Data Structure Properties for Scientific Computing

An Algebraic Topology Library

. *
René Heinzl

Institute for Microelectronics, TU Wien,
GufRhausstrafle 27-29, Vienna, Austria

ABSTRACT

Cell and complex properties are introduced in order to derive
a common specification environment for properties of data
structures. Only topological properties are used, thereby
separating the actual data storage structure from the stored
data. Several theoretical topological property concepts are
introduced, and traversal and boundary operations are pre-
sented and accompanied by selected examples.

Categories and Subject Descriptors

1.1 [Computing Methodologies]: SYMBOLIC AND AL-
GEBRAIC MANIPULATION; D.2.11 [Software Engineer-
ing]: Architectures—Data abstraction, domain-specific ar-
chitectures

Keywords

Topology, algebraic topology, data structures, generic pro-
gramming

1. INTRODUCTION

Efficient representation and manipulation of scientific com-
puting’s problem domain require data structure concepts
supporting arbitrary dimensions and topological spaces.

One prominent example of flexible data structure manip-
ulation is given by the advent of the C++ STL and the
separation of access to data structures and algorithms by
means of iterators. Iterators have become one of the key
elements of modern programming because they enable for-
mulation of algorithms independent of the data structure,
which in turn enables exchangeable data structures. Up to
now, this approach has focused on sequence, associative, and
graph data structures.

The primary objective of the approach presented here is to
extend this flexibility to arbitrary data structures and hence
enable the treatment of cell complices of arbitrary dimen-
sions. To this end, the extraction and classification of com-
mon data structure properties is of utmost importance. Fi-
nally the specification of a common protocol for data struc-

*Contact information: heinzl@iue.tuwien.ac.at

Permission to make digital or hard copies of all or part of this work for

ture properties is presented. Several libraries which are al-
ready available specify common Ii‘)roperties of data structures
for different areas of application™ and are cited as examples:

gil::image_view <..> container;
mtl::dense2D <..> container ;
boost::adjacency_list <..> container;

A necessary first step is to create a distinct categorization for
different types of data structures. The approach presented
here uses the dimension of a cell to create a data structure
hierarchy. Sequence containers, e.g., STL container, are cat-
egorized as 0-dimensional cell storage containers, whereas
graph libraries, e.g., Boost Graph Library (BGL [1]), are
classified as 1-dimensional cell containers. Higher dimen-
sional cell containers are commonly called grids or meshes.

The other classification property is related to a container’s
topology, or more generally to a complex’s topology. This
property enables the distinction between dense and sparse
(sequence and associative) structures.

Sections 2-3 therefore introduce basic theoretical classifi-
cation concepts, while Section 4 presents the library imple-
mentation of the given concepts within the GSSE [2—-4].

2. TOPOLOGICAL SPACES

The following section introduces concepts of order theory to
formalize the combinatorial structure of cells and the global
structure of cell complices [5].

DEFINITION 1 (PARTIAL ORDER ON TOPOLOGICAL SPACES).
Let (X,T) be a Hausdorff space. For any x,y € X, a binary
relation < on X: x <y, if and only if © € cl(y) is defined,
where cl(y) represents the closure for a set within a topologi-
cal space, where a closure is the intersection of all closed sets
containing y. Then this binary relation is a partial order.

This definition translates a topological space (X,7) into a
partially ordered set (P, <). Figure 1 illustrates some types
of ordered sets and the following terms which are used to
describe them:

- If the order is total, so that no two elements of P are
incomparable, then the ordered set is a totally ordered
set, called a chain. A formal definition is subsequently
given in Section 3.

- If no two elements are comparable unless they are equal,
then the ordered set is an anti-chain.

personal or classroom use is granted without fee provided that copies are - If P has two or more incomparable elements, then the or-

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
POOSC '09, July 7 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-547-5/09/07 ...$10.00.

dered set is a partially ordered set or poset. One example
of an incomparable expression is {a} with {b, c}.

