(t) ¼ Ec � kBTL log (nt), (14:36)

separating shallow from deep traps and was derived to describe the broadening of an
initial particle distribution in the conduction band, see Figure 14.16. This is not the case
during NBT stress, however, where we have to deal with a continuous generation of
particles at the interface during the stress phase. An extended model suitable for NBTI
Et Et

r (Et)

Ed(t)

Emin

Ec

D
O

S
 g

(E
t)Deep

traps

Shallow
traps

FIGURE 14.16
Schematic illustration of MT dispersive transport. Particles from the conduction band fall into the traps and are
thermally reemitted into the conduction band. Reemission is more likely for shallow traps. The time-dependent
demarcation energy Ed separates shallow from deep traps. With time, the demarcation energy becomes
more negative, until the bottom of the trap distribution is reached (Ed ! Emin) and equilibrium is obtained.
Before equilibrium, the motion of the particle packet slows down with time. Note how the individual trap levels,
which microscopically correspond to the different energy levels of hydrogen in an amorphous material, are
approximated by a macroscopic density-of-states. (From Grasser, T., et al., Trans. Dev. Mater. Reliab., 8(1), 79,
2008. With permission.)
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has been derived in Ref. [59] which, in the highly nonequilibrium regime, describes the
overall motion as

H(x,t)�H0(x) ¼ �r 	 F(x,t)þ
ðt
t0

Gc(x,t0)dt0, (14:37)

with the effective flux of the total concentration of the species H given by

F(x,t) ¼ �Dct(t) rH � Z
Eox

VT
H

� �
: (14:38)

Note that Equation 14.37 is basically the time integral of Equation 14.33 and thus does not
contain a time derivative anymore. This is a consequence of the fact that the dynamics of
the system can be incorporated solely into t(t), which directly depends on the hydrogen
trap density-of-states and the demarcation energy as

1
t(t)

¼ n

Nc

ðEd(t)

�1
g(Et)dEt: (14:39)

This is a characteristic feature of any adiabatic process, where the time-dependence of the
whole system is determined by the slowest process, in our case, the thermal equilibration
of hydrogen [70]. For the particular case of an exponential trap density-of-states as in
Equation 14.35, t can be evaluated in closed form to

t(t) ¼ 1
n

Nc

Nt
(nt)a, (14:40)

with the dispersion parameter

a ¼ kBTL=E0: (14:41)

It is also worth pointing out that by introducing a time-dependent diffusivity D(t)¼Dct(t),
under certain circumstances a link to empirical dispersive transport models can be estab-
lished [59].

Of particular interest for the derivation of NBTI models is the concentration of the mobile
hydrogen Hc, which is directly linked to the total hydrogen concentration H as

Hc(x,t) ¼ @t(t)H(x,t)
@t

: (14:42)

This relation will be used for the formulation of the different NBTI boundary conditions.
In order to obtain an NBTI model, the dispersive transport equation has to be coupled to

the electrochemical reaction assumed to take place at the interface. For the present analysis
we remark that the macroscopic hydrogen trap density-of-states is derived for an amorph-
ous bulk material and is unlikely to be valid close to an interface. In that context, the
physical mechanisms justifying the conduction band concept in conjunction with hydrogen
hopping next to the interface need to be evaluated and justified. Published dispersive NBTI
models, however, are based on the validity of this concept, and the different interpretations
explain the discrepancies in these models. As in the RD model, the kinetic equation
� 2008 by Taylor & Francis Group, LLC.



describing the interface reaction is assumed to be of the form Equation 14.21. Also, the
interface reaction is assumed to be in quasiequilibrium.

A crucial question for the formulation of dispersive NBTI models is how to link it to the
interfacial hydrogen concentration Hit. In the following, we will consider two different
models. The first assumes that Hit is given by the total hydrogen concentration H. Thus, in
the RD regime one obtains for neutral particles [14,59]:

DNit(t) ¼ ARD
Dc

n

Nc

Nt

� �1=(2þ2a)

(nt)a=(2þ2a), (14:43)

with the same prefactor ARD as in the RD model given through Equation 14.26. For atomic
hydrogen (a¼ 1) the exponent is given through n¼a=4 while molecular hydrogen (a¼ 2)
gives n¼a=6 (Figure 14.17).

