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Abstract—Carbon-based materials such as carbon nanotubes
(CNTs) and Graphene nano-ribbons (GNRs) have been exten-
sively studied in recent years due to their exceptional electronic,
opto-electronic, and mechanical properties. We employed the
non-equilibrium Green’s function (NEGF) formalism to analyze
the electronic and optoelectronic properties of CNT- and GNR-
based devices numerically. The steady-state and the dynamic
response of carbon nanotube-based transistors are studied for
a wide range of electron-phonon interaction parameters. The
direct band gap and the tuneability of the relatively narrow
band gap with the tube diameter or ribbon’s width render them
as suitable candidates for optoelectronic devices, especially for
infrared applications. The performances of CNTs and GNR-
based infra-red photo detectors are analyzed.

I. INTRODUCTION

Graphene, a one-atomic carbon sheet with a honeycomb

structure, has attracted significant attention due to its unique

physical properties [1]. This material shows an extraordinarily

high carrier mobility of more than 2 × 105 cm2/V.s [2] and

is considered to be a major candidate for future high speed

transistor materials. One of the most interesting properties of

electrons in graphene is the drastic change of the conductivity

with the confinement of the electrons. Structures based on

graphene with this behavior are CNTs and GNRs with, respec-

tively, periodic and zero boundary conditions for the transverse

electron wave vector. A CNT can be viewed as a rolled-up

sheet of graphene with a diameter of a few nanometers. The

way the graphene sheet is wrapped is represented by a pair

of indices (n,m) called the chiral vector. The integers n and

m denote the number of unit vectors along two directions

in the honeycomb crystal lattice of graphene. If m = 0, the

CNT is called zigzag. If n = m, the CNT is called armchair.

Otherwise, it is called chiral. CNTs with n−m = 3 are metals,

otherwise they are semiconductors [3]. Semiconducting CNTs

can be used as channels for transistors [4], and metallic CNTs

can serve as interconnect wires [5]. CNT-based devices have

been the subject of intensive research for the last decade [6].

Recently, graphene sheets have been patterned into narrow

nanoribbons [7]. These GNRs have attracted much interest as

they are recognized as promising building blocks for nanoelec-

tronic devices [8]. The electronic properties of GNRs exhibit a

dependence on the ribbon direction and width. In comparison

with CNTs, there are some key potential advantages in design-

ing and constructing device architectures based on GNRs [9].

First, all the junctions between GNRs of different width

and directionality have a perfect atomic interface, a feature

which is difficult to achieve for interfacing CNTs of different

diameter and chirality. Second, it is generally difficult to find

a robust method to make a contact with a molecular device

unit, because there exists usually a large resistance between

the metal electrodes and the molecules due to a very small

contact area. This difficulty may be circumvented by using

GNRs, because the GNR-based devices can be connected to

the outside circuits exclusively via semi-metallic GNRs. The

direct band gap and the tuneability of the band gap with the

tube diameter or ribbons width render CNTs and GNRs as

suitable candidates for optoelectronic devices, especially for

infra-red applications [10], in particular, due to the relatively

narrow band gap [11, 12].

The NEGF method has been successfully utilized to inves-

tigate the characteristics of nano-scale silicon transistors [13],

CNT-FETs [14–18], and molecular devices [19–21]. In this

work we discuss the NEGF formalism to study quantum

transport in CNT- and GNR-based devices.

The outline of the paper is as follows. In Section II the

NEGF formalism is briefly described. The implementation of

this method for CNT- and GNR-based devices is presented in

Section III. In Section IV and Section V simulation results are

discussed, and conclusions are presented in Section VI.

