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Abstract

Due to the ongoing reduction in device geometries, the
statistical properties of a few defects can significantly alter
and degrade the electrical behavior of nano-scale devices.
These statistical alterations have commonly been studied in
the form of random telegraph noise (RTN). Here we show
that a switching trap model previously suggested for the recov-
erable component of the negative bias temperature instability
(NBTI) can more accurately describe the bias and temperature
dependence of RTN than established models. We demonstrate
both theoretically and experimentally, that the recovery fol-
lowing bias temperature stress can be considered the non-
equilibrium incarnation of RTN, caused by similar defects.
We furthermore demonstrate that the recoverable component
is solely constituted by individual and uncorrelated discharging
of defects and that no diffusive component exists. Finally it
is highlighted that the capture and emission times of these
defects are uncorrelated.

Introduction

In future nano-scale MOSFETs only a handful of defects
will be present in the oxide above the channel region which
can have a significant stochastic impact on their operation
[1]. In order to understand circuits using such devices, as
well as being able to estimate their reliability, one has to
study the dynamic behavior of these defects [2]. We have
recently reported experimental data which show that both
1/ f noise and negative bias temperature instability (NBTI)
in pMOSFETs are due to defects with very similar properties
[3] and we have already successfully described their voltage
and temperature dependence [4]. Consequently, the defects
responsible for random telegraph noise, which have been
suspected to also be the fundamental building blocks of 1/ f
noise [5, 6], could play a similar role in NBTI.

It has been demonstrated that the reduction in the random
telegraph noise power brought about by bias switching can
be described by a charge trapping model because the defects
have to adjust to the new bias condition [7]. Here we will
show that the same is also valid under the heavy stress
conditions typical for NBTI by demonstrating that both the
quasi-equilibrium (RTN) and thenon-equilibrium (i.e., NBTI
stress and recovery) behavior can be successfully described by
our switching trap model. The main difference is thatdefects
with larger time constants are activated in NBTI, resulting in
the characteristic long relaxation curves with time constants
below 1µs and longer than 11 days [8]. The theoretical
predictions obtained from our model will be confirmed by

carefully designed experiments recorded on nano-scale pMOS-
FETs (W/L = 150nm/100nm). A particularly intriguing ob-
servation further supporting the idea that individual switching
traps constitute the overall degradation is that the capture
and emission times are essentially uncorrelated. Based on this
evidence it also has to be concluded that the characteristic
switching behavioris not due to a diffusive process, such as
assumed in the popular reaction-diffusion (RD) theory [9, 10].

Previous Modeling Approaches for RTN
Modeling of RTN and 1/ f noise dates back to the work

of McWhorter [11]. Irrespective of the fact that variants
of this elastic tunneling model are still frequently used, it
has been repeatedly shown that they can neither explain the
temperature nor the bias dependence of the time constants
[6, 12–14]. Kirton and Uren have used a lattice-relaxation
multiphonon emission (LRME) process [6], see Fig. 1, but
also observed that the required capture cross sections showed
a bias dependence stronger than the expected 1/p behavior
(p being the surface hole concentration), see Fig. 2. This mis-
match has repeatedly been demonstrated and prompted various
authors to introduce empirical corrections to the capture cross
sections [15].

For thicker oxides such a strong bias dependence has often
been successfully explained by the Coulomb blockade [13, 14],
which is introduced by having to move the mirror charges
against the external bias source. However, this explanation
fails for thin oxides, as there for a defect inside the oxide
the Coulomb barrier is dominated by the mirror charge on the
gate, resulting even in a turn-around of the bias dependence
[16], see Fig. 3. We consequently have to conclude that the
experimentally observed bias dependence cannot be properly
explained by existing theories [15].

The Switching Trap Model for RTN and NBTI
We will thus model RTN using the Harry Diamonds Lab

(HDL) switching trap model [17] previously suggested for
the description of recoverable charge trapping in NBTI [4],
see Fig. 4. It assumes that charge trappingcreates a defect,
possibly an E’ center, which can be repeatedly charged and
discharged and anneals only when in the neutral state. For
most purposes, charging of the already created defect can
be considered fast, allowing us to derive simpler expressions
for the effective capture and emission times (the slow defect
creation and annealing) using an ’effective Poissonian model’
(middle of Fig. 4). In comparison to previously published
models, the switching trap model can predict a much stronger
bias dependence of the time constants: for the capture time
this is a consequence of the pre-cursor defect level lying below



(rather than above) the silicon valence band, which requires the
hole to be thermally activated rather than just captured. Onthe
other hand, the emission time becomes strongly bias dependent
due to the fact that only neutral defects can anneal. Quite
intriguingly, the switching trap model, previously developed
for NBTI, can also best explain the bias dependence of the
RTN capture and emissions times in thin oxides, see Fig. 4.
The striking fact that standard charge trapping models failto
completely reproduce the bias dependence of RTN and the
recoverable component of NBTI [4], while the switching trap
model captures both phenomena, is strong evidence for its
correctness.