'Boost Graphics Image Library (GIL [6]); Matrix Template
Library (MTL [7])

{a, b, c}

N

{a, b} {a, c} {b, c}

XX

{a} {b} {c}

generic c+ class

: + h boost
programming hierarchy

—N— O — ~— oo

Figure 1: Left: Integers form a chain, totally or-
dered by <. Middle: Incomparable items forming
an anti-chain. Right: The power-set of {a,b,c} or-
dered by < as a partially ordered set.

The concept of covering is used in graphical representations
of partial orders. For x,y € P ordered by <, it is said z is
covered by y (written z < y), if z < y and for any z € P,
r < z < y implies x = z. This means that there is no
element of P “between” z and y.

DEFINITION 2 (HASSE DIAGRAM). A Hasse diagram of an
ordered set is a graph in which:

- Fach node corresponds to an element of the set,

- Each edge corresponds to a covering relation between the
nodes it connects, and

- Ifx is covered by y (x < y), then the node for x is drawn
in a lower position than the node for y.

It can be seen that in interpreting diagrams, it does not
matter whether one node is above or below another unless
there is a monotonic path between them; and that if there is
a monotonic path from y through one or more nodes down
to x, there is no separate edge directly from y to z, as can
be seen in Figure 1.

2.1 Cell Topology

The order concepts which have just been introduced for sets
can be used to formalize the internal structure of an arbi-
trary p-dimensional cell, e.g., using the Hasse diagram. A
simplex cell is thereby distinguishable from a cuboid cell
type in several dimensions, as depicted in Figure 2 and Fig-
ure 3, respectively.

{a, b, c}

\ N

{a, b} {a, c} {b, c}

X X

b {a} {b} {c}

Figure 2: Cell topology of a simplex cell.

Furthermore, sub-cells, such as the corresponding edges and
facets and their direct relations to the cell, can be identified.
An example of extracting all edges of the simplex cell which
corresponds with the middle layer of the Hasse diagram can
also be seen in Figure 2. Another noteworthy fact is that the
topological structure and the corresponding order hierarchy
is invariant with respect to the type of cell used. The p — 1-
layer of a cuboid cell represents the edges of this type of cell,
as illustrated in Figure 3.
As a higher dimensional example, a three-dimensional sim-
plex example is provided in Figure 4.

Here, the p — 1-cells are facets, and, in this particular
example, triangles. If the actual dimension of the p-cell is

{a, b, c, d}

—

{a, b} {b,c} {c,d} {d a}

N\

{a} {b} {c} {d}

Figure 3: Cell topology of a cuboid cell.

{abc.d}

A SN

A . PSRN
: ¢ NS AT
Figure 4: Cell topology of a 3-simplex cell.

used and the p — n cells are derived only by means of the
order structure, dimensionally independent algorithms can
be used.

2.2 Complex Topology

In contrast to the internal cell topology, a cell complex re-
quires adjacence information of cells, with different possibil-
ities of efficient storage of this information [8,9]. GSSE in-
cludes an abstract means of storing various types of cells or-
thogonally, based on the cell topology of the complex topol-
ogy. Figure 5 illustrates the complex topology of a 2-simplex
cell complex where the bottom sets are now cells. The rect-
angle in the figure marks the relevant cell number.

{1.2,3.4,5.6} meta-cell

(n-1)-cell neighbor

n-cell

Figure 5: Complex topology of a simplex cell com-
plex.

The topology of the cell complex is only available locally
because of the fact that the top set can have an arbitrary
number of elements. In the approach presented here this
property is called sparse complex topology. The term meta-
cell is used to describe various subsets with a common name.
In other words, there can be an arbitrary number of triangles
in this cell complex attached to the innermost vertex.

12,345,678} meta-cell

a 6 e 2458

(n-1)-cell neighbor

1 @) B) (@ 5 (6 (7} 8 n-cell

Figure 6: Complex topology of a cuboid cell com-
plex.

Figure 6 presents the complex topology of a cuboid cell com-
plex. The rectangle in the figure marks the main cell (5) un-
der consideration. As can be seen, the number of attached

cells is constant inside the space. The topology of the cell
complex can thereby be used as a globally known property,
associated with a dense complex topology space.

