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Abstract- Carbon nanotubes (CNTs) have been studied in
recent years due to their exceptional electronic, opto-electronic,
and mechanical properties. To explore the physics of carbon
nanotube field-effect transistors (CNT-FETs) self-consistent
quantum mechanical simulations have been performed. The
performance of carbon nanotube-based transistors is analyzed
numerically, employing the non-equilibrium Green's function
formalism. Electron-phonon interaction parameters, such as
electron-phonon coupling strength and phonon energy, strongly
depend on the chirality and the diameter of the carbon nanotube.
The response of carbon nanotube based transistors is studied
taking rigorously into account the effect of electron-phonon
interaction.

I. INTRODUCTION

Novel structures and materials such as multiple gate MOS­
FETs, carbon nanotube field-effect transistors (CNT-FETs),
and molecular based transistors, are expected to be introduced
to meet the requirements for scaling. CNTs can be considered
as a graphene sheet which is wrapped into a tube. The way
the graphene sheet is wrapped is described by a pair of
indices (n, m) called the chiral vector. The integers nand
m denote the number of unit vectors along two directions
in the honeycomb crystal lattice of graphene. If m = 0, the
CNT is called zigzag. If n = m, the CNT is called armchair.
Otherwise, it is called chiral. CNTs with n - m = 3 are metals,
otherwise they are semiconductors. Semiconducting CNTs can
be used as channels for transistors [1], and metallic CNTs can
serve as interconnect wires [2].

CNT-FETs have been considered in recent years as potential
alternatives to CMOS devices due to their excellent electronic
properties [3,4]. The most interesting properties of CNTs
are quasi-ballistic carrier transport [5], suppression of short­
channel effects due to one-dimensional electron transport [6,
7], and nearly symmetric structure of the conduction and
valence bands, which is advantageous for complementary
circuits. Moreover, owing to excellent optical properties of
CNTs, an all-CNT electronic and opto-electronic circuit can
be envisioned. The direct band-gap and the tunability of the
band-gap with the tube diameter renders CNTs as suitable
candidates for opto-electronic devices, especially for infra-red
(IR) applications [8, 9] due to the relatively narrow band gap.

The non-equilibrium Green's function (NEGF) method has
been successfully used to investigate the characteristics of
nano-scale silicon transistors [10,11], CNT-FETs [12-14], and
molecular devices [15-17]. In this work we discuss the NEGF
formalism to study quantum transport in CNT-FETs.

The outline of the paper is as follows. In Section II the
NEGF formalism is briefly described. The implementation of
this method for CNT-FETs is presented in Section III. The
electron-phonon interaction parameters of a CNT depend on
the chiral vector, which implies that many different parameter
values exist. In Section IV the device response is studied for
some electron-phonon interaction parameters. After a brief dis­
cussion in Section V conclusions are presented in Section VI.

II. NON-EQUILIBRIUM GREEN'S FUNCTION FORMALISM

The NEGF formalism initiated by Schwinger, Kadanoff,
and Baym allows to study the time evolution of a many­
particle quantum system. Knowing the single-particle Green's
functions of a given system, one may evaluate single-particle
quantities such as carrier density and current. The many­
particle information about the system is cast into self-energies,
which are part of the equations of motion for the Green's
functions. Green's functions enable a powerful technique to
evaluate the properties of a many-body system, both, in
thermodynamic equilibrium and non-equilibrium situations.

Four types of Green's functions are defined as the non­
equilibrium statistical ensemble averages of the single particle
correlation operator. The greater Green's function C> and the
lesser Green's function C< deal with the statistics of carriers.
The retarded Green's function C R and the advanced Green's
function CA describe the dynamics of carriers.

C> (1,2) = -in-1(~(1)~t (2))

C< (1,2) = +in-1 (~t (2)~(1))

CR (I,2) = O(tl - t2)[C> (1,2) - C«I, 2)]

CA (I,2) = O(t2 - tl)[C«I, 2) - C>(I, 2)]

The abbreviation 1 == (rl' tl) is used, (... ) is the statistical
average with respect to the density operator, O(t) is the unit
step function, ~t(rl' tl) and ~(rl, tl) are the field operators
creating or destroying a particle at point (rl' tl) in space-time,
respectively. The Green's functions are correlation functions.
For example, C> relates the field operator "j; of the particle
at point (rl' t1) in space-time to the conjugate field operator
~ t at another point (r2' t2).