The Link between RTN and NBTI: A qualitative demon-
stration of how such defects can be responsible for both RTN
and NBTI is given in Fig. 5. For this the switching trap model
is written as a stochastic differential equation. Prior to stress,
the defects are in quasi-equilibrium and depending on their
capture and emission times some are mostly neutral, some
mostly positively charged, while the remaining defects ran-
domly capture and release charge, thereby creating detectable
RTN. When the bias is changed to the stress voltage, this
equilibrium is disrupted by the strong bias dependence of the
time constants. Depending on these time constants, a previ-
ously neutral defect can start producing RTN or even become
predominantly positively charged. When the bias is switched
back to the initial value, each defect responds following its
own time constants, thereby restoring the previous equilibrium,
visible in experimental data obtained on nano-scale devices
as discrete recovery steps [3]. However, as such the steps
observed in the experimental data are itself no proof that
the underlying mechanism is given by such a charge trapping
mechanism.

The Stochastic Behavior of the Switching Trap Model:
In order to properly interpret these steps, we have to consider
their stochastic nature [18]. Stochastic in this case meansthat
the mean capture and emission times only give the probability
of the occurrence of a step. This implies that it is not sufficient
to study a single recovery trace which is just one possible
realization of the stochastic process. Rather, a sufficiently large
number of full recovery traces has to be averaged to reveal
the characteristic Poissonian behavior,Ai exp(−tr/τi), with τi

being the emission time of defecti, Ai the bias and trap-
location dependent amplitude [1], andtr the recovery time. In a
nano-scale device only a small number of defects contributeto
the recovery, and a∑i Ai exp(−tr/τi) recovery behavior would
be expected (steps of heightAi at tr = τi), see Fig. 6. Conse-
quently, since each device has its own collection of defects,
each with its own time constants, averaging recovery traces
of different nano-scale devices would produce a distinctly
different pattern of time constantsτi for each device. Only
in the limit of a large-area device with many defects, these
individual steps are washed out to give the familiar log(tr)
behavior [8].

The Stochastic Behavior of the RD Model: The situation
is quite different for the case of the RD model which assumes
that hole capture and emission are directly linked to the

creation and annealing of interface states, controlled by a
diffusive process. Although RD theory has as of yet only been
studied in its macroscopic form, a nano-scale representation
of RD theory can be obtained by expressing the electro-
chemical reaction at the interface and the subsequent diffusion
using stochastic differential equations. The recovery behavior
of the stochastic RD model is shown in Fig. 7, which, as
expected, also proceeds in steps. However, when a number
of such traces is averaged, the behavior of the macroscopic
RD model with a single transition lasting about 4 decades
is obtained. Furthermore, since the RD model assumes no
dispersion in either the interface reaction nor in the diffusion
[19], all devices behave identically. We finally remark thatin
charge trapping models the steps always occur at the same
time, while in a diffusive mechanism the single-big-step has
its inflection point when the recovery time equals the stress
time [20] (ts = tr), see Fig. 8. These theoretical predications
can be used to experimentally differentiate between a charge
trapping or a diffusive mechanism.

Experimental Validation
Experimental evidence was gathered on narrow SiON de-

vices withtox = 2.2nm and 1.8nm, see [21] for details. Ensur-
ing complete recovery, devices were repeatedly stressed under
the same conditions and the data were averaged. Depending on
the stress condition a permanent degradation was also observed
[4, 22], probably due to interface states, which, however, does
not contribute to the slow switching behavior.

A typical example showing the contribution of a single
defect is given in Fig. 9. Longer stresses activate more defects
as shown in Fig. 10 and the capture and emission times are
clearly uncorrelated. Fig. 11 demonstrates the temperature
dependence of both the capture and the emission time of a
single defect, consistent with the switching trap model, while
Fig. 12 shows that the averaged traces do not depend on the
stress time. These data convincingly confirm that, just like
with RTN, the physical mechanism behind the recoverable
component of NBTI is random trapping and detrapping of
charge as described by the switching trap model because(i)
the characteristic emission times of each trap are fixed in time
(if we were dealing with a diffusion-controlled mechanism,
at least a hint of ’moving traces’ should be detectable while
not a single one was found),(ii) each averaged switching
event covers about 1.3 decades in time as predicted by the
model (classical diffusion covers about 3.8 decades),(iii) the
capture and emission times are uncorrelated (this is definitely
not possible with a diffusion controlled mechanism), and(iv)
both NBTI and RTN can be explained by a single model.

Conclusions
We have demonstrated both theoretically and experimentally

that RTN and the recoverable component of NBTI are due to
charge trapping in switching oxide traps, the main difference
being that NBTI stress activates defects with larger time
constants. Most importantly, the capture and emission times
of the defects are uncorrelated, revealing for the first time
explicitly that individual defects constitute the recovery of
NBTI.
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Fig. 1: The standard model for RTN and 1/ f noise
was suggested by Kirton and Uren and is based
on a LRME process. The oxide trap levelET =
ET0−qϕs+qxF is assumed to lie within the silicon
bandgap where∆ET = ET0 − EV0 determines the
magnitude of the emission time constantτe. ∆EB
is the LRME barrier,F the modulus of the oxide
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ϕs the surface potential,xp,0 from a simple WKB
approximation, andσp the capture cross section.
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