3. ALGEBRAIC TOPOLOGY

The previous sections introduced combinatorial concepts for
cell complex representations and abstract classification mech-
anisms to manage scientific data. This section focuses more
on the details of algebraic properties of linear mappings by a
procedure to associate a sequence of Abelian groups or mod-
ules with, e.g., a topological space. Briefly, topological ele-
ments are called cells, and their dimensionality is expressed
by adding the dimension, for example a 3-cell for a volume,
a 2-cell for surface elements, a 1-cell for lines, and a 0-cell
for vertices. Only a few concepts are introduced in this sec-
tion [10,11], as the area of computational topology [12,13]
is a complex and emerging part of scientific computing in its
own right.

The motivation for this section is to retain the structure of
geometrical objects for computational mechanisms, because
the recovery of lost structural information of objects has
proven to be a very complex and difficult task.

3.1 Chains

In order for the elements of a specific dimension of a cell
complex, e.g., all edges, to be able to be used in a com-
putational manner, a mapping of the p-cells onto an alge-
braic structure is needed. An algebraic representation of
the collection of cells with a given orientation is thus made
available. Whereas the cell topology is concerned with the
internal structure of a given cell, the chain concept acts on
certain p-cells. A formal definition for a p-chain is given by:

DEFINITION 3 (P-CHAIN). A p-chain ¢, defined over a
cell complex R and a vector space V is a formal sum

"p
cp = Zwm’; T, € R,wi €V (1)
i=1

such that the operation is closed under orientation reversal:
V7, € ¢p thereis —7) € ¢, (2)

Thus, two p-chains can be added, or a p-chain can be mul-
tiplied by a scalar. In addition, p-chains support algebraic-
topological operations, including the boundary and cobound-
ary operations. Based on these concepts, a cell complex can
be seen as a formal structure where cells can be added, sub-
tracted, and multiplied. A structure-relating map between
sets of chains C), is therefore now introduced?.

DEFINITION 4 (BOUNDARY HOMOMORPHISM). Let & be a
cell complex and 1, € R, 1, = {ko, k1, ..,kp}. The boundary
homomorphism 9, : Cp(8) — Cp_1(R) is:

Opry = (=1)"[ko, k1, .., ki, ... Kon] (3)

i
where l:cl indicates that k; is deleted from the sequence.

This can be seen as a boundary operator that maps p-chains
onto the p — 1-chains in their boundary. It should not be
confused with the geometric boundary of a point set. This
algebraic-topological operation defines a (p — 1)-chain in
terms of a p-chain. It is compatible with the additive and

2This map is restricted to simplex cells. A more general
mechanism related to the boundary operation is given in
Section 2.1

the external multiplicative structure of chains and builds a
linear transformation:

Cp O, Cp (4)

Therefore, the boundary operator can be used linearly

) <Z wn;) = S ui(or) 5)

which means that the boundary operator can be used sep-
arately for each cell. The cell complex properties can be
easily calculated by means of chains. 3-cells intersect in 2-
cells or have an empty intersection. This operation can be
described by the boundary operator dc, on the cell complex
and the corresponding orientation induced on it.

TO Tg
Figure 7: Representation of a 1-chain with boundary
(left) and a 2-chain with boundary (right).

Figure 7 depicts two examples of 1-chains, 2-chains, and an
example of the boundary operator. Applying the appropri-
ate boundary operator to the 2-chain example:

r=Ti 1T 4T (6)
o1 (711+7'12+7'13+Tf1) =10 +70 —To + 70

Rttt =1 =0 (7

3.2 Cochains

Before the introduction of the concept of chains, only the
simple structure of a cell complex was available. The cell
complex only contains the set of cells and their connectivity.
The introduction of the chain concept provides the concept
of a collection of cells and the corresponding algebraic struc-
ture. Chains can be seen as mappings from oriented cells as
part of a cell complex to another space. This definition es-
tablishes an algebraic access of computational methods of
handling the concept of a cell complex.

