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We present three-dimensional simulation techniques for plasma 
etching processes. Models based on Langmuir-type adsorption and 
on ballistic particle transport at feature scale can be efficiently 
solved in three dimensions. Surface coverages are self-consistently 
calculated. The local sputter rates of ions and the fluxes of neutrals 
are computed using modern ray tracing algorithms. In this way 
angle and energy dependent sputter yields or specular reflections 
of ions can be incorporated in a natural manner. For the time 
evolution of the surface we apply a recently developed fast multi-
level-set framework. Our simulation techniques are demonstrated 
using a SF6/O2 plasma etching process model. 
 

Introduction 
 
In recent years various works on three-dimensional plasma etching simulation have been 
presented. However, most of them are not suitable to solve complex plasma etching 
models. The transport equations of more generalized models can not be solved in three 
dimensions by common surface integration techniques due to computational limitations. 
For simplification specular reflections of ions or higher order re-emissions of neutrals are 
often not fully incorporated (1, 2). A more promising approach is based on the Monte 
Carlo method. By simulating many particle trajectories the surface rates can be 
determined (3, 4). Compared to common techniques, where the particle transport 
equation is solved conventionally by integration over the surface, the Monte Carlo 
method allows the solution of more complex transport equations. We have recently 
shown that the application of modern ray tracing techniques leads to a well scaling 
algorithm suitable for large three-dimensional geometries (5). We present the application 
of these methods to more sophisticated physical models which are used to describe 
plasma etching processes. 
 

Model 
 

Typical plasma etching models assume ballistic transport of particles at feature-scale 
and Langmuir-type adsorption (6 - 9). As representative of these mathematically similar 
models we pick out the model given in (9) which describes silicon etching in SF6/O2 
plasma. In the following we summarize the model. We also discuss the governing 
equations, in order to point up the difficulties of their solution, especially in three 
dimensions. However, for a detailed description of the model including full sets of 
parameters we refer to the original paper. 
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Particle Transport 
 

The model incorporates three different particle types: Ions, etchants (fluorine), and 
inhibitors (oxygen). We assume that the arrival angle and energy distributions are known 
for all involved particle species at a plane P  just above the surface as illustrated in 
Figure 1. 

 

 ( )src src 1( , ) ( )
2 PE d dE F f E d dEκκ
π
+

Γ Ω = ⋅ Ωt t n  [1] 

 
Here nP is the normal of the plane P pointing towards the surface S of the structure. t is 
the incidence direction. srcF  denotes the total arriving flux. The parameter κ is used to 
model the arrival angle distribution. For the narrow angular distribution of ions typically 
large values are used ( 2 310 10κ ≈ … ). For neutral particle species usually κ = 1 is applied, 
which corresponds to a cosine-like angular distribution. The function ( )f E  describes the 
energy distribution of particles, which can be obtained from plasma sheath calculations 
(10). The energy dependence in [1] is only taken into account for ions, since their energy 
has an impact on the sputter yield.  

Ballistic transport from the plane P to the surface S is assumed (11). This is a good 
approximation, if the mean free path of particles is smaller than the typical feature size. 
Consequently, the particle flux arriving at the surface point x with direction t and energy 
E can be written as 
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 [2] 

 
Depending on its origin which can be either the plasma, represented by plane P, or the 
surface S itself due to re-emission, two cases are distinguished. ′x  is the closest point 
seen from point x in direction –t and which belongs to P or S.  
 

 
 
Figure 1.  The flux at a surface point x is 
composed of the direct flux from the 
source plane P and the indirect flux from 
the surface S itself due to re-emission. 

 
 
Figure 2.  Spatial subdivision accelerates 
the calculation of particle trajectories. 
Only a small number of boxes have to be 
traversed until the surface is reached. 
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The re-emitted flux reΓ  is related to the incidence flux distribution by the transmission 
probability ( ( ); , ; , )Q E E′ ′n x t t , which gives the probability that an incident particle with 
direction ′t  and energy E′  is re-emitted into direction t with an energy E 
 
 re ( , , ) ( ( ); , ; , ) ( , , ) .E Q E E E d dE′ ′ ′ ′ ′ ′Γ = Γ Ω∫∫x t n x t t x t  [3] 
 
To describe the diffusive re-emission of neutral particles with a sticking probability δ  
the transmission probability can be written as 
 

 ( ) ( )( ( ); , ) 1 .Q δ
π
⋅′ = −

t n xn x t t  [4] 

 
As already mentioned the energy distribution is neglected for neutral particles. The 
general formulation of the re-emission [3] also allows the description of specular-like 
scattering of ions. The applied angular and energy distributions of re-emitted ions as 
function of incidence angle and energy can be found in (8).  
 
Surface Kinetics 
 

For the description of the surface kinetics coverages F ( )θ x  and O ( )θ x  are introduced, 
which describe the fraction of surface sites covered with fluorine and oxygen, 
respectively. The corresponding balance equations can be written as 
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Here σSi is the surface site density. The first terms describe the adsorption of neutrals, 
which is proportional to the corresponding arriving fluxes, the sticking probabilities γF/O, 
and the fraction of free surface sites (1 – θF – θO). The second term describes the loss of 
particles caused by chemical etching with rate k or by recombination with rate β, 
respectively. The third term describes the removal due to ion-enhanced etching or 
sputtering. YSi and YO are the ion-enhanced etching yield function and the O sputter yield 
function, respectively.  