For the proton, one can show that [14,59]

DNit(t) ¼ ARD
Dc

n

Nc

Nt

Eox

VT

� �1=2
(nt)a=2 (14:44)

holds. Note that the numerical solution for Hþ may contain a transitional regime with
n¼a=4, where the diffusive component still dominates.

Since a equals 1 in the diffusive limit and 0 in the extremely dispersive case, Equations
14.44 and 14.43 imply that with dispersive transport an exponent smaller than the RD
exponents of 1=2, 1=4, and 1=6 can be obtained. Also, for increasing trap density Nt, the
total amount of degradation decreases.

A qualitative explanation for the reduction of the exponent can be given by noting that
dispersive transport results in most particles being trapped close to the interface, yielding a
steeper profile compared to classic diffusion. As all hydrogen is available for the reverse
rate in Equation 14.21, the net interface state generation is suppressed, resulting in a
smaller exponent.
FIGURE 14.17
Interface state density as a function of the
boundary condition calculated numerically
by solving the MT equations in comparison
to the analytic expressions (Equations 14.43
and 14.46) for Nit0¼ 0. Good agreement
between the numerical and analytical
solution is obtained for both boundary
conditions. (From Grasser, T., et al., Trans.
Dev. Mater. Reliab., 8(1), 79, 2008. With
permission.) Time (s)
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Since the dispersion parameter a depends linearly on the temperature, a linear tempera-
ture-dependence of the exponent is obtained as [14]:

n1 ¼ a

2þ 2a
¼ kBTL

2E0(1þ a)
: (14:45)

This is consistent with experimental results obtained with delayed measurements [8,14].
The previous model was based on the assumption that all hydrogen, mobile and

trapped, can participate in the NBTI reverse rate. In contrast, if we now assume that only
the mobile hydrogen can participate in the reverse rate, that is, Hit¼Hc(0), which appears
to be the more natural boundary condition for the MT model [71], one obtains for neutral
particles

DNit(t) ¼ ARD
Dc

n

Nt

Nc

� �1=(2þ2a) 1þ a
1þ aa=2

� �1=(1þa)

(nt)(1�a=2)=(1þa): (14:46)

For atomic hydrogen, the exponent n¼ 1=2�a=4 is obtained while H2 results in
n¼ 1=3�a=6. Hence, for increased dispersion the exponents become now larger than
their RD equivalents. Furthermore, when the trap density is increased, the degradation
increases. This is in agreement with the previously stated result that the inclusion of traps
into a standard RD model increases the exponent [29,72].

Interestingly, for Hþ one obtains [59]:

DNit(t) ¼ 2
kfN0

kr
Dc

Eox

VT

� �1=2
t1=2, (14:47)

with an exponent n¼ 1=2. This is equal to the result obtained by the standard RD
model [59].

Again, qualitatively, in this model the newly released hydrogen quickly falls into the
traps, but for times larger than 1=nmost hydrogen resides in deep traps and is therefore not
as easily available for the reverse rate in Equation 14.21. This suppresses the reverse
reaction and consequently enhances the net interface state generation and results in a
larger exponent.

In contrast to the total hydrogen boundary condition, now the exponent decreases with
increasing temperature through

n2 ¼ 1� a=2
1þ a

¼ 2E0 � kBTL

2E0(1þ a)
¼ 1

1þ a
� n1: (14:48)

This is in contradiction to currently available observations [8,14,20]. Note, however, that
this particular temperature-dependence is a consequence of the exponential trap density-
of-states and a hardly noticeable temperature-dependence has been reported [29] using a
Gaussian distribution on top of the exponential density-of-states.
14.7.4.2 Dispersive Pre-RD Regime

For the case that a large initial concentration of interface states is allowed, the pre-RD result
(Equation 14.27) can be directly transferred to the dispersive case and one obtains for the
total-hydrogen-boundary-condition [59]:
� 2008 by Taylor & Francis Group, LLC.