Under steady state condition the Green's functions depend
only on time differences. One usually Fourier transforms the
time difference coordinate, T = tl -t2, to energy. For example,
the lesser Green's function is transformed as C< (1,2) ==
C< (rl, r2; E) = J(dT jn)eiET/fiC«rl, r2; T).
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a)
Under steady-state condition the equation of motion for the

Green's functions can be written as [18]:

[E - H] CR,A(l, 2) - .I d3 ER,A(l, 3)cr ,a(3, 2) = 151,2

(2)

c§(1,2) = .I d3 .I d4 CR(l, 3)E'S(3, 4)CA (4, 2) (3)

where H is the single-particle Hamiltonian operator, and ~R,

~<, and ~> are the retarded, lesser, and greater self-energies,
respectively.

III. IMPLEMENTATION

This section describes the implementation of the outlined
NEGF formalism for the numerical analysis of CNT-FETs.
Fig. 1 shows the structure of the simulated devices. A tight-

b)

v
~

t~ t t~

AB AB

AEc>O

02
;>
~ oE. AE.=

~ ~ "
-0.2 6 /

v.l 'dE,<O

-0.4 0 5 10 15 20 25
Position [om]

Fig. 1. Cross section of the investigated CNT based transistor and the
band-edge profile at the source sided metal-CNT interface. Depending on
the work function difference between metal and CNT, a positive, zero, or
negative barrier height for electrons or holes can be achieved.

binding Hamiltonian is used to describe the transport phe­
nomena in CNT-FETs. The self-energy due to electron-phonon
interactions are studied next.

A. Tight-Binding Hamiltonian

In Graphene three (J' bonds hybridize in an sp2 configu­
ration, whereas the other 2pz orbital, which is perpendicular
to the graphene layer, forms 7r covalent bonds. The 7r energy
bands are predominantly determining the solid state properties
of graphene. Similar considerations hold for CNTs. We use
a nearest-neighbor tight-binding 7r-bond model [13]. Each
atom in an sp2-coordinated CNT has three nearest neighbors,
located ace = 1.42 A away. The band-structure consists of
7r-orbitals only, with the hopping parameter t = VPP7r ~

-2.7 eV and zero on-site potential.
The tight-binding Hamiltonian matrix for a (n, 0) zigzag

CNT, shown in Fig. 2-a, can be written as [13]

Ul tl
~ [h ~

H= ~ U3 ~ (4)
~ U4 t2 t

~ U5

where the underlined quantities denote matrices. We assume
that the electrostatic potential shifts the on-site potential.
Therefore, Ui is a diagonal matrix which represents the
electrostatic potential energy in the ith circumferential ring
of carbon atoms. Equal electrostatic potential for all carbon

Fig. 2. Layer layout of a (n,O) zigzag CNT. a) The coupling matrices
between layers are denoted by tl and t2, where tl is a diagonal matrix and t2
includes off-diagonal elements:1» Thecorrespoiiding one-dimensional chaill,'
in mode space [11], with two sites per unit cell with hopping parameters t
and t~ = 2tcos(7T"v/n).

atoms within a ring is assumed, therefore Ui = Uil. The first
and second kind of interaction matrix between the neighboring
rings are denoted by t l and t2 • Only the nearest neighbor
interaction between carbon atoms is considered. The coupling
matrix between Layer 2 and Layer 3 is diagonal, "!l. = t I,
where t is the hopping parameter. However, the coupling
matrix between Layer 1 and Layer 2 is given by

(5)

The eigen vectors of the matrix ~ represent plane waves
around the circumference of the CNT with the quantized wave­
vectors kv = 27rvlV'3accn, where v = 1,2, ... n [13], and the
eigen values 2t cos (7rV In). By transforming from real space
into eigen mode space [11], the subbands become decoupled
and the Hamiltonian can be written as H = Lv H V

, where
H v, the Hamiltonian of the subband v, is given by

Uf tr
tr U2 t~

HV = t~ U3 tr (6)tr U% t~

t~ U~

where Ui = Ui , tr = t, and t2 = 2tcos (7rvln) [13]. The
one-dimensional tight-binding Hamiltonian H v describes a
chain with two sites per unit cell with on-site potential Ui
and hopping parameters t and t2, see Fig. 2-b.

