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Abstract—In this work, the k · p method is used to calculate the
electronic subband structure. To reduce the computational cost of
the carrier concentration calculation and henceforth the required
number of numerical solutions of the Schrödinger equation,
an efficient 2D k-space integration by means of the Clenshaw-
Curtis method is proposed. The suitability of our approach is
demonstrated by simulation results of Si UTB double gate nMOS
and pMOS devices.

I. INTRODUCTION

Strained silicon ultra-thin body MOSFETs are considered to
be good candidates for CMOS integration in the post 22 nm
technology nodes. An accurate description of such devices
relies on the modeling of the subband structure. An efficient
self-consistent Schrödinger-Poisson model for the calculation
of the electronic subband structure is presented, taking into
account band nonparabolicity and arbitrary strain [1]. A two-
band k · p Hamiltonian has been used for electrons and a six-
band k · p Hamiltonian for holes.

II. CALCULATION OF THE SUBBAND STRUCTURE

The numerical modeling of the subband structure in ultra
thin body SOI MOS structures relies on an accurate model of
the bulk Hamiltonian. We applied a two-band k · p Hamilto-
nian [2], [3] to describe the silicon conduction band around
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Fig. 1. Occupation of the heavy hole band of Si in a 3 nm wide quantum
well. The grid shows the nodes of the numerical quadrature.

the X points.

H =

[
H− Hbc

Hbc H+

]
with

H∓ = Ec(z) +
�

2k2
z

2ml

+
�

2
(
k2
x + k2

y

)
2mt

∓
�

2k0kz

ml

,

Hbc = Dεxy −
�

2kxky

M
.

Ec denotes the conduction band edge energy, ml and mt are
the longitudinal and transversal electron masses, respectively,
and 1

M ≈ 1
mt

− 1
me

. The shear strain deformation potential
D = 14eV and the off-diagonal strain component εxy describe
the effects of shear strain on the bandstructure. k0 = 0.152π

a0

corresponds to the distance of the valley to the X point.
To model the silicon valence band structure a 6× 6−k · p

Hamiltonian [4] has been implemented. Following the notation
of Manku it is written as

H = EvI6×6 +

[
S + D 03×3

03×3 S + D

]
+ Hso,

where Ev is the valence band edge and the perturbation matrix
S and the deformation potential matrix D are given by
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As parameters for the silicon valence band structure without
strain L = −6.53, M = −4.64, and N = −8.75 in units of

�
2

2me

have been used [5]. l, m, and n are the strain deformation
potentials for the valence band.

The spin orbit coupling is described by the Hamiltonian

Hso = −
Eso
3

⎡
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,

with the split off energy of silicon Eso = 44 meV.
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Quantization is introduced in the bulk Hamiltonian by the
substitution kz → −i ∂z, where the z-axis is the quantization
direction and corresponds to the normal of the (001) sili-
con crystal surface throughout this work. A finite difference
scheme with hard wall boundary conditions has been used to
discretize the Schrödinger equation. The resulting eigenvalue
problem gives rise to discrete energies describing the subband
structure.

III. NUMERICAL QUADRATURE OF THE SUBBAND

DISTRIBUTION FUNCTIONS

The contribution of subband i and valley j to the equilib-
rium electron concentration is given by

ni,j(z) =

∫
BZ

d2k |ψi,j(z)|
2 1

(2π)2
f0 (Ei,j (kx, ky)− EF),

where ψi,j is the wave function and f0 is the Fermi distribution
and EF the Fermi level with a similar relationship holding for
the hole concentration in a pMOS device. Therefore, to calcu-
late the occupation of a subband a numerical, two-dimensional
k-space integration is required. This necessitates to solve the
Schrödinger equation for every discrete point (kx, ky). Hence,
one seeks after a numerical quadrature scheme that gives good
accuracy on a coarse grid. In contrast to previous work [6]
which made use of harmonic and cubic spline interpolation
for k-space integration, in this work the Clenshaw-Curtis
method [7] has been applied. As nodes in the integration
interval [−1, 1] the zeros of the Chebyshev polynomial are
used: xk := cos(k π

N ) with k = 0, 1, . . . , N . Following [8],
the weights are written explicitly as

wk =
ck

N

(
1−

�N/2�∑
j=1

bj

4j2 − 1
cos

(
2jk π

N

))

with bj = 1 if j = N/2, or bj = 2, if j < N/2, and ck = 1 if k
mod N = 0, or ck = 2 otherwise. For the k-space integration
of the subbands provided by the k · p Hamiltonian excellent
accuracy has been achieved with only 19 nodes per k direction.