In addition to cell complices, scientific computing requires
the notation and access mechanisms to global quantities
related to macroscopic p-dimensional space-time domains.
This collection of possible quantities, which can be mea-
sured, can then be called a field. It permits the modeling
of these measurements as a field function that can be inte-
grated on arbitrary p-dimensional (sub)domains. An impor-
tant fact which has to be stated here is that all quantities
which can be measured are always attached to a finite region
of space. A field function can then be seen as the abstracted
process of measurement of this quantity [9, 14]. The concept
of cochains allows the association of numbers not only with
single cells, as does that of chains do, but also with collec-
tions of cells. Briefly, the necessary requirements are that

this mapping is not only orientation-dependent, but also lin-
ear with respect to the assembly of cells, modeled by chains.
A cochain representation is the global association of quanti-
ties with subdomains of a cell complex, which can be built
arbitrarily to discretize a domain. Physical fields therefore
manifest on a linear assembly of cells.

DEFINITION 5 (COCHAINS [15]). Linear transformations o
of the p-chains into the field R of real numbers form a vector

o . .
space ¢, — R and are called a vector valued p-dimensional
cochain, or p-cochain.

The space of all linear mappings on ¢, is denoted by C?,
where the elements of C? are called cochains. Cochains ex-
press a representation of fields over a discretized domain R.
Addition and multiplication by a scalar are defined for the
field functions and thus also for cochains. To extend the
expression possibilities, coboundaries of cochains are intro-
duced.

DEFINITION 6 (COBOUNDARY). The coboundary & of a p-
cochain is a (p + 1)-cochain defined as:

oc :E v;Ti;, Where wv; = E
i

b € faces(r;)

o (b, 7i)ep(b) (8)

Thus, the coboundary operator assigns non-zero coefficients
only to those (p + 1) cells that have ¢, as a face. As can
be seen, dc, depends not only on ¢, but on how ¢, lies in
the complex K. This is a fundamental difference between
the two operators 0 and §. An example is given in Figure 8
where the coboundary operator is used on a 1-cell. The
coboundary of a p-cochain is a p + 1 cochain which assigns
to each (p+1) cell the sum of the values that the p-cochains
assigns to the p-cells which form the boundary of the (p+1)
cell. Each quantity appears in the sum multiplied by the
corresponding incidence number.

T

/

+/- +/=

Figure 8: Cochain complex with the corresponding
coboundary operator: R’ 2580 % 558 =0

3.3 Boundary Operators
The concept of chains transforms the properties of a cell
complex directly into a computationally manageable alge-
braic structure. This mechanism can then be used to derive
different relations between the cells, such as incidence, ad-
jacence, and boundary operations.

The given boundary operator, introduced in Section 3.1,

lacks generality, because the cell topology, see Section 2.1,
can be arbitrarily complex, e.g., the given boundary homo-
morphism already has to be extended if a cube cell is used
instead of a simplex cell. Therefore the given poset nota-
tion of the cell topology is used to introduce a more general
boundary mechanism which can be easily converted into a
computationally efficient operation. The boundary operator
can then be used to traverse the levels of the poset, e.g., a
three-dimensional simplex, illustrated in Figure 9.
As can be seen, the boundary operator simply decreases
the layer of evaluation within the cell topology poset. The
boundary operator 9 transforms p-chains into p — 1-chains,
which is compatible with the addition and external multi-
plication of chains.

{ab.c.d}

fabc} {abd} facd} {b,c.d}

Figure 9: Boundary operator applied onto a 3-
simplex poset.

3.4 Application of Chains and Cochains

The concepts of chains and cochains coincide on finite com-
plices [11]. Geometrically, however, C}, and C? are distinct
[15] despite an isomorphism. An element of C, is a formal
sum of p-cells, where an element of C? is a linear function
that maps elements of C}, into a field. Chains are dimension-
less multiplicities, whereas those associated with cochains
are physical quantities [9]. The extension of cochains from
single cell weights to quantities associated with collections
of cells is not trivial and makes cochains very different from
chains, even on finite cell complices. Nevertheless, there is
an important duality between p-chains and p-cochains.

