
On the Non-locality of the Electron-Photon Self-Energy:

Application to Carbon Nanotube Photo-Detectors

M. Pourfath, O. Baumgartner, and H. Kosina

Institute for Microelectronics, TU Wien, 1040 Vienna, Austria

Email: {pourfath|baumgartner|kosina}@iue.tuwien.ac.at

Abstract—Carbon nanotubes have been considered in recent
years for future opto-electronic applications because of their
direct band-gap and the tunability of the band-gap with the tube
diameter. The numerical challenges for the analysis of carbon
nanotube based photo-detectors are studied. The results indicate
the non-locality of electron-photon interaction. For accurate
analysis it is essential to include many off-diagonals of the
electron-photon self-energy.

I. INTRODUCTION

Carbon nanotubes (CNTs) have been extensively studied

in recent years due to their exceptional electronic, opto-

electronic, and mechanical properties [1]. Owing to excellent

optical properties of CNTs, an all-CNT electronic and opto-

electronic circuit can be envisioned. The direct band-gap and

its tunability with the CNT diameter renders them as suitable

candidates for opto-electronic devices, especially for infra-red

(IR) applications [2, 3] due to the relatively narrow band gap.

IR photo detectors based on carbon nanotube field effect

transistors (CNT-FETs) have been reported in [3–5]. To ex-

plore the physics of such devices self-consistent quantum me-

chanical simulations have been performed, employing the non-

equilibrium Green’s function formalism (NEGF). This method

has been successfully utilized to investigate the characteristics

of CNT-FETs [6–9]. We employed the NEGF method based

on the tight-binding π-bond model to study quantum transport

in IR photo detectors based on CNT-FETs.

II. NON-EQUILIBRIUM GREEN’S FUNCTION FORMALISM

The NEGF formalism initiated by Schwinger, Kadanoff,

and Baym allows to study the time evolution of a many-

particle quantum system. Knowing the single-particle Green’s

functions of a given system, one may evaluate single-particle

quantities such as carrier density and current. The many-

particle information about the system is cast into self-energies,

which are part of the equations of motion for the Green’s

functions. Green’s functions enable a powerful technique to

evaluate the properties of a many-body system both in ther-

modynamic equilibrium and non-equilibrium situations [10].

Four types of Green’s functions are defined as the non-

equilibrium statistical ensemble averages of the single particle

correlation operator. The greater Green’s function G> and the

lesser Green’s function G< deal with the statistics of carriers.

The retarded Green’s function GR and the advanced Green’s

function GA describe the dynamics of carriers.

Under steady-state condition the equation of motion for the

Green’s functions can be written as [10]:

[E − H0] GR,A(1, 2) −
∫

d3 ΣR,A(1, 3)Gr,a(3, 2) = δ1,2

(1)

G≶(1, 2) =
∫

d3
∫

d4 GR(1, 3)Σ≶(3, 4)GA(4, 2) (2)

The abbreviation 1 ≡ (r1, t1) is used. H0 is the single-

particle Hamiltonian operator, and ΣR, ΣA, Σ<, and Σ>

are the retarded, advanced, lesser, and greater self-energies,

respectively.

III. IMPLEMENTATION

This section describes the implementation of the outlined

NEGF formalism for the numerical analysis of CNT-FETs.

A tight-binding Hamiltonian is used to describe transport

phenomena in a (17, 0) zigzag CNT-FET. The self-energy due

to electron-photon interactions are studied next.

A. Tight-Binding Hamiltonian

In graphene three σ bonds hybridize in an sp2 configuration,

whereas the other 2pz orbital, which is perpendicular to the

graphene layer, forms π covalent bonds. The π energy bands

are predominantly determining the solid state properties of

graphene. Similar considerations hold for CNTs. We use a

nearest-neighbor tight-binding π-bond model [6]. Each atom in

an sp2-coordinated CNT has three nearest neighbors, located

acc = 1.42 Å away. The band-structure consists of π-orbitals

only, with the hopping parameter t = Vppπ ≈ −2.7 eV and

zero on-site potential. By transforming from real space into

eigen mode space [6, 11], the subbands become decoupled.

Details can be found in [9, 12].