FIGURE 14.18
Example simulation showing the transition
between the pre-RDD regime and the RDD
regime which could be used to explain a
different initial exponent compared to the
long-time exponent. Shown are the numerical
and analytical solutions of the MT equations.
Note that the analytic solution is only valid
after the reaction-limited phase. (From
Grasser, T., et al., Trans. Dev. Mater. Reliab.,
8(1), 79, 2008. With permission.)
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DNit ( t ) ¼ A P
Dc

n

Nc

Nt

� �1 =2
(n t ) a= 2 : (14: 49)

For the proton one obt ains

D Nit (t ) ¼ AP
Dc

n

Nc

Nt

Eox

VT

� �
(n t ) a : (14: 50)

As before , the expone nts n ¼ a, a=2, and a=2 for H þ , H0, and H2 reduce to the ir pre-RD
equiva lents 1, 1=2, a nd 1 =2 for a ¼ 1. Also, the expone nt inc reases linearly with tempera-
ture similar ly to Equatio n 14. 45, and the sam e compat ibility to measure ments is given.

Intere stingly, it can be sh own that Equ ation 14.50 is equivalent to the Zafar mo del, which
also has a slope n ¼ a rather than n ¼ a=2 as obtained in the RD regime [59]. For an
inter mediate concen tration of interface state s, the transiti on betwe en the pre-RD and the
RD regime is shown in Figu re 14.18.
14.7.4. 3 Relaxa tion a s Predi cted by the RDD Mod els

A previous analysis of the relaxation behavior predicted by dispersive transport equations [14]
was based on various assumptions (such as pulse-like excitation [65], uncertainties in
the boundary conditions [65], and a neglected history of previously trapped hydrogen
atoms during relaxation) which led to only approximative solutions. As it turned out, a
more rigorous analytic derivation is rather involved. An approximation for j < 1 (tr < ts, as
normally encountered during typical MSM measurements), is given by Equation 14.11
with B and b depending on the boundary condition and the dispersion coefficient a.
Interestingly, for j > 1 the behavior changes and different values for B and b have to be
used (cf. Figure 14.19).

In order to avoid any uncert ainties inh erent in app roximate analytic al solut ions, we
num erically solve the full time-dep endent multiple trapping model [66] to allo w for an
accurate description of both the stress and the relaxation phase. The results shown in
Figure 14.19 display a much broader range of possible relaxation characteristics compared
to classic diffusion. Nevertheless, the dispersive transport models in their present form are
� 2008 by Taylor & Francis Group, LLC.
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Relaxation as predicted by the full numerical solution of the dispersive transport models for various values of the
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model appears to have a limit different from unity for j¼ 0, which is a result of an extremely fast relaxation
triggered by the hydrogen stored right at the interface. Note that this component is not universal. (From Grasser,
T., et al., Proc. IRPS, 268, 2007. With permission.)
not able to fully explain the experimentally observed relaxation on their own. They might,
however, be combinedwith a hole trappingmodel in order to account for a slow component
during relaxation. Note that the standard RD model is an unlikely candidate for this
slow component since any contribution would be negligible for large relaxation times.

Also note that theHit¼Htot model appears to have a limit different fromunity for r(j! 0).
This is a result of the extremely fast relaxation triggered by the hydrogen stored directly at
the interface. The exact shape of this initial hump (not shown) depends on the stress time and
the width of the interfacial layer, thereby rendering this model nonuniversal.
14.7.4.4 Dispersive-Rate Coefficients

Next we consider reaction-limited models using a dispersion in the rate coefficients [11,64].
This is based on the observation of Stesmans et al. [35] who could best describe the
dissociation kinetics of hydrogen-passivated Pb centers at the interface using first-order
kinetics and a Gaussian distribution of interface states. A similar observation was
made regarding the passivation of Pb0 and Pb1 interface defects [34]. Huard et al. [11]
base their permanent component on such a dispersive forward rate, assuming that the
generated interface states do not relax at all, or at least not at shorter and medium
relaxation times [73].