B. Electron-Phonon Self-Energies

Because two degrees of freedom are confined in the CNT,
an electron can only be scattered forward or backward in
the axial direction, preserving or changing the sign of the
band-velocity, respectively. We assume bias conditions for
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IV. ELECTRON-PHONON INTERACTION IN CNTs

;;­
::-0,4
~
~
~ -0.6

jl,l+l = ~q L J~~ 2Re{G~'~l (E)tl+1,1} (13)
LJ

where the factor 4 is due to spin and band degeneracy.
For an accurate analysis it is essential to solve the coupled

system of transport equations and the Poisson equation self­
consistently [17]. The convergence of the self-consistent itera­
tion is a critical issue. To achieve convergence, fine resonances
at some energies in (12) have to be resolved accurately. For
that purpose an adaptive method for selecting the energy grid
is essential [22].

Fig. 3 compares the current spectrum in the absence and
presence of electron-phonon interaction. Elastic scattering
conserves the energy of carriers, but the current decreases due
to elastic back-scattering of carriers. Fig. 3-a shows that for
elastic scattering the source and drain current spectra are sym­
metric. As the electron-phonon coupling strength increases,
resonances in the current spectrum are washed out and the
total current decreases due to elastic back-scattering.

In the case of inelastic scattering, carriers acquiring enough
kinetic energy can emit a phonon and scatter into lower energy
states [14]. Therefore, as shown in Fig. 3-b, the source and
drain current spectra are not symmetric. As the coupling
strength increases, more electrons are scattered into lower
energy states.

Fig. 4 shows the spectra of the source and drain currents for
different inelastic phonon energies. Electrons can emit a single
phonon or a couple of phonons to reach lower energy states.
The probability of multiple phonon emissions decreases as
the number of interactions increases. Therefore, as the phonon
energy increases, the occupation of electrons at lower energy
states increases.

As shown in Fig. 4-b, the electron population close to the
conduction band-edge considerably increases as the phonon
energy increases. Therefore, as the phonon energy increases
the mean velocity of electrons decreases and the carrier
concentration in the channel increases. The increased charge
in the channel results in an increased gate-delay time [14].

Fig. 3. The spectra of the source and drain currents. a) The effect of elastic
phonon scattering and b) the effect of inelastic phonon scattering with different
coupling strengths are shown. The phonon energy is 1iw = 100 meV.

(12)."'"JdE < LJ ( )Ttl == -4'l L.J 21T Gl,z' E
LJ

C. Self-Consistent Simulations

To solve transport equations numerically they need to be
discretized in both the spatial and the energy domain. The
carrier concentration at some node l of the spatial grid and
the current density at the edge between the nodes land l + 1
are given by

which the first subband predominantly contributes to the total
current and only intra-subband intra-valley transitions have to
be considered.