For a chain ¢, € Cp(&,R) and a cochain ¢” € CP(R,R),
the integral of ¢? over ¢, is denoted by fcp c?, and integra-

tion can be regarded as a mapping, where n represents the
corresponding dimension:

/:C’p(ﬁ)XC’p(R)HR for0<p<n (9)

Integration in the context of cochains is a linear operation:
given a1, a2 € R, P c?? € OP(R) and ¢, € Cp(R), reads

1 2 1 2
/ a1c®” + asc?” :al/ c? +a2/ e (10)
c C. C

3 P 3

Reversing the orientation of a chain means that integrals
over that chain acquire the opposite sign

[cp:—/c P, (11)

cp P

using the set of p-chains with vector space properties Cp(8, R),
e.g., linear combinations of p-chains with coefficients in the
field R.

4. AN ALGEBRAIC TOPOLOGY LIBRARY

By identifying data structures with finite topological spaces,
or more specifically with cell complices, concepts from alge-
braic topology, such as complex type, cell type, and the di-
mension, are available for common properties to be studied.

The first determination property is related to local infor-
mation, the dimension of a cell, and enables the following
categorization:

- 0-cell: sequence data structure, e.g., STL container
- l-cell: graph library, images library, e.g., BGL, GIL
- higher dimensional-cell: grid and mesh data structure

The second classification property is related to global infor-
mation, the complex property which classifies the cell stor-
age mechanisms:

- dense storage: sequence data structures or Cartesian grids
- sparse storage: associative containers and meshes

A flexible specification of data structures requires a vari-
able number of properties to be specified, hence a meta
data structure specification protocol is used. The Boost
Phoenix [16] environment concept already specifies a gen-
eral protocol to handle and manipulate arbitrary arguments
for functional programming:

mpl ::map<
mpl::pair<gsse:
,mpl::pair<gsse:
,mpl::pair<gsse:
,mpl::pair<gsse:
> PropertyEnv ;

:env_dim , mpl::int_<2> >
renv_cell, gsse::tag_simplex>
:env_complex ,gsse::tag_sparse>
tenv_cont, gsse::tag_vector >

The final data structure is then generated by applying a
simple meta-function generator

gsse::create<PropertyEnv>::type container;

which uses a direct mapping of all data structure properties
to either select an existing data structure, e.g., STL contain-
ers, or to create appropriate data structures, e.g., for higher
dimensional cell complices.

4.1 Data Structure Specification

The STL containers std: :vector<>, std::list<>, are de-
scribed topologically as 0-cell complex, a POD double type
as cell property, a dense complex topology, and finally the
underlying storage container.

mpl::map<
mpl::pair<gsse::env_dim, mpl::int_<0> >
,mpl::pair<gsse::env_cell, double >

,mpl::pair<gsse:
,mpl::pair<gsse:
> PropertyEnv;

:env_complex ,gsse::tag_dense>
tenv_cont, gsse::tag_vector>

Due to compile-time evaluation no run-time overhead for the
generated data structures is introduced. By using the topo-
logical space classification of cell complex properties, STL’s
associative containers std: :map<> and std: :unordered_map
are classified by a sparse complex topology:

mpl ::map<
mpl::pair<gsse:
,mpl::pair<gsse:
,mpl::pair<gsse:
,mpl::pair<gsse:
> PropertyEnv;

:env_dim , mpl::int_<0> >
:env_cell, double >
:env_complex ,gsse::tag_sparse>
tenv_cont, gsse::tag_map >

For higher dimensional cell complices, cell and complex cell
properties have to be specified, e.g., a sparse 3-simplex cell
complex (tetrahedral mesh):

mpl ::map<

mpl::pair<gsse::env_dim, mpl::int_<3> >
,mpl::pair<gsse::env_cell, gsse::tag_simplex>
,mpl::pair<gsse::env_cont, gsse::tag_vector>

,mpl::pair<gsse:
> PropertyEnv ;

:env_complex ,gsse::tag_sparse>

To switch the application from a sparse tetrahedral mesh to
a grid (dense cuboid grid), the cell and complex properties
have to be changed:

mpl::map<
mpl::pair<gsse:
,mpl::pair<gsse:
,mpl::pair<gsse:
,mpl::pair<gsse:
> PropertyEnv ;

:env_dim, mpl::int_<3> >
:env_cell, gsse::tag_cuboid>
tenv_cont, gsse::tag_vector >

:env_complex ,gsse::tag_dense>

In this fashion cell complices of arbitrary dimension can
thereby be created. The current implementation is restricted
to enabling 0D up to 8D due to long compile times and the
large memory footprint during compilation for higher dimen-
sions.