The model derivation uses the RD interface reaction given in Equation 14.21. In contrast
to the RD model, however, it is assumed that the generated interface states are permanent.
Thus, kr can be set to zero and Equation 14.21 has the solution:

Nit ¼ N0
�
1� exp (� kf(Ed)t)

�
: (14:51)
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By invoking the Arrhenius law for the rate coef fi cient kf, one obtain s the fo rward rate as a
functi on of the dissociati on energy Ed as

kf (E d ) ¼ k f0 exp � Ed

kB TL

� �
: (14: 52)

Ass uming a distrib ution of dissoci ation energie s given by the Ferm i-deri vative functi on
(Eq uation 14.5), which, in contras t to a Gaussian distri bution, allo ws for a closed form
solut ion, on e obtain s by summing the indiv idual contri butions

D Nit

N0
¼
ð
gP (E d ,E dm )

� 
1 � exp (� kf ( E d ) t)

� 
d Ed : (14: 53)

This integral can be appro ximate d by realizin g that Nit( E d) is close to unity bel ow E*( t ) ¼
kB TL ln( k f0 t ) and zer o otherwi se. On e can thu s approxi mately wri te

DNit

N0
�
ðE� ( t )

0

gP ( Ed )d E d ¼ 1
1 þ t

t

� ��  a , (14: 54)

with t ¼ k �  1
f0 exp ( Edm ( Eox ) =k B TL ) and a ¼ kB TL =sf . Note the simi larity with the relaxation

expres sion (Equation 14.12) and the correspo ndence betw een E * and the demar cati on
energy in the dispe rsive multi ple trapping equatio ns. Th e medi an dissoci ation energy
Edm was assu med to dep end on the oxide electric fi  eld in order to ac commod ate for the
reporte d field dep endence . For sh ort st ress times, the above simp li fies to a power law

DNit(t) ¼ DNit,max
t
t

� �a
: (14:55)

Again, as with the dispersive transport model, a temperature-dependent slope is obtained.
The analy tic solut ion (E quation 14.54) is compar ed to the num erical sol ution in Figu re
14.20, where excellent accuracy is obt ained for sf> 0.12, which corresponds to a< 0.21,
and is thus well within the required regime.

In the above model the backward rate was assumed to be negligible, resulting in an
unrecoverable degradation of DNit. In order to generalize this model to allow at least for
some recovery, one has to account for the reverse rate in Equation 14.21. In contrast to the RD
model, however, where the diffusion of the hydrogen species eventually limits the reverse
rate, it is now assumed that hydrogen at the interface is readily available. Formally, this
may be done by setting Hit constant in Equation 14.21, equivalent to a large background
hydrogen concentration. The solution of Equation 14.21 with kr 6¼ 0 is readily obtained as

Nit(t,Ed,Ea) ¼ N0
kd(Ed)

kd(Ed)þ ka(Ea)Hit

�
1� exp (�kd(Ed)t� ka(Ea)Hitt)

�
, (14:56)

with the overall time evolution of Nit given through

Nit(t) ¼
ð
dEd

ð
dEaNit(t,Ed,Ea)gP(Ed,Edm)gP(Ea,Eam): (14:57)

A numerical solution of Equation 14.57 is given in Figure 14.20 for varying parameters
sf and sr. Obviously, the introduced reverse rate strongly influences the stress phase.
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(a) Comparison of the analytic result of Equation 14.54 (lines) with the numerical solution of Equation 14.53
(symbols). Good agreement is obtained for larger dispersion sf. (b) As soon as the reverse rate is taken into
account, an additional curvature in the slope is introduced which increases with the reverse rate.
During the relaxation phase an apparently very flexible model behavior is observed and
the model can be nicely fit to a single relaxation curve. Unfortunately, however, the
excellent fit during the single relaxation phase adversely affects the quasi-power-law
exponent during the stress phase which reduces to very small values (n � 0.03). Further-
more, the model does not scale universally as demonstrated in Figure 14.21.

14.7.4.5 Simple Dispersive Hole Trapping Model

In addition to the creation of interface states, trapped charges have been made responsible
for the observed threshold voltage shift during NBT stress. In particular, it has been argued
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The dispersive rate model can be fit to an
individual relaxation curve, ts¼ 100 s in this
case, but does not scale universally. In add-
ition, the calibrated model gives a rather
strong curvature during the stress phase
with a too small power-law exponent n �
0.03, the variance of the rate coefficients had
to be set to a value considerably larger than
reported (sA¼ 0.211 eV and sD¼ 0.264 eV,
compare Refs. [34,35]), and in general the
model cannot be fit to both the stress and
relaxation phase.
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that these charges are responsible for the fast component observed both during stress and
relaxation [11,16]. A simple phenomenological hole trapping model has been used by Yang
et al. [16] based on a broad distribution of trapping times. It is assumed that hole trapping
occurs over a broad spectrum of capture and release times following first-order kinetics