IV. RESULTS AND DISCUSSION

A (001) silicon UTB DG-MOSFET with 3 nm film and
1 nm oxide thickness has been simulated. For the nMOS
device the donor doping of the polysilicon gates was ND =
1.0 × 1020 cm−3 and the Si film was lightly p-doped at
NA = 2.0 × 1016 cm−3, while the complementary doping
has been used for the pMOS device. The occupation function
of the heavy hole band is depicted in Fig. 1. Equivalently
the lowest unprimed subband of the nMOS device with and
without shear strain is depicted in Fig. 2. The grid as shown
in the figures corresponds to the nodes of the Clenshaw-Curtis
quadrature. The zeros of the Chebyshev polynomial give an
accumulation of grid points at the boundary of the integration
domain. The integration intervals for the nMOS have been
chosen as ten percent of the width of the Brillouin zone in
each positive and negative direction around the valley. For the
pMOS device the boundaries have been set at kx,y = ±0.2 2π

a0

.
Therefore, the domain has to be normalized accordingly to the
interval [−1, 1] of the Clenshaw-Curtis rule.

Fig. 3 shows the self-consistent conduction band edge and
the electron concentration for the nMOS and Fig. 4 the
corresponding result for the pMOS device. Within the well, the
squared wave functions for the four lowest, twofold degenerate
unprimed subbands are displayed at their corresponding energy
levels. For each subband the electron density is calculated
by k-space integration. For the (001) Si-nMOS device the
unprimed and primed subband ladder are taken into account
to obtain the self-consistent solution.

The convergence behavior of the self-consistent Schröd-
inger/Poisson loop is shown in Fig. 5. The quadratic norm
of the potential update after an iteration evolves similarly for
a different number of nodes per k-direction. As depicted in
the figure, the convergence behavior is good and hence the
iteration scheme proves stable.

To give an impression of the accuracy of the numerical
quadrature method a test with parabolic subbands has been
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Fig. 2. Occupation of the lowest unprimed subband of a 3 nm (001) silicon conduction band quantum well without strain (left) and with εxy = 0.5% shear
strain (right).



7.5 10 12.5 15 17.5
Position [nm]

-1.5

-1

-0.5

0

0.5

1

E
ne

rg
y 

[e
V

]

10
19

10
20

10
21

E
le

ct
ro

n 
co

nc
en

tr
at

io
n 

[c
m

-3
]

εxy=0.0%

εxy=0.5%

Fig. 3. Self-consistent calculation of the conduction band edge and the
electron concentration of a (001) Si-DG-nMOS with 3 nm well width and 1
nm oxide thickness. The normalized wave functions [nm−1] are overlayed
at their respective energy levels. The electron concentration is plotted for the
unstrained case and for εxy=0.5% shear strain.

conducted. Therefore, a (001) silicon DG-nMOS device has
been simulated using the two-band k · p Hamiltonian with k0

and 1
M set to zero which corresponds to the parabolic effective

mass approximation (EMA). Again, the unprimed and primed
valleys are taken into account. This way, the self-consistent
carrier concentration has been calculated and compared to
the results of the EMA, where the 2D subband density is
calculated analytically. The maximum relative difference of
the electron concentration for the 3 nm silicon well has been
used as measure of accuracy for the numerical quadrature. The
results are depicted in Fig. 6. Furthermore, the CPU time for
the calculation of the electron concentration on a single core of
an Intel Core 2 Quad Q6600 machine is given. This includes
the time for solving the Schrödinger equation for all points
in k-space and the following numerical quadrature. The curve
shows the expected O(N2) behavior of the algorithm.

In Table I the minima of the unprimed (U) and primed (P)
subbands are shown in units of eV. The five lowest eigenvalues
of the subband ladders are summarized. The eigenvalues of the

TABLE I
THE MINIMA OF THE UNPRIMED (U) AND PRIMED (P) SUBBANDS ARE

SHOWN IN UNITS OF eV. TO TEST THE NUMERICAL QUADRATURE THE

TWO-BAND k · p HAMILTONIAN HAS BEEN USED WITH k0 AND 1
M

SET TO

ZERO WHICH CORRESPONDS TO PARABOLIC BANDS. THE RELATIVE

DIFFERENCE OF THE EIGENVALUES IS GIVEN TO SHOW THE ACCURACY OF

THE SELF-CONSISTENT RESULT USING NUMERICAL INTEGRATION.

EMA k · p parabolic Relative difference
U P U P U P

−0.11210 0.04745 −0.11214 0.04741 3.6×10−4 8.4×10−4

−0.01494 0.61437 −0.01498 0.61434 2.7×10−3 4.9×10−5

0.19655 1.60525 0.19651 1.60521 2.0×10−4 2.5×10−5

0.49224 2.99374 0.49220 2.99371 8.1×10−5 1.0×10−5

0.87241 4.77407 0.87237 4.77404 4.6×10−5 6.3×10−6
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Fig. 4. Same as Fig. 3 but for Si-DG-pMOS device.

emulated “parabolic” k · p Hamiltonian with k0 and 1
M set

to zero and numerically integrated subbands are compared to
the energy levels resulting of the effective mass Schrödinger
equation. The relative difference of the eigenvalues is given
to show the accuracy of the self-consistent result using our
proposed calculation scheme.

