
A Fast Void Detection Algorithm for
Three-Dimensional Deposition Simulation

Otmar Ertl and Siegfried Selberherr
Institute for Microelectronics, TU Wien

Gußhausstraße 27–29/E360, A-1040 Wien, Austria
Email: {ertl|selberherr}@iue.tuwien.ac.at

Abstract—We present an efficient algorithm for the detection
of voids which potentially emerge during deposition process
simulation. The application of modern level set techniques and
data structures enables the fast determination of connected
components directly from the implicit level set representation
without the need of an additional surface extraction. The algo-
rithm exhibits optimal linear scaling with surface size and is
demonstrated on an example, where an isotropic etching process
followed by conformal deposition is simulated.

I. INTRODUCTION

Deposition processes can lead to the inclusion of voids.
From the point of formation their shapes usually do not
change, since they are disconnected from the process chamber.
Deposition process simulations should reproduce this simple
behavior. However, especially in three dimensions, the solution
of more complex models is computationally very expensive.
Therefore, often approximations or simplified models are
used, which can result in non-physical movement of void
boundaries. For example, a constant deposition rate is often
used for isotropic deposition simulations.

If the surface is given as triangulation, it is possible to find
voids by determining the connected components of the mesh.
However, to overcome the arising difficulties with topographic
changes during boundary movement, the surface is usually
described implicitly using techniques like the level set method
[1] or the equi-volume rate model [2]. Furthermore, it has been
demonstrated that topography simulations are possible, where
the surface rates are calculated using just the implicit surface
representation [3], [4]. To avoid the need of a triangulated
version of the surface at all, which has to be extracted every
time step using costly techniques like the marching cubes
algorithm [5], it would be convenient to have an efficient
method to detect voids directly using the implicit surface
representation.

II. LEVEL SET METHOD

The level set method is a technique to describe geometric
changes over time and is widely-used for three-dimensional
topography simulation [6]. A moving surface S is described
implicitly as zero level set of a continuous function Φ

S = {�x : Φ(�x) = 0}. (1)

Using this level set function the time evolution of the surface
can be simply described by the level set equation

∂Φ
∂t

+ V (�x)‖∇Φ‖ = 0. (2)

Here V (�x) denotes a velocity field. Since this field has no
physical meaning in topography simulations, it has to be
extrapolated from the rates on the surface [7]. The level set
equation can be easily solved on regular grids using simple
finite difference upwind schemes [8].

The level set function is defined on the whole simulation
domain, which implies that the memory requirements and also
the computation time for time evolution scale with domain
size. Different techniques have been developed to obtain
optimal linear scaling with surface size (surface area measured
in grid spacings).

A. Sparse field level set method

Only level set values of grid points close to the surface have
an influence on the surface position. Therefore, it is sufficient
to consider only grid points located around the surface for
time integration. Only the level set values of these so-called
active grid points have to be updated in time, leading to a
linear complexity.

This idea was first put into practice by the narrow band
method which uses several layers of active grid points around
the surface [9]. We use another technique, the sparse field level
set method [10], which further decreases the computation time
by using just one single layer of active grid points, namely
those with level set values in the range −0.5 to 0.5. Since all
active grid points are very close to the surface (within a half
grid spacing), the required surface velocity extension is very
simple. It is even possible to avoid this extrapolation at all, if
the surface velocities are calculated directly for all active grid
points [4].

B. Hierarchical run-length encoding

The narrow band or the sparse field level set method
requires only the level set values of all active grid points
and additionally those of grid points in neighboring layers
to enable the calculation of derivatives. Hence, the memory
requirements can be minimized by storing just the needed level
set values.

We use the hierarchical run-length encoded (HRLE) data
structure [11] to store just the level set values of the so-called

978-1-4244-3947-8/09/$25.00 ©2009 IEEE 174



Fig. 1. A rectangle is described by the level set values of the closest grid
points (circles). All other undefined grid points (dots) are combined in runs, as
shown by the light and dark gray colored regions, which correspond to positive
and negative level set signs, respectively. The defined grid points are also
colored by the same color scheme. The run-length encoding is hierarchically
applied to all grid directions as schematically shown. The integer numbers
label corresponding run codes and sets of undefined grid points.

defined grid points. For all other grid points only the signs of
their level set values are stored using run-length compression,
which is applied recursively to all dimensions. Fig. 1 shows
schematically the idea of hierarchical run-length encoding.
However, for a detailed description of the data structure we
refer to the original paper [11].

The memory requirements of the HRLE data structure scale
linearly with the number of defined grid points with little
overhead. The defined grid points are stored in lexicographical
order. This enables the sequential lexicographical iteration over
all grid points in linear time. Random access to grid points
is provided with a worst case logarithmic complexity. Since
for each grid point at least the sign of the level set value
is stored, the information is available on which side of the
surface a point is located. This is useful for geometric boolean
operations or for multi-level-set methods to describe different
material regions [12]. Furthermore, the adaptiveness of the
HRLE data structure allows open boundaries, which enables
the simulation on grids with infinite extensions.

The HRLE data structure can be combined with the sparse
field level set method to obtain a fast level set framework,
which exhibits linear scalings in terms of surface size for
memory requirements and computation time [12].