@p(t,tc,te)
@t

¼ 1
tc

(Not � p)� p
te

: (14:58)

Here, p is the hole concentration of a trap with capture and emissions times tc and te, while
Not is the trap density. In order to fit their measurement data, Yang et al. coupled the two
time-constants via te¼ ktc and employed different capture and release times during stress
and relaxation. The overall time evolution of all trapped charges is obtained by weighing
all contributions using a probability density function in a manner similar to the rate-limited
model (Equation 14.53):

p(t) ¼
ð
dt p(t,t)f (t): (14:59)

The probability density function for the relaxation times was assumed to be given by a log
normal distribution:

f (t) ¼ 1ffiffiffiffiffiffi
2p

p
ts

exp � 1
2

log (t)� m

s

� �2
 !

: (14:60)

The numerical solution of Equation 14.59 is shown in Figure 14.22. Although a fast
component can indeed be formed and a single relaxation curve can be nicely fit, no
universality is observed. Note that this was to be expected due to the mathematical
similarity of Equation 14.59 with Equation 14.53. We remark that this is not in disagree-
ment with the good agreement to the measurement data reported in Ref. [16], but possibly
a consequence of the narrow range of stress times employed in that study.
FIGURE 14.22
(a) Simple dispersive hole trapping model
used in Ref. [16] can be fit to an individual
relaxation curve but does not scale univer-
sally and gives a very small slope during the
stress phase. (From Grasser, T., et al., Proc.
IRPS, 268, 2007. With permission.)
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14.7.4. 6 Detaile d Dispersi ve Hole Trapp ing Model

A more detai led hole trap ping model has been derive d by Tew ksbury [74] based on a
numb er of possibl e transi tions from c onduction, valence, and inter face sta tes int o bul k
oxide trap s. Its use for NB TI has bee n sugg ested by Hu ard et al. [75] to cover the
recovera ble par t of the degradat ion. For the follo wing discussi on we limit ourselves to
the component of the m odel which result s from charge transfer from an inter face st ate int o
an ox ide trap and back to the interface st ate, the ot her suggest ed mech anism s behave
similar ly [74] and follo w analogou sly. Duri ng stress, the thresho ld voltage sh ift due to
trapped bulk charge accumulate d via transf er from the int erface states can be give n as
S( ts ) � A ln( ts =t 0s ) whi le the absolut e relaxa tion is given by R M( t s ,t r ) � A ln( ts t 0r =( t r t0s )) and
depen ds (at leas t in this approximat e form) univers ally on tr =t s . Howeve r, using the
previo us two relatio ns, the relative relaxa tion function is given by

r (ts ,t r ) � 1 � ln
tr
t0r

� �
ln �  1 ts

t0s

� �
, (14 : 61)

which cannot be written as a fun ction of ts =t r and is con sequent ly no t unive rsal in our
sense . The full num erical sol ution of the Tewksbu ry model is given in Figure 1 4.23 together
with an excellent fit for a single relaxa tion curv e. Howe ver, in order to obt ain such a fit, the
logarithm ic beha vior of the hole trapping component resu lts in a slope close to zer o during
the stress pha se. Al so show n in Figu re 14.23 is a perman ent component model ed by a
numer ical solution of a dis persive forwa rd rate only, as sugg ested by Huard et al. [75].
Note howeve r, that afte r a cer tain stress time the degradat ion will be dominat ed by DQit

and the obse rved relaxa tion given only throug h DQox will be min imal. This is also not
compat ible wi th the data at hand where eve n at large st ress tim es c onsiderab le relaxa tion
can be obse rved.
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(a) Behavior during stress as predicted by the Tewksbury model on top of the dispersive rate (Equation 14.54).
(b) Relaxation predicted by the Tewksbury model. The model can be fit to the data for an individual relaxation
curve, here again at 100 s, but does not scale universally. Also, the excellent fit comes at the price of a very small
power-law exponent at early times during the stress phase, in contradiction to Figure 14.4 of Ref. [9]. We were not
able to fit both the stress and relaxation phases with the same set of parameters.
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FIGURE 14.24
Schematic illustration of the contribution of two processes to the overall NBTI stress and relaxation characteristics.
Process 1 could be the RD model while process 2 might be a simple hole-trapping process. If both processes are of
the same order of magnitude, as is frequently assumed, the relaxation recorded at short stress times will be
considerably different from a relaxation characteristic recorded at later times, in contrast to measurement data
which are universal for usually employed stress times.
14.7.5 Multiple Mechanisms