II. NON-EQUILIBRIUM GREEN’S FUNCTION FORMALISM

The NEGF formalism initiated by Schwinger, Kadanoff,

and Baym allows to study the time evolution of a many-

particle quantum system. Knowing the single-particle Green’s

functions of a given system, one may evaluate single-particle

quantities such as carrier density and current. The many-

particle information about the system is cast into self-energies

which are part of the equations of motion for the Green’s

functions. A perturbation expansion of the Green’s functions

is the key to approximate the self-energies. Green’s functions

enable a powerful technique to evaluate the properties of a

many-body system both in thermodynamic equilibrium and

non-equilibrium situations.

Four types of Green’s functions are defined as the non-

equilibrium statistical ensemble averages of the single particle

correlation operator [22]. The greater Green’s function G>

and the lesser Green’s function G< deal with the statistics of

carriers. The retarded Green’s function GR and the advanced

Green’s function GA describe the dynamics of carriers.



G>(1, 2) = −i~−1〈ψ̂(1)ψ̂†(2)〉

G<(1, 2) = +i~−1〈ψ̂†(2)ψ̂(1)〉

GR(1, 2) = θ(t1 − t2)[G
>(1, 2) −G<(1, 2)]

GA(1, 2) = θ(t2 − t1)[G
<(1, 2) −G>(1, 2)]

(1)

The abbreviation 1 ≡ (r1, t1) is used, 〈. . .〉 is the statistical

average with respect to the density operator, θ(t) is the unit

step function, ψ̂†(r1, t1) and ψ̂(r1, t1) are the field operators

creating or destroying a particle at point (r1, t1) in space-

time, respectively. The Green’s functions are all correlation

functions. For example, G> relates the field operator ψ̂ of the

particle at point (r1, t1) in space-time to the conjugate field

operator ψ̂† at another point (r2, t2).

Under steady-state conditions the Green’s functions depend

only on time differences. One usually Fourier transforms the

time difference coordinate, τ = t1−t2, to energy. For example,

the lesser Green’s function is transformed as G<(1, 2) ≡
G<(r1, r2;E) =

∫

(dτ/~)eiEτ/~G<(r1, r2; τ).

Under steady-state conditions the equation of motion for the

Green’s functions can be written as [23]:

[E −H]GR,A(1, 2) −

∫

d3 ΣR,A(1, 3)Gr,a(3, 2) = δ1,2

(2)

G≶(1, 2) =

∫

d3

∫

d4 GR(1, 3)Σ≶(3, 4)GA(4, 2) (3)

H is the single-particle Hamiltonian operator and ΣR, Σ<

and Σ> are the retarded, lesser, and greater self-energies,

respectively.

III. NUMERICAL IMPLEMENTATION

This section describes the implementation of the outlined

NEGF formalism for the numerical analysis of CNT- and

GNR-based devices. A tight-binding Hamiltonian is used to

describe the transport phenomena in such devices. The self-

energies due to electron-phonon and electron-photon interac-

tions are studied next.

A. Tight-Binding Hamiltonian

In Graphene three σ bonds hybridize in an sp2 configu-

ration, whereas the other 2pz orbital, which is perpendicular

to the graphene layer, forms π covalent bonds. The π energy

bands are predominantly determining the solid state properties

of graphene. Similar considerations hold for CNTs. We use

a nearest-neighbor tight-binding π-bond model [24]. Each

atom in an sp2-coordinated CNT has three nearest neighbors,

located acc = 1.42 Å away. The band structure consists of

π-orbitals only, with the hopping parameter t = Vppπ ≈
−2.7 eV and zero on-site potential.

Fig. 1. Layer layout of a (n, 0) zigzag CNT. The coupling matrices between
layers are denoted by t1 and t2, where t1 is a diagonal matrix and t2 includes
off-diagonal elements.

The tight-binding Hamiltonian matrix for a (n, 0) zigzag

CNT, shown in Fig. 1, can be written as [24]

H =













U1 t2

t2
†

U2 t1

t1 U3 t2
†

t2 U4 t1

t1 U5 .

. .













(4)

where the underlined quantities denote matrices. We assume

that the electrostatic potential shifts the on-site potential.