III. VOID DETECTION ALGORITHM

The level set function partitions the simulation domain
into connected components. In the following we present a
fast algorithm which uses some properties of the HRLE data
structure to determine for each grid point the corresponding
component it belongs to. The determination of connected
components gives the information about existing voids. If there
are no voids, there are just two components which correspond
to the bulk material and the region above the surface as part
of the process chamber. The obtained connectivity information
can also be used to ensure that the geometry of voids does not
change after they have been formed.

A. Connected components

We define two neighboring grid points to be connected,
if and only if they have the same level set sign. If they do
not have the same sign, the zero level set, and hence the
surface separates them. The connectivity relations between
neighboring grid points can be described by a graph, where
each grid point corresponds to a vertex. The connectivity of
two neighboring grid points is represented by an edge between
the corresponding vertices. According to elementary graph
theory the connected components of a graph can be determined
with a complexity of O(V + E), where V and E denote the
number of vertices and edges, respectively [13]. Obviously,
setting up a full graph with vertices for each point of the
regular grid is not reasonable, since the memory requirements
and also the computation of the connected components would
scale with the domain size and not linearly with the surface
size.

B. Graph setup algorithm

If the HRLE data structure is used, the utilization of the
following properties allows the setup of a reduced graph,
which already combines several grid points within a vertex,
and consequently, for which it is much easier to determine its
connected components:

• The HRLE data structure leads to a segmentation of the
grid. Such a segment is either a defined grid point or an
undefined run, which combines one or more undefined
grid points with the same level set sign (compare Fig. 1).

• All grid points within a segment are connected. The
connectivity follows for undefined runs from the fact,
that all contained grid points are neighbored and have
the same sign. Hence, if any points of two different
neighboring segments are connected, all of their points
are connected among each other.

• Two segments are neighbored, if and only if at least
one of their corresponding first points is a neighbor to
the other segment. Here the first point of a segment
means the first point according to the lexicographical
order given by the HRLE data structure. As consequence,
it is sufficient to obtain all required connectivity relations
between segments, by testing the 6 neighbor points of all
first points for connectivity.

978-1-4244-3947-8/09/$25.00 ©2009 IEEE 175



Fig. 2. The surface and a void are represented by a level set. Using sequential
iterators the corresponding HRLE data structure can be efficiently processed
in lexicographical order (arrow) to set up the reduced graph. Each segment
is assigned to a vertex of the graph.

Fig. 3. The corresponding reduced graph as set up by our algorithm consisting
of 3 connected components {1, 3}, {2, 4, 5}, and {6, 7}, which correspond
to the regions above and below the surface, and the void. The number of
vertices is very small compared to the number of defined grid points.

To set up the reduced graph an array is needed to store for
each segment in the HRLE data structure a reference to the
corresponding vertex. The HRLE data structure is sequentially
traversed and for each segment the following two tasks are
performed:

1) The 6 neighboring points of the first grid point in the
current segment are tested for connectivity. If none of the
corresponding connected neighbor segments is assigned
to a vertex, a new vertex is inserted into the graph to
which the current segment is assigned. Otherwise, the
current segment is assigned to any vertex to which a
connected neighbor belongs.

2) All connected neighbor segments which do not belong
to any vertex yet are assigned to the same vertex as
the current segment. If there is any connected neighbor
belonging to a different vertex, a new edge between the
corresponding vertices is inserted in the graph.

Fig. 2 shows an example with a level set representing
the surface and a void. After the procedure each segment is
assigned to a vertex of the reduced graph which is depicted
in Fig. 3. Due to the incorporation of connectivity relations
during the setup the number of vertices of the reduced graph
is usually only a fraction of the number of defined grid points.

C. Algorithmic complexity

The setup of the graph requires the lexicographical traversal
over the HRLE data structure. For the first point of each
segment the 6 neighbor grid points have to be found and tested
for connectivity. To avoid the logarithmic random access, it
was proposed to use 6 additional offset iterators which are
moved simultaneously over the data structure [11], [12]. As
result, access to neighbor grid points can be performed in
constant time. Hence, the setup of the reduced graph has a
complexity of O(N), if N denotes the surface size. For the
size of the reduced graph E + V ≤ O(N) holds, since each
segment in the HRLE data structure leads to the insertion of
at most one vertex and 6 edges. As already mentioned, the
connected components of a graph can be obtained with linear
complexity, which leads to an overall algorithmic complexity
of O(N).

The memory requirements are optimal. For each segment
of the HRLE data structure a reference of the corresponding
vertex has to be stored. The memory requirements for the
reduced graph can be usually neglected, because in practice
the number of vertices is much smaller than the number of
segments.

D. Preservation of voids

The connectivity information can be used to ensure that
voids do not change over time. If the level set values of all
active grid points which do not belong to and which are not
connected to any neighbor grid point belonging to the region
above the surface, are not changed, the shapes of all voids
are maintained. Depending on the orientation of the surface
the region above the surface is represented by the connected
component which contains the first or the last defined grid
point in the HRLE data structure.