Since none of the studied mechanisms can fully capture the universal relaxation, we have
considered various combinations in our numerical framework. In order to obtain a uni-
versal behavior, some points need to be considered. Consider the case that the total
observed threshold voltage shift is the result of two independent mechanisms, that is,
S¼ S1þ S2. During relaxation one observes R¼ S1r1þ S2r2 and the normalized relaxation
function is given by r¼ rr1þ (1� r)r2 with r¼ S1=(S1þ S2). If the two degradation mech-
anisms progress differently with time, r will be a function of ts and r cannot be universal,
see Figure 14.24. We thus conclude that for the relaxation to be universal, the two
mechanisms need to be tightly coupled, that is, S1=S2¼ const, or at least roughly constant
within the range of measured j and within the measurement tolerance. Alternatively, both
mechanisms could relax equally, r1 � r2, or one process could be dominant for the range of
recorded stress times. Finally, one process could be permanent or slowly relaxing, forming
the permanent component identified in Ref. [59] which would have to subtracted from the
total relaxation data in order to study the universally recovering component.
14.8 Conclusions

We have thoroughly analyzed the relaxation of NBT stress-induced degradation using data
from various groups. The observed universal relaxation behavior has been quantified and
modeled using possible empirical expressions. It has been demonstrated that data obtained
via conventional MSM sequences can be analytically described as a function of the delay
introduced during the measurement. In particular, this analytic expression allows one to
reconstruct a corrected degradation curve. Using this corrected curve, it might be possible
to more accurately estimate the time-to-failure.
� 2008 by Taylor & Francis Group, LLC.



We have then used the relaxation behavior and in particular the universality as a
benchmark for existing NBTI models. There we have found that none of the existing
models are capable of reproducing both the stress and the relaxation phase with the
same set of parameters. While the classic RD model scales universally, it predicts relaxation
to occur mainly during three to four decades, in contradiction to detailed relaxation
measurements available in literature which span more than 12 decades. No improvement
could be found in extended RD models using two regions, a second interface, or an explicit
transition from atomic to molecular hydrogen. Models based on an extension of the RD
model with dispersive transport somewhat improve on the situation but are still not able to
cover the whole relaxation regime. Other dispersive models, like dispersive forward and
backward rates or dispersive hole-trapping models allow one to fit an individual relaxation
curve only but are not universal. In addition, we were not able to describe both the stress
and relaxation phase with the same set of parameters. This indicates a significant gap in
our current understanding of NBTI.

We particularly wish to point out that it is of utmost importance not to consider the
inaccuracies of existing models during the relaxation phase of secondary importance
compared to the stress phase. The reason for this is only partially related to the frequently
quoted fact that continuous DC stress is rarely observed in a circuit and that duty-cycle
dependent corrections have to be applied. The more important point we want to make here
is that during the stress phase the relaxation mechanism in existing models always
interacts with the degradation mechanism, dominating the overall time behavior during
the stress phase. It is only during the relaxation phase, where the degradation mechanism
is more or less absent, that the relaxation mechanism can be studied in full detail, despite
the difficulties arising during measurements. We therefore stipulate that a more complete
NBTI model needs to focus on the relaxation phase first before attempting to cover the
stress phase as well.

It is also important to stress that the observed discrepancies in the available models with
measurement data do not necessarily indicate that the physical processes involved in
NBTI, predominantly hole trapping and interface state generation, have been wrongly
identified. The main finding of this study is that NBTI relaxation, and consequently the
stress phase, are strongly influenced by physical mechanisms that are not yet fully under-
stood and require a refined set of models.
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