A linear dispersion relation for acoustic phonons is assumed,
wq ,).. ~ v)..lql, where v).. is the acoustic phonon velocity
and A is the phonon polarization. For optical phonons the
energy is assumed to be independent of the phonon wave­
vector wq ,).. ~ WOP.).. == canst. Similarly, the matrix elements
of electron-phonon interaction [19] can be approximated as
A1q ,).. ~ A;ftPlq! for acoustic phonons and lvlq ,).. ~ A1fP ==
canst for optical phonons. The interaction of electrons with
optical phonons is inelastic. Assuming that the electron­
phonon interaction occurs locally [20], the self-energies can
be written as

~~~(E) == 2:).. Dine!.)..

x [(N).. + 1) C>,LJ(E - nw)..) + N)..C>·LJ(E + 1U.u)..)]
(8)

where N>.. is the phonon occupation number which is given by
the Bose-Einstein distribution function. The electron-phonon
interaction strength is given by

_ nlA1fP I
2

Dine!.).. - 2 (9)
nmew>..

where me is the mass of a carbon atom. The first term
in (7) corresponds to the emission of a phonon by the de­
excitation of an electron and the second term corresponds to
the excitation of an electron by the absorption of a phonon.
Interaction with acoustic phonons can be regarded as elastic
scattering, E ± nw).. ~ E, and the approximation N).. ~

N).. +1 ~ kB T / nv).. can be used. Based on this approximation,
the self-energies for acoustic phonon interaction simplify to

~~,LJ(E) == D~lG§>,LJ(E) (10)

kBTIA1tPI2
Del.).. == (11)

nrHe'V)..

The self-energy due to electron-phonon interaction comprises
the contributions of elastic and inelastic scattering mecha­
nisms, ~~-ph == ~~l + ~rnel' The transport equations must
be iterated to achieve convergence of the electron-phonon
self-energies, resulting in a self-consistent Born approxima­
tion [21].
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Fig. 4. The spectra of the source and drain currents. The effect of inelastic
scattering with different phonon energies is shown. The electron-phonon
coupling strength is D = 2 x 10 -1 ey2. A considerable increase of the
electron population close to the conduction band-edge as the phonon energy
increases can be seen.

Fig. 5. Comparison of the simulation results and experimental data for the a)
output and b) transfer characteristics. Lines show the simulation results and
symbols show experimental data. The result for Vc = -1.3 Y is compared
with the ballistic limit. Experimental data have been adopted from [25].

V. DISCUSSION

In general the electron-phonon interaction parameters de­
pend on the diameter and the chirality of a CNT [19]. CNTs
with a diameter dCNT > 2 nm have a band gap EG < 0.4 eY,
which renders them unsuitable as channel for transistors. Since
the fabrication of devices with a diameter dCNT < 1 nm
is very difficult, we limit our study to zigzag CNTs with
diameters in the range of dCNT == 1 - 2 nm.

Scattering with acoustic phonons is treated as an elas­
tic process. The electron-phonon coupling is also weak
for acoustic phonons (DAP < 10-3 ey2), which im­
plies that elastic back-scattering of carriers is weak. In­
elastic scattering is induced by optical (OP), radial breath­
ing mode (RBM), and K-point phonons [23]. Consid­
ering the class of CNTs discussed above, energies of
these phonons are n~op ~ 200 meV, nWRBM ~ 25 meV, and
nWK l ~ 160 meY and nWK2 ~ 180 meY [23,24]. The corre­
sponding coupling coefficients are Dop ~ 40 x 10-3 ey 2 ,

DRBM ~ 10-3 ey2 , and DK1 ~ 10-4 ey2, and DK2 ~

10-3 ey2 [24].

As discussed in Section IV, high energy phonons such as
OP and K-point phonons reduce the on-current only weakly,
but they can increase the gate-delay time considerably due
to charge pileup in the channel [14]. Low energy phonons
such as the RBM phonon can reduce the on-current more
effectively, but these have a weaker effect on the gate-delay
time. However, due to strong coupling, scattering processes are
mostly due to electron-phonon interaction with high energy
phonons. Therefore, at room temperature the on-current of
short CNT-FETs can be close to the ballistic limit [25]
(see Fig. 5), whereas the gate-delay time can be significantly
below that limit [26].

The intrinsic (without parasitic capacitances) gate-delay
time for the ballistic case can be fitted as T ~ 1.7 ps/ 11m, or
equivalently IT ~ 100 GHz/J-lm [27]. The highest reported
intrinsic cutoff frequency for a device with a length of 300 nm
is IT ~ 30 GHz [28], which is far below the ballistic
limit. Inelastic electron-phonon interaction with high energy
phonons has to be considered to explain the results.

VI. CONCLUSION

The coupled system of transport and Poisson equations was
solved self-consistently. A tight-binding Hamiltonian is used
to describe transport phenomena in CNT-FETs. Employing
the described model, both, the static and dynamic response
of CNT-FETs was investigated. The effect of electron-phonon
interaction on the device characteristics is discussed in detail.
In agreement with experimental data, our results indicate that
at room temperature electron phonon interaction affects the
steady-state current of CNT-FETs only weakly, whereas the
switching response can be significantly affected.
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