Therefore, Ui is a diagonal matrix which represents the

electrostatic potential energy in the ith circumferential ring

of carbon atoms. Equal electrostatic potential for all carbon

atoms within a ring is assumed, therefore Ui = UiI . The first

and second kind of interaction matrix between the neighboring

rings are denoted by t1 and t2. Only the nearest neighbor

interaction between carbon atoms is considered. The coupling

matrix between Layer 2 and Layer 3 is diagonal, t1 = t I ,

where t is the hopping parameter. However, the coupling

matrix between Layer 1 and Layer 2 is given by

t2
CNT =







t t

t t

t t

. .






(5)

Similar matrices can represent the coupling between different

layers of armchair GNRs. However, due to different boundary

conditions the coupling between Layer 1 and Layer 2 is given

by

t2
GNR =







t

t t

t t

. .






(6)



B. Electron-Phonon Self-Energies

A linear dispersion relation for acoustic phonons is assumed,

ωq,λ ≈ υλ|q|, where υλ is the acoustic phonon velocity

and λ is the phonon polarization. For optical phonons the

energy is assumed to be independent of the phonon wave-

vector ωq,λ ≈ ωOP,λ = const. Similarly, the matrix elements

of electron-phonon interaction [25] can be approximated as

Mq,λ ≈ MAP
λ |q| for acoustic phonons and Mq,λ ≈ MOP

λ =
const for optical phonons. The interaction of electrons with

optical phonons is inelastic. Assuming that the electron-

phonon interaction occurs locally [26] the lesser self-energy

can be written as:

Σ<,ν
inel(E) =

∑

λDinel,λ

×[NλG
<(E − ~ωλ) + (Nλ + 1)G<(E + ~ωλ)]

(7)

Nλ is the phonon occupation number which is given by

the Bose-Einstein distribution function. The electron-phonon

interaction strength is given by:

Dinel,λ =
~|MOP

λ |
2

2nmcωλ
(8)

mc is the mass of a carbon atom. The first term in (7) cor-

responds to the emission of a phonon by the de-excitation of

an electron, and the second term corresponds to the excitation

of an electron by the absorption of a phonon. The interaction

with acoustic phonons can be regarded as elastic scattering,

E ± ~ωλ ≈ E, and the approximation Nλ ≈ Nλ + 1 ≈
kBT/~υλ can be used. Based on this approximation, the self-

energies for acoustic phonon interaction simplify to:

Σ
≶,ν
el (E) = Dν

elG
≶,ν(E) (9)

Del,λ =
kBT |M

AP
λ |

2

nmcυλ
(10)

The self-energy due to electron-phonon interaction comprises

the contributions of elastic and inelastic scattering mecha-

nisms, Σν
e−ph = Σν

el + Σν
inel.

C. Electron-Photon Self-Energies

The Hamiltonian of the electron-photon interaction can be

written as [27, 28]:

Ĥe−ph =
∑

l,m

Ml,m

(

b̂e−iωt + b̂†e+iωt
)

â†l âm (11)

Ml,m = (zm − zl)
ie

~

√

~Iω
2Nωǫc

〈l|Ĥ0|m〉 (12)

zm denotes the position of the carbon atom at site m (Fig. 1),

Iω is the flux of photons with the frequency ω, and N is the

photon population number. The incident light is assumed to

be monochromatic with polarization along the CNT/GNR axis,

see Fig. 2. We employed the lowest order self-energy of the

Fig. 2. The sketch of a CNT and GNR-based transistor and photo-detector.
The length of the CNT-FET is 50 nm and the length of the photo-detector
is 15 nm. In a photo-detector, incident photons generate electron-hole pairs
and the electric field drives electrons and holes towards the drain and source
contacts, respectively.

electron-photon interaction based on the self-consistent Born

approximation [29]:

Σ<
l,m(E) =

∑

p,q Ml,pMq,m

×
[

NωG
<
p,q(E − ~ω) + (Nω + 1)G<

p,q(E + ~ω)
]

(13)

The first term corresponds to the excitation of an electron by

the absorption of a photon, and the second term corresponds

to the emission of a photon by de-excitation of an electron.