IV. RESULTS

To test our algorithm we use a two-layer structure as given
in Fig. 4. First, the structure is exposed to an isotropic etching
process (Fig. 5). The different material regions with different
etching rates are accurately described by our recently devel-
oped multi-level-set framework [12]. Afterwards, a conformal
deposition process is applied (Fig. 6), where the void detection
algorithm is utilized every time step to preserve the shape of
the voids.

To proof the linear scaling laws of our algorithms, the
initial geometry is scaled by various factors. Table I lists the
corresponding lateral grid extensions, the average calculation
times for a time integration step during etching and deposition,
respectively, and the average computation time for the void
detection algorithm. All calculations are performed on an Intel
Core 2 Quad Q9550 processor (2.83GHz). The number of
vertices of the largest graph, which was set up during the
whole simulation, is also given and shows that it is several
orders of magnitude smaller than the number of defined grid
points (which is at least larger than the product of the lateral
grid extensions). Therefore, the memory requirements for
storing the reduced graph are marginal.

978-1-4244-3947-8/09/$25.00 ©2009 IEEE 176



TABLE I

Scale factor 0.5 1.0 1.5 2.0 2.5

Lateral grid extensions 600 × 100 1200 × 200 1800 × 300 2400 × 400 3000 × 500

Average calculation time for a time step (etching) 0.27s 1.09s 2.53s 4.51s 7.15s

Average calculation time for a time step (deposition) 0.34s 1.40s 3.32s 5.25s 9.38s

Average calculation time for void detection (deposition) 0.09s 0.31s 0.73s 1.29s 2.06s

Maximum number of vertices in the reduced graph 76 160 271 390 538

Fig. 4. The initial geometry consisting of a substrate and a mask with
cylindrical holes of varying diameters di. All lengths are given in multiples
of the grid spacing. Reflective boundary conditions are used for both lateral
directions.

Fig. 5. First an isotropic etching process is applied. Mask etching is also
incorporated. An etch rate ratio of 1:10 is assumed. The two material regions
are represented by two level sets.

Fig. 6. The final profile after applying a conformal deposition process. The
deposited layer has a thickness of 50. Due to the varying hole diameters the
voids form at different points of time leading to different thicknesses of the
deposited layer within the cavities. The geometry is described by three level
sets.

V. CONCLUSION

We presented a fast void detection algorithm based on the
HRLE data structure. Its properties allow the efficient determi-
nation of connected components by setting up a reduced graph.
The linear complexity of the algorithm was analyzed and
demonstrated on an example. The algorithm is not restricted
to deposition processes. It can also be used, for instance, to
simulate isotropic etching of materials with inclusions. As
soon as the etch front reaches an inclusion, its surface is also
attacked.

Although used in combination with the level set method,
the void detection algorithm can also be applied to the equi-
volume rate model [2]. There, the HRLE data structure could
be used to store the volume rates of surface cells, while
run-length encoding bulk and air cells. As consequence, the
connected components can be found in an analogous manner.

REFERENCES

[1] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formulations,”
J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988.

[2] M. Fujinaga and N. Kotani, “3-D topography simulator (3-D MULSS)
based on a physical description of material topography,” IEEE T.
Electron. Dev., vol. 44, no. 2, pp. 226–238, 1997.

[3] O. Kwon, H. Jung, Y. t. Kim, I. Yoon, and T. Won, “Level-set modeling
of sputter deposition,” J. Korean Phys. Soc., vol. 40, no. 1, pp. 72–76,
2002.

[4] ——, “Three-dimensional level set based Bosch process simulations
using ray tracing for flux calculation,” Microelectronic Engineering,
2009, doi: 10.1016/j.mee.2009.05.011.

[5] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” SIGGRAPH Comput. Graph., vol. 21,
no. 4, pp. 163–169, 1987.

[6] U.-H. Kwon and W.-J. Lee, “Three-dimensional deposition topography
simulation based on new combinations of flux distribution and surface
representation algorithms,” Thin Solid Films, vol. 445, no. 1, pp. 80–89,
2003.

[7] D. Adalsteinsson and J. A. Sethian, “The fast construction of extension
velocities in level set methods,” J. Comput. Phys., vol. 148, no. 1, pp.
2–22, 1999.

[8] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cam-
bridge Univ. Press, 1999.

[9] D. Adalsteinsson and J. A. Sethian, “A fast level set method for
propagating interfaces,” J. Comput. Phys., vol. 118, no. 2, pp. 269–277,
1995.

[10] R. T. Whitaker, “A level-set approach to 3d reconstruction from range
data,” Int. J. Comput. Vision, vol. 29, no. 3, pp. 203–231, 1998.

[11] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth,
“Hierarchical RLE level set: A compact and versatile deformable surface
representation,” ACM Trans. Graph., vol. 25, no. 1, pp. 151–175, 2006.

[12] O. Ertl and S. Selberherr, “A fast level set framework for large three-
dimensional topography simulations,” Comput. Phys. Commun., 2009,
doi: 10.1016/j.cpc.2009.02.002.

[13] J. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley Professional, 2002.

978-1-4244-3947-8/09/$25.00 ©2009 IEEE 177