In Table II the effects of nonparabolicity and strain on
the bound states is summed up. As in Table I the unprimed
and primed subband ladder is shown in units of eV. The
nonparabolic two-band k · p Hamiltonian applied to a (001)
silicon UTB device gives a two-fold degenerate unprimed val-
ley which is located at the X-point. The four-fold degenerate
primed valleys have their minimum at k = ±0.15 2π

a0

.
By applying shear strain, the unprimed subbands at the

X-point are split and shifted downwards with respect to the
primed subband ladder, therefore, favoring the occupation of
the unprimed valleys with lower transport mass. Whereas the
occupation of the individual subbands is changed fundamen-
tally, the effect on the total electron concentration is marginal

TABLE II
AS IN TABLE I THE UNPRIMED AND PRIMED SUBBAND LADDER IS SHOWN

IN UNITS OF eV. BY APPLYING SHEAR STRAIN, THE UNPRIMED

SUBBANDS ARE SPLIT AND SHIFTED DOWNWARDS WITH RESPECT TO THE

PRIMED LADDER, THEREFORE, FAVORING THE OCCUPATION OF THE

UNPRIMED VALLEYS WITH LOWER TRANSPORT MASS.

k · p nonparabolic k · p with εxy = 0.5%
Unprimed Primed Unprimed Primed

1 −0.10148 0.05773 −0.10336 0.07147
−0.10148 −0.10071

2 −0.00417 0.62431 −0.02814 0.63826
−0.00417 0.04673

3 0.20812 1.61512 0.22144 1.62886
0.20812 0.23429

4 0.50491 3.00361 0.51010 3.01732
0.50491 0.53152

5 0.88650 4.78393 0.89072 4.79764
0.88650 0.91224
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Fig. 5. Potential update after each Schrödinger/Poisson iteration for different
numbers of nodes per k-direction of the Clenshaw-Curtis subband integration.
Starting from the classical solution all simulations give similar convergence
behavior.

as shown in Fig. 3.
Similar simulations were carried out for the DG-pMOS

device. In the effective mass approximation three types of
holes have been considered. The heavy hole band with mhh =
0.39me, the light hole band with mlh = 0.19me and the split
off band with mso = 0.24me and a shift of 44 meV down
from the valence band edge are included in the calculations.
As illustrated in Fig. 4 this gives a good agreement of the
EMA hole concentration with the self-consistent six-band
k · p results. The calculated bound states in the UTB are
summarized in Table III. Furthermore, compressive stress of
1 GPa in [110] direction was applied. This gives an additional
splitting of the heavy hole and light hole band. Under these
conditions the transport mass in [110] of the highest band
extracted from the k · p dispersion relation was m = 0.17me

as compared to m = 0.32me in the unstrained case.

V. CONCLUSIONS

Contrary to numerical solutions based on the one-band
effective mass Schrödinger equation, this work considers a
nonparabolic dispersion relation based on a k · p Hamiltonian.
Furthermore, shear strain effects leading to a warping of
the bandstructure are accounted for. The proposed numerical
quadrature of the subbands has been successfully applied
to electron and hole states in unstrained and strained Si.
The self-consistent solutions for the band edges and carrier
concentrations of a UTB Si nMOS and pMOS device are
presented. The numerical quadrature proves as simple and yet
robust method.
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Fig. 6. CPU time for a single Schrödinger/Poisson iteration for different
number of nodes per k direction of the Clenshaw-Curtis subband integration.
The maximum relative difference of the self-consistent carrier concentration
within the well for numerically integrated parabolic subbands with respect
to the effective mass approximation with analytically integrated subbands is
given to show the good accuracy of the quadrature method.

TABLE III
THE BOUND STATES IN A (001) SI DG-PMOS IN UNITS OF eV. FOR THE

EFFECTIVE MASS APPROXIMATION THE HEAVY HOLE, LIGHT HOLE AND

SPLIT OFF STATES HAVE BEEN CONSIDERED. THE RESULTS ARE

COMPARED TO k · p SIMULATIONS FOR UNSTRAINED AND STRAINED SI

WITH COMPRESSIVE STRESS OF 1 GPA IN [110] DIRECTION.

EMA k · p

HH LH SO Unstrained Strained

1 0.11094 0.00446 0.04758 0.02275 0.04029
2 −0.15444 −0.57724 −0.40559 −0.00009 −0.00842
3 −0.65224 −1.60061 −1.21528 −0.07281 −0.09870
4 −1.34922 −3.03304 −2.34895 −0.36674 −0.34967
5 −2.24353 −4.86962 −3.80274 −0.39456 −0.40065
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