IV. CNT-FETS

The electron-phonon coupling strength and the phonon

energy depend on the chirality and the diameter of the

CNT [25]. In this section the device response is studied for

a wide range of electron-phonon interaction parameters. The

simulated device structure is shown in Fig. 2.

A. Electron-Phonon Coupling Strength

Fig. 3-a shows the ballisticity as a function of the electron-

phonon coupling strength. The ballisticity is defined as

ISc/IBl, the ratio of the on-current in the presence of electron-

phonon interaction to the current in the ballistic case [30]. The

left part of Fig. 3-b illustrates an electron losing its kinetic

energy by emitting a phonon. The electron will be scattered

either forward or backward. In the case of backward scattering

the electron faces a thick barrier near the source contact and

Fig. 3. a) Ballisticity versus electron-phonon coupling strength for a CNT of
50 nm length. Results for both elastic and inelastic scattering with different
phonon energies are shown. The operating point is VG = VD = 1 V. b)
Sketch of phonon emission and absorption processes in the channel.
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Fig. 4. The spectra of the source and drain currents. a) The effect of elastic
phonon scattering with different coupling strengths is shown. b) The effect
of inelastic phonon scattering with different coupling strengths is shown. The
phonon energy is ~ω = 100 meV.

will be reflected with high probability, such that its momentum

will again be directed towards the drain contact.

Elastic scattering conserves the energy of carriers, but

the current decreases due to elastic back-scattering of carri-

ers. Fig. 4-a shows that for elastic scattering the source and

drain current spectra are symmetric. As the electron-phonon

coupling strength increases, resonances in the current spectrum

are washed out and the total current decreases due to elastic

back-scattering. In the case of inelastic scattering, carriers

acquiring enough kinetic energy can emit a phonon and scatter

into lower energy states. Therefore, as shown in Fig. 4-b, the

source and drain current spectra are not symmetric. As the

coupling strength increases more electrons are scattered into

lower energy states.

B. Phonon Energy

Figure 5-a shows the dependence of the ballisticity on the

phonon energy. With increasing phonon energy the effect of

phonon scattering on the current is reduced, because scattered

electrons lose more kinetic energy and the probability for trav-

eling back to the source contact decreases. The considerable

decrease of ballisticity for low energy phonons is due to the

phonon absorption process. The right part of Fig. 3-b shows an

electron absorbing energy from a phonon and scattering into a

higher energy state. In this case the probability for arriving at

the source contact increases. This process can severely reduce

the total current.

Fig. 5-b separately shows the effects of the phonon emission

and absorption processes on the ballisticity. As the phonon

energy decreases, the phonon occupation number increases

exponentially, and the self-energy contributions of these two

components increase. However, due to the higher probability

for back-scattering of electrons in the case of phonon absorp-

tion, this component reduces the total current more effectively

than the phonon emission process does.

C. Switching Response

To illustrate the effect of electron-phonon interaction on the

dynamic response of the device, the gate delay time defined

as τ = (Qon −Qoff) /Ion [31] is considered, where the

quasi static approximation is assumed. It has been shown that

Fig. 5. a) Ballisticity versus phonon energy for a CNT of 50 nm length.
Results for inelastic scattering with different electron-phonon couplings are
shown. VG = VD = 1 V. b) Ballisticity versus phonon energy with D =
10−1 eV2 at the bias point VG = VD = 1 V. The contributions due to
phonon absorption and emission are shown.

the quasi static approximation for CNT-based transistors is

justified for frequencies below THz [32].