Usually the relaxation to equilibrium occurs on a much smaller time scale than 
geometric changes due to the advancing etch front. Hence, pseudo-steady-state conditions 

/ 0tθ∂ ∂ = can be assumed in [5], which leads to a system of linear equations with respect 
to the coverages. Consequently, the solution of this system leads to explicit expressions 
for the coverages. They can be directly calculated from the flux distributions. However, 
the flux distributions themselves depend on the coverages, since the effective sticking 
probabilities usually depend on the fraction of free surface sites. For example, the 
effective sticking probability in [4] is modeled by ( )F/O F/O F O1 .δ γ θ θ= − −  This leads to a 
recursive problem, which has to be solved iteratively and which will be discussed later. 

Once the flux distributions of all involved particle species are determined, the local 
etching rate 
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can be calculated as the sum of three contributions: Chemical etching, physical sputtering, 
and ion-enhanced etching. Here Siρ  denotes the Si bulk density and Yp is the physical 
sputter yield function. 
 

Simulation Methods 
 

In order to calculate the time evolution of the surface the local etch rates have to be 
determined at each time step by solving the system of equations [2], [5], and [6]. Then, 
the surface is moved according to these rates for the whole time step. If the time step is 
small, so that geometric changes do not have much influence on the local etch rates, this 
is a justified approach. In the following we briefly describe the methods which we use for 
calculating the movement of the surface and the local etch rates. 
 
Level Set Method 

 
For the surface evolution we use the level set method (12), which describes a moving 

boundary as zero level set of a continuous function. The solution of the level set equation 
 

 { }+V( ) 0, where : ( ) 0S
t

∂Φ
∇Φ = = Φ =

∂
x x x  [7] 

 
gives the time evolution of the surface. Here Φ(x) denotes the level set function, and V(x) 
is the surface velocity field. Usually the level set equation is solved on a regular grid 
using finite difference schemes. The position of the surface is described with sub-grid 
accuracy and can be obtained by tri-linear interpolation within grid cells. Another 
advantage of the level set method is the inherent incorporation of topographic changes. 

In its original formulation the level set function is stored and updated in time for all 
grid points of the simulation domain. The surface velocity field V(x) has to be 
determined by extrapolating the etch rates given on the surface. In summary, the 
calculation of the surface evolution scales with the simulation domain, not like the 
desired linear scaling with surface size.  

Different methods have been developed to make the level set method more efficient. 
We have recently developed a fast level-set-framework (13) based on the sparse field 
level set method (14) and a hierarchical run-length-encoded level set data structure (15). 
There only a minimum set of grid points located close to the surface is stored and updated 
in time. In this way a linear scaling is obtained for the memory requirements as well as 
for the time evolution algorithm. In addition, the costly surface velocity extension can be 
avoided (5).  
 
Ray Tracing 

 
The calculation of the local flux distributions by solving [2] without any 

simplifications of the re-emission equation [3] is not reasonable in three dimensions by 
means of conventional surface integration techniques. To solve the particle transport in 
its general form, discretizations of the surface and of the solid angle are necessary. In 
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case of ions also an energy discretization is required. This leads to a huge number of 
unknowns resulting in large memory requirements. Additionally, the solution of the 
corresponding system of equations is very expensive. 

Alternatively, a Monte Carlo method can be applied. By simulating millions of 
particle trajectories for each involved particle species, the integrals in [5] and [6], which 
are necessary for the calculation of the surface coverages and the etch rate can be directly 
computed. The particles are launched from a random position on the source plane P. The 
direction and the energy are also randomly generated under consideration of the 
corresponding distributions. If a particle hits the surface, it contributes to the values of the 
integrals according to the yield given by its incidence angle and energy. Then the particle 
is re-emitted following the transmission probability Q. The particle trajectory calculation 
is continued until the particle leaves the simulation domain or remains sticking on the 
surface. To enable the calculation of the local etch rates, tangential disks with predefined 
areas are set up for all surface points, for which the etch rates have to be calculated. Each 
particle hitting such a disk contributes to the local rate (5).  

The main task during the Monte Carlo simulation is to find the first intersections of 
particle trajectories with the surface. Due to the assumed ballistic transport the particle 
trajectories are straight lines. Therefore, the problem is quite similar with ray tracing, a 
widely applied Monte Carlo technique in computer graphics. There, millions of light rays 
are computed to obtain a realistic picture of a three-dimensional scene.  