B. Electron-Photon Self-Energies

The Hamiltonian of the electron-photon interaction can be

written as [13, 14]:

Ĥe−ph =
∑
l,m

Ml,m

(
b̂e−iωt + b̂†e+iωt

)
â
†

l
âm (3)

Ml,m = (zm − zl)
ie
~

√
~Iω

2Nωǫc
〈l|Ĥ0|m〉 (4)

where zm denotes the position of the carbon atom at site m,

Iω is the flux of photons with the frequency ω, and N is

the photon number in the control volume. The incident light

is assumed to be monochromatic, with polarization along the

CNT axis, see Fig. 1.

We employed the lowest order self-energy of the electron-

photon interaction [15]:

Σ<,ν

l,m
(E) =

∑
p,q

Ml,pMq,m

×

[
NG<,ν

p,q
(E − ~ω) + (N + 1)G<,ν

p,q
(E + ~ω)

] (5)

The first term corresponds to the excitation of an electron by

the absorption of a photon and the second term corresponds to

the emission of a photon by de-excitation of an electron. The

greater self-energy is calculated analogously and the retarded

self-energy can be approximated as ΣR = [Σ>
−Σ<]/2i. The

transport equations must be iterated to achieve convergence of

the electron-photon self-energies, resulting in a self-consistent

Born approximation.

NUSOD 2008

978-1-4244-2307-1/08/$25.00 ©2008 IEEE 99
Authorized licensed use limited to: IEEE Xplore. Downloaded on November 17, 2008 at 04:00 from IEEE Xplore.  Restrictions apply.



Fig. 1. a) The sketch of a CNT-FET with LCNT = 13 nm. b) The process
of electron-hole generation by photo-absorption. Incident photons generate
electron-hole pairs and the electric field drives electrons and holes towards
the drain and source contacts, respectively. EG = 0.6 eV, ~ω = 0.65 eV,
and Efs = Vfd = 0.0 V. For the given photon energy the first subband
contributes mostly to the total photo-current.

IV. RESULTS

Under steady-state condition the GREEN’s functions

G(r1, r2;E) in the coordinate representation depend on two

positions arguments r1, r2 and one energy argument E. For

a numerical solution, each argument of the Green’s function

needs to be discretized. A couple of hundred grid points for

each argument results in an overall large memory require-

ment. When scattering via a self-energy is introduced, the

determination of the Green’s function requires inversion of

a matrix of huge rank. To reduce the computational cost, the

local scattering approximation is frequently used [6–8, 15–

17]. In this approximation the scattering self-energy terms

are diagonal in coordinate representation. It allows one to

employ the recursive algorithm for computing the Green’s

functions [15, 18]. The local approximation is well justified

for electron-phonon scattering caused by deformation potential

interaction [8]. However, we show that this approximation is

not justified for electron-photon interaction.

For the given structure (Fig. 1) the calculated photo current

is shown in Fig. 2. The results are indicated as a function

of the number of included off-diagonal elements of the re-

tarded self-energy, which includes the effects of electron-

photon interaction. By including only the diagonal elements of

the self-energy (local scattering approximation) the calculated

current is only four percent of its value in case of full

matrix consideration. This behavior can be well understood by
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Fig. 2. The calculated photo-current as a function of the included off-diagonal
elements of the retarded self-energy (ΣR). The current is normalized to the
value with full matrix elements. The full matrix size is 128× 128.

Fig. 3. The retarded self-energy (ΣR) in coordinate representation for E =

1.55 eV. The existence of relatively strong off-diagonal elements indicate the
non-locality of the interaction and the need to include the full matrix.

considering the self-energy in two coordinate representation.

As shown in Fig. 3 off-diagonal elements are relatively strong

which indicate the need for a full matrix description.

The oscillations in the self-energy result from the wave-like

behavior in the quasi ballistic regime. This phenomenon is also

present in Fig. 2. By increasing the number of included off-

diagonal elements to around 50, the calculated photo-current

increases. However, from this point the photo-current oscillates

until it reaches its exact value at 128 off-diagonals. At some

points the photo-current is even overestimated. It should be

noted that change of the sign of the self-energy at some points

results in overestimating of the photo-current if the full matrix

description is not employed.

V. CONCLUSION

We present a numerical study of CNT-based photo-detectors

employing the NEGF method. The results show that the local

scattering approximation, which is widely used in quantum

transport simulations, fails to predict the behavior of devices

where electron-photon interaction is present. For accurate

simulations a non-local self-energy must be taken into con-

sideration.
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