Fig. 6-a shows the ratio of the gate delay time in the

ballistic case to that in the presence of electron-phonon

interaction, τBl/τSc, as a function of the electron-phonon

coupling strength. As the phonon energy increases the gate

delay time increases. This behavior can be attributed to the

average electron velocity in the channel, which is high for

ballistic electrons and low for electrons scattered to lower

energy states.

Fig. 6-b shows the spectra of the source and drain currents

for different inelastic phonon energies. Electrons can emit a

single phonon or a couple of phonons to reach lower energy

states. The probability of multiple phonon emissions decreases

as the number of interactions increases. Therefore, as the

phonon energy increases, the occupation of electrons at lower

energy states increases. As shown in Fig. 6-b, the electron

population close to the conduction band edge considerably

increases as the phonon energy increases. Therefore, as the

phonon energy increases the mean velocity of electrons de-

creases and the carrier concentration in the channel increases

(Fig. 7). The increased charge in the channel results in an

increased gate delay time.

Fig. 6. a) The ratio of the gate delay time in the ballistic case to that in the
presence of electron-phonon interaction. For comparison, the ratio ISc/IBl

is also shown. b) The spectra of the source and drain currents. The effect
of inelastic scattering with different phonon energies is shown. The electron-
phonon coupling strength is D = 2× 10−1 eV2. A considerable increase
of the electron population close to the conduction band edge as the phonon
energy increases is visible.
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Fig. 7. a) The profile of the electron velocity near the source contact. b)
The profile of the electron concentration along the device. The results for the
ballistic case and for electron-phonon interaction are shown. As the phonon
energy increases the electrons scatter to lower energy states. Therefore,
the electron velocity decreases and the carrier concentration increases. The
electron-phonon coupling strength is D = 10−1 eV2 and the bias point is
VG = VD = 1 V.

In general the electron-phonon interaction parameters de-

pend on the diameter and the chirality of the CNT [25]. CNTs

with a diameter dCNT > 2 nm have a band gap EG < 0.4 eV,

which render them unsuitable as channels for transistors. Since

the fabrication of devices with a diameter dCNT < 1 nm
is very difficult, we limit our study to zigzag CNTs with

diameters in the range of dCNT = 1 − 2 nm. Scattering with

acoustic phonons is treated as an elastic process. The electron-

phonon coupling is also weak for acoustic phonons (DAP <
10−3 eV2), which implies that elastic back-scattering of car-

riers is weak. Inelastic scattering is induced by optical (OP),

radial breathing mode (RBM), and K-point phonons [33, 34].

Considering the class of CNTs discussed above, energies of

these phonons are ~ωOP ≈ 200 meV, ~ωRBM ≈ 25 meV, and

~ωK1
≈ 160 meV and ~ωK2

≈ 180 meV [30, 34]. The corre-

sponding coupling coefficients are DOP ≈ 40 × 10−3 eV2,

DRBM ≈ 10−3 eV2, and DK1
≈ 10−4 eV2, and DK2

≈
10−3 eV2 [30]. As discussed in Section IV-B, high energy

phonons such as OP and K-point phonons reduce the on-

current only weakly, but can increase the gate delay time

considerably due to charge pile-up in the channel. Low energy

phonons such as the RBM phonon can reduce the on-current

more effectively, but have a weaker effect on the gate delay

time. However, due to strong coupling, scattering processes are

mostly due to electron-phonon interaction with high energy

phonons. Therefore, at room temperature the on-current of

short CNT-FETs can be close to the ballistic limit [35],

whereas the gate delay time can be significantly below that

limit [36–38].

The intrinsic (without parasitic capacitances) gate delay

time for the ballistic case can be approximated as τ ≈
1.7 ps/µm, or equivalently fT ≈ 100 GHz/µm [31]. The

highest reported intrinsic cutoff frequency for a device with a

length of 300 nm is fT ≈ 30 GHz [39], which is far below the

ballistic limit. Inelastic electron-phonon interaction with high

energy phonon has to be considered to explain the results.
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Fig. 8. a) The calculated photo-current as a function of the included off-
diagonal elements of the retarded self-energy (ΣR). The full matrix size is
60× 60. b) The quantum efficiency of the CNT as a function of the incident
photon energy. The number of included off-diagonal elements of the self-
energy has a strong influence on the calculated quantum efficiency.