Various algorithms have been developed to speed up ray tracing. A very popular 
technique is spatial subdivision as shown in Figure 2. The simulation domain is 
subsequently divided into boxes, until they do not contain any parts of the surface or their 
sizes equal that of grid cells. By sequentially traversing box by box the first intersection 
with the surface can be found very efficiently. The expected computational costs for the 
calculation of a particle trajectory is in the order of O(log N), where N denotes the surface 
size. The number of simulated particles has to scale with N to keep the number of 
incidences per unit area, and consequently the statistical accuracy constant. As result a 
total algorithmic complexity of order O(N log N) can be obtained. This is a much better 
scaling law as can be obtained by direct integration methods. For that reason ray tracing 
is a suitable method to calculate the particle transport for large three-dimensional 
simulations. 

 
Simulation Algorithm 
 

The whole simulation algorithm is composed of the surface evolution module based 
on the level set method, and the surface rate calculation module using the Monte Carlo 
method enhanced by ray tracing techniques. Figure 3 shows a simplified flow chart of our 
simulation algorithm. First the level set data structure is initialized according to the input 
geometry and initial values are assigned to the surface coverages. As already mentioned, 
the surface coverages depend on the flux distributions and vice versa, leading to a 
recursive problem which has to be solved iteratively. This is done by repeating the ray 
tracing and the calculation of the surface coverages until they converge. In practice, this 
iterative procedure is only applied at the very beginning to calculate the initial coverages. 
Later, the coverages of the previous time step are used for the etch rate calculation. Since 
the time increments are very small due to the Courant-Friedrichs-Lewy condition, which 
has to be fulfilled for the level set method, the geometric changes, and consequently also 
the changes of the coverages are small. In our simulations the maximum advancement of 
the surface within a time step is limited by 0.1 grid spacings. 
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Figure 3.  The flow chart of our simulation algorithm.  
 

Simulation Results 
 

To demonstrate our approach etching in SF6/O2 plasma is simulated. The initial 
structure is a silicon substrate covered by a 1.2µm thick SiO2 mask layer with a circular 
tapered hole. The diameter is 0.35µm at the bottom and 0.4µm at the top. The geometry 
with two material regions is represented by two level sets resolved on a regular grid with 
lateral extensions 100 x 100 and a grid spacing of 20nm. Reflective boundary conditions 
are assumed in both lateral directions. 

Figure 4 shows the level set representations of the profiles after 150s for different 
fluxes of oxygen and fluorine from the source. With increasing amount of oxygen the 
etched profile gets more directional. The oxygen covers the sidewalls and prevents them 
from corrosion. In our simulations mask etching is also incorporated. The applied multi-
level-set technique allows an accurate description of multiple material regions with 
different surface rates (13). 
 

 
Fion = 1016 cm-2s-1 Fion = 1016 cm-2s-1 Fion = 1016 cm-2s-1 Fion = 1016 cm-2s-1 
FF = 8·1018 cm-2s-1 FF = 5.5·1018 cm-2s-1 FF = 4.5·1018 cm-2s-1 FF = 4·1018 cm-2s-1 

FO = 0 FO = 1.5·1017 cm-2s-1 FO = 6·1017 cm-2s-1 FO = 1018 cm-2s-1 
 
Figure 4.  The final profiles after a process time of 150s for different fluxes of fluorine 
and oxygen. The two level sets which are used to represent the two material regions are 
shown. The mask corresponds to the region in between the two planes. 
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In each time step 5 million trajectories of each particle species are calculated. Due to 
spatial subdivision and the use of modern quad-core processors the calculation time of 
one time step could be reduced to less than 15s. About 2000 time steps are necessary to 
get the finale profiles, resulting in a total computation time of about 8h. 

In a second example the three-dimensional capabilities of our simulator are 
demonstrated. The initial geometry is shown in Figure 5. The whole geometry is resolved 
on a grid with lateral extensions 200 x 200. Again reflective boundary conditions and a 
grid spacing of 20nm are used. The same process parameters are applied as for the third 
example in Figure 4. The level set representations of the profile after 25s, 50s, and 75s 
are shown in Figures 6 - 8. For this simulation, due to the larger domain size, 20 million 
particle trajectories of each species are calculated every time step. The full incorporation 
of specular reflections leads to micro-trenching at the trench bottom edges. Due to the 
same reason the bend and the end of the trench are etched deeper. 

 

 
 

Figure 5.  The initial geometry. The 
mask has a thickness of 1.2µm. The 
trench width is 0.35µm at the bottom and 
0.4µm at the top.  

 
 
Figure 6.  The profile after 25s. Micro-
trenching as a result of specular 
reflections of ions can be clearly 
observed. 

 
 
Figure 7.  The profile after 50s. 

 
 
Figure 8.  The profile after 75s. 
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Conclusion 
 

We described simulation techniques which are able to solve complex plasma etching 
process models in three dimensions. Our ray tracing approach accelerated by spatial 
subdivision allows the efficient solution of the ballistic transport equations. Specular 
reflections as well as energy dependent and angle dependent sputter yields of ions can be 
incorporated. Coverages introduced within Langmuir-type adsorption models to describe 
the surface kinetics are self-consistently determined.  

As demonstration we presented three-dimensional simulations of SF6/O2 plasma 
etching processes, where the influence of the particle fluxes on the final profile was 
investigated. The process was also applied to a non-symmetric trench structure, where 
three-dimensional effects could be observed, which were mainly caused by specular 
reflection of ions. 
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