4.2 Traversal

Traversal of elements is realized by a Boost Phoenix traver-
sal actor gsse: :traverse<>() []. As an example, the vertex
traversal (topological accessor: AT_vx) for an arbitrary di-
mensional cell complex is presented in the next code snippet:

gsse::traverse<AT_vx>()

gsse::traverse () [_1 1
1(cell_complex);

Another example is given by traversing all edges of a cell
complex which cell dimension is greater then 0D. Here the
topological accessor for edges AT_ee is used:

gsse::traverse<AT_ee>()
L

gsse::traverse () [_1 1
J(cell_complex);

For arbitrary dimensional programming, two possible acces-
sor mechanisms are available: the already presented topo-
logical object accessors (vertex: AT_vx, edge: AT_ee, facet:
AT_ft, cell AT_c1) or direct dimensional accessors (vertex:
0D, edge: 1D). But for facets and cells, the dimensional cor-
relation is not possible for arbitrary dimensional cell com-
plices. To solve this issues, GSSE always uses name tags,
e.g. for arbitrary dimensional cell traversal:

gsse::traverse<AT_cl>()
[

gsse::traverse () [_1 1
1(cell_complex);

If an algorithm requires the actual dimension or an inter-
dimensional topological object accessor has to be calculated,
meta-conversion functions are available:

gsse::meta::key_2_dim<cc, gsse::AT_ee>::value;
gsse::meta::dim_2_key<cc, DIM>::type;

The cochain concept is implemented by means of an addi-
tional Phoenix actor, given in the following code snippet
by acc. Due to the topological structure of the cochains,
cochains can also be traversed.

gsse::traverse<AT_cl>()
[

gsse::traverse () [acc += 12]
1(cell_complex);

Compared to existing libraries, e.g., BGL or GrAL [17],
GSSE’s data structure specification and traversal operations
do not impose any runtime overhead, hence in all bench-
marks no runtime difference was measured, thus GSSE can
compete again with other libraries [18].

4.3 Boundary Operations

As introduced in Section 3.3 algebraic topology concepts en-
able additional operators on data structures, such as bound-
ary and co-boundary operators, e.g., vertex-on-cell and cell-
on-vertex operators. These operators benefit from the ab-
stract topological specification and operate on spaces of ar-
bitrary dimension and topology. Given an N-dimensional
cell, the 2-boundary is calculated by:

gsse::Boundary<N, 2, gsse::tag_cell_simplex >
boundary_nD_2_t boundary_nD_2;

cont_result = boundary_nD_2(container_cells[1]);

In case a 4D hyper-cube cell complex is generated, this op-
eration results in a quadrilateral-on-cell operation. Conve-
nience mechanisms are available, which use direct dimen-
sional accessors for boundary cells and source-cells:

typedef result_of ::vx_on_cell<Complex >::type
vx_on_cl_type;

typedef result_of ::vx_on_cell<Complex >::result
vx_on_cl_result;

vx_on_cl_type vx_on_cl;

vx_on_cl_result result =
vx_on_cl (container_cells[1]);

Co-boundary operators act globally on a complex and thus
require additional information. The following example pres-
ents an edge-on-vertex operation, where the operator source
is stated by a 0O-cell (vertex), whereas the co-boundary di-
mension is stated by the relative cell dimension, in this case
+1 (edge). A corresponding meta-function calculates the
target container for this operation:

typedef coboundary<0, 1 ,gsse::tag_cell_simplex>
cobnd_sD_1_¢t;

cobnd_sD_1_t cobnd_sD_1;

result = cobnd_sD_1 (cell,
container_cell_on_vertex,
container_vertex_on_cell);

The boundary operator results are also traversable and can
be used in any algorithm.

