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1. Abstract

A self-consistent Schrédinger-Poission model for the cal-
culation of the electron subband structure is presented,
taking into account the band nonparabolicity and shear
strain based on a two-band k - p Hamiltonian. Empha-
sis is put on the efficiency and accuracy of the numer-
ical, two-dimensional k-space integration by means of
the Clenshaw-Curtis method. Simulation results of a
Silicon ultra thin body double gate device demonstrate
the suitability of the proposed numerical method for the
calculation of the electron density.

2. Numerical Model

The numerical modeling of the electron subband struc-
ture in ultra thin body SOI MOS structures relies on an
accurate description of the bulk Hamiltonian. In this
work, we applied a two-band k- p Hamiltonian [1, 2]
describing the Silicon conduction band around the X
points given by
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& denotes the conduction band edge energy, m, and
my are the longitudinal and transversal electron masses,
and ﬁ ~ 7an — mie The shear strain deformation
potential D = 14eV and the shear strain component
exy describe the effects of strain on the bandstructure.
ko = 0.15%E corresponds to the distance of the valley
to the X point. The quantization is carried out by the
replacement k, — —id,. The Discretization is realized
with symmetric operator ordering and application of a
finite difference scheme with hard wall boundary con-
ditions. The resulting eigenvalue problem gives rise to
discrete energies describing the subband structure.

'The contribution of subband i and valley j to the equi-
librium electron concentration is given by

1
mig(2) = s 5(2) 2 / AU o (B (k) ),
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where 1; ; is the wave function and f; is the Fermi dis-
tribution which depends on the Fermi level & and the
dispersion relation &; ; (kx, ky) of the subband. There-
fore, to calculate the electron occupation of a subband
a numerical, two-dimensional k-space integration is re-
quired. Since this necessitates to solve the Schrédinger
equation for every discrete point (k, ky) one seeks after
a numerical quadrature scheme that gives good accuracy
on as few grid points as possible. Our first choice was the
Clenshaw-Curtis method presented in [3]. For the inte-
gration interval [~1, 1] it uses the zeros of the Chebyshev
polynomial given by z; := cos(k-f;) with £ =0,1,...,n
as nodes. The weights are written explicitely as [4]

ln/2] .
Ck .
W = — (1 — ; 4j29— ] cos (2]165))

n j=

with b; = 1if j = n/2, or b; =2, if j < n/2, and ¢ = 1
if £k modn = 0, or ¢ = 2 otherwise. An advantage
of this method is the ability to use subsets of half the
number of the nodes for a lower degree rule. This al-
lows for adaptive numerical quadrature schemes which
have proven suitable for energy domain integration as
shown for the NEGF method in [5]. For the k-space
integration of the subbands provided by the two-band
Hamiltonian excellent accuracy has been achieved with
only 19 nodes per k direction. The integration inter-
vals have been chosen as ten percent of the width of the
Brillouin zone in each positive and negative direction.
The sum given by the Clenshaw-Curtis rule has been
normalized accordingly.

3. Results and Conclusion

To test the implemented k - p model a rectangular Sil-
icon potential well with 5nm width and the electron
masses m) = 0.91m, and my = 0.19m, has been simu-
lated. Fig. 1 shows the numerically calculated disper-
sion relation of the first and second subband. Fig. 2
illustrates the influence of strain on the dispersion rela-
tion. The results are in good agreement with analytical
considerations [6].

To properly incorporate the electrostatics in realis-
tic devices a self-consistent Schrédinger/Poisson scheme
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Fig. 1: Dispersion relation of the lowest (red) and second
(blue) subband of a 5 nm Silicon quantum well as contour
plot in 20 meV steps.

has been employed. A Silicon ultra thin body DG-
MOSFET with 3 nm film thickness and 1 nm oxide
thickness has been simulated. The donor doping of the
polysilicon gates was Np = 1.0 x 10?° cm™3 and the Si
film was lightly p-doped with Np = 2.0 x 106 cm™3.
Fig. 3 shows the conduction band edge and the elec-
tron concentration provided by the simulation. Within
the well the squared wave functions for the four lowest,
twofold degenerate subbands are displayed at their cor-
responding energy levels. For each subband the electron
occupation is calculated by k-space integration. The
electron distribution of the lowest subband is depicted
in Fig. 4. The grid lines are distributed according to
the Clenshaw-Curtis method, which gives an accumula-
tion of grid points at the boundary of the integration
domain. Contrary to numerical solutions based on the
one-band effective mass Schrédinger equation this work
considers the nonparabolic dispersion relation. Further-
more, shear strain effects leading to a warping of the
bandstructure are accounted for. These properties are
crucial for transport models relying on subband calcu-
lations.
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Fig. 2: Dispersion relation of the lowest subband of a 5 nm

Silicon quantum well with a strain of exy = 1% (blue) and
without strain (red) as contour plot in 20 meV steps.
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Fig. 3: Self-consistent calculation of the conduction band
edge and the electron concentration of a Si-DG-MOSFET
with 8 nm well width and 1 nm ozide thickness. The normal-
ized wave functions [nm‘l] are overlayed at their respective
energy niveaus.
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Fig. 4: Occupation of the lowest subband of a 3 nm Sili-
con quantum well. The grid corresponds to the nodes of the
numerical quadrature.
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