V. PHOTO-DETECTORS

When scattering via a self-energy is introduced, the de-

termination of the Green’s function requires inversion of a

matrix of huge rank. To reduce the computational cost, the

local scattering approximation is frequently used [17, 26,

29, 40, 41]. In this approximation the scattering self-energy

terms are diagonal in coordinate representation. This allows

to employ the recursive algorithm for computing the Green’s

functions [13, 29]. The local approximation is well justified for

electron-phonon scattering induced by deformation potential

interaction [41]. However, we show that this approximation is

not justified for electron-photon interaction.

For the given CNT device (Fig. 2) the calculated photo

current is shown in Fig. 8-a. The current is shown as a

function of the number of included off-diagonal elements

of the retarded self-energy for electron-photon interaction.

By including only the diagonal elements of the self-energy

(local scattering approximation) the calculated current is only

four percent of its value in case of full matrix consideration.

This behavior can be well understood by the fact that the

electron-photon self-energy is in general non-local in real

space. The off-diagonal elements of the Green’s function

indicate the correlation between different sites. Due to the

wave-like behavior of electrons the correlation length between

neighboring sites is on the order of the electron wave length.

To investigate GNR photo-detectors we study the quantum

efficiency which is defined as α = (Iph/q)/(Pop/~ω), where

Iph is the photo current and Pop is the incident optical

power. Fig. 8-b shows the quantum efficiency of the CNT

as a function of the incident photon energy. The efficiency is

maximized, when the photon energy matches the band-gap of

the CNT. However, at this energy the inclusion of off-diagonal

elements becomes more important. This can be understood by

the fact that at that peak the carrier energies are close to the

conduction and valence band energies, where they have longer

wave-lengths. The result is in agreement with experimental

data where the maximum quantum efficiency is estimated to

be between 10-20 % [11].
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Fig. 9-a shows the density for the first three subbands

of an (12, 0) armchair GNR. Van Hove singularities in the

density of states result in large photon-assisted transitions from

the valence to the conduction band [42]. Some of the most

important transitions are marked.

Fig. 9-b shows the calculated quantum efficiency of the

investigated device as a function of the incident photon energy.

The efficiency is maximized, when the photon energy matches

the bandgap of the GNR. The maximum quantum efficiency

ranges from 9% to 11% and is fairly independent of the

bandgap [28]. An experimental and a theoretical study of CNT-

based photo-detectors has estimated a quantum efficiency in

the 10−20% range [11, 28]. Due to periodic boundary condi-

tions, the subbands of CNTs appear as two-folded degenerate.

However, in GNRs this symmetry is removed and subbands

are no longer degenerate. It is, therefore, reasonable to expect

a maximum quantum efficiency of 10% in GNR devices.

VI. CONCLUSION

The NEGF method in conjunction with a tight-binding

model for the band structure is used to describe transport

phenomena in CNT-based devices. Employing the described

model, both the static and dynamic response of CNT-FETs was

investigated. The effect of electron-phonon interaction on the

device characteristics is discussed in detail. In agreement with

experimental data, our results indicate that at room temperature

electron-phonon interaction affects the steady-state current of

CNT-FETs only weakly, whereas the switching response of

such devices can be significantly affected. In addition we

present a study of CNT- and GNR-based photo-detectors. Due

to the lack of band-degeneracy, the photo-current in GNR

devices is roughly half of that of their CNT counterparts.

Although CNT photo-detectors show better performance, the

fabrication of GNRs might be more compatible with current

semiconductor technologies, which renders them well suitable

for future optoelectronic applications.
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