5. CONCLUSION

By using order and topological space order concepts, data
structure properties are identified with cell and complex
topologies. Algebraic topology concepts introduce chain and
cochain bodies and enable efficient boundary and cobound-
ary operations. Data structures are thereby separated into
the structural part and the data storage part. The library
implementation then offers generic traversal and abstract
boundary operators. A common specification for data struc-
ture properties of arbitrary dimension and topological cell
types enables the efficient development of generic algorithms
and applications in the field of scientific computing. Us-
ing this library, several other libraries have been developed,
e.g., a polynomial library, an unstructured mesh generator,
and an hp-finite-element application for arbitrary dimen-
sions and topologies.

6. ACKNOWLEDGMENTS

I want to thank Philipp Schwaha and Franz Stimpfl for their
continuous support and Prof. Siegfried Selberherr for the
resources at the Insitute of Microelectronics. This work has
been supported by the Austrian Science Fund FWF, project
P19532-N13.

7. REFERENCES

[1] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost
Graph Library: User Guide and Reference Manual.
Addison-Wesley, 2002.

[2] R. Heinzl. Concepts for Scientific Computing.
Dissertation, Technische Universitit Wien, Austria,
2007.

[3] R. Heinzl, P. Schwaha, and S. Selberherr. A High
Performance Generic Scientific Simulation
Environment. In B. Kaagstrom et al., editor, Lecture
Notes in Computer Science, volume 4699/2007, pages
996-1005. Springer, Berlin, June 2007.

[4] R. Heinzl, P. Schwaha, F. Stimpfl, and S. Selberherr.
Parallel Library-Centric Application Design by a
Generic Scientific Simulation Environment. In Proc. of
the POOSC, Paphos, Cyprus, July 2008.

[5] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge, 1990.

[6] Boost. Boost Graphics Image Library (GIL), 2005.
http://www.boost.org/.

[7] P. Gottschling and D. Lindbo. Generic Compressed
Sparse Matrix Insertion: Algorithms and
Implementations in MTL4 and FEniCS. In POOSC
2009 Workshop at ECOOP09, ACM Digital Library,
2009.

[8] P. Gross and P. R. Kotiuga. Electromagnetic Theory
and Computation: A Topological Approach.
Cambridge University Press, 2004.

[9] C. Mattiussi. The Geometry of Time-Stepping. In
F. L. Teixeira, editor, Geometric Methods in
Computational Electromagnetics, PIER 32, pages
123-149. EMW Publishing, Cambridge, Mass., 2001.

[10] A. Hatcher. Algebraic Topology. Cambridge University
Press, 2002.

[11] J. Hocking and G. Young. Topology. Addison-Wesley,
Dover Publications, New York, 1961.

[12] A. J. Zomorodian. Topology for Computing. In
Cambridge Monographs on Applied and Computational
Mathematics, 2005.

[13] T. Dey, H. Edelsbrunner, and S. Guha. Computational
Topology. In J. E. G. B. Chazelle and R. Pollack,
editors, Advances in Discrete and Computational
Geometry, Contemporary Mathematics. Providence,
RI, USA, 1998.

[14] E. Tonti. The Reason for Analogies between Physical
Theories. Appl. Math. Modelling, 1(1):37-50, 1976/77.

[15] P. Bochev and M. Hyman. Principles of Compatible
Discretizations. In Proc. of IMA Hot Topics Workshop
on Compatible Discretizations, volume IMA 142, pages
89-120. Springer, 2006.

[16] Boost. Boost Phoeniz 2, 2006.
http://spirit.sourceforge.net /.

[17] G. Berti. Generic Software Components for Scientific
Computing. Dissertation, Technische Universitéit
Cottbus, 2000.

[18] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser.
Performance Aspects of a DSEL for Scientific
Computing with C++-. In Proc. of the POOSC Conf.,
pages 37-41, Nantes, France, July 2006.

