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ABSTRACT
Scientific computing has seen very rapid growth during its
relatively young existence. The continued growth, however,
is often impeded by neglecting the advancements of pro-
gramming paradigms and compiler technologies. We present
an approach which not only capitalizes on new develop-
ments, but also reuses already existing code bases using a
Monte Carlo algorithm as an example.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse
models; I.6 [Computing Methodologies]: SIMULATION
AND MODELING

Keywords
Scientific computing, high performance computing, Monte
Carlo, Boltzmann equation, generic programming

1. INTRODUCTION
The use of simulations in the field of sciences is increasing in
frequency and importance, as it provides a means of evaluat-
ing the feasibility of evolving scientific models. The increas-
ing complexity of new theories and models makes this an in-
valuable tool, which complements simpler, purely theoretical
considerations, for the pre-selection of setups of often very
cost intensive experiments. However, the rising complex-
ity of problems to be addressed by simulations constantly
requires the use of efficient numeric algorithms and imple-
mentations. At the same time scientific computing contin-
ues, further motivated by the relentless hunger for computa-
tional power, to develop and improve implementation tech-
niques, programming paradigms, hardware platforms as well
as compiler technologies. This, however, has resulted in the
growth of a gap between the domain experts deploying sim-
ulations and scientific computing. As a result many simu-
lation codes available as well as newly developed only use
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very basic programming techniques and paradigms and do
not take advantage of their continued evolution. This does
not come as a surprise considering that domain experts view
implementations to be of secondary importance and a nec-
essary evil, and newly developed programming paradigms
as exotic at best. The resulting prevailing procedural pro-
gramming style, which provides very little room for higher
abstractions, also results in a high level of conservative at-
titude when choosing the language for implementation for
simulation software, still making Fortran and C the prevail-
ing languages in, e.g., the area of physics or engineering.

However, the low level of abstraction used in these codes
increases the amount of code which has to be written, as
reusability, which is not commonly a goal in this setting,
is usually low. At this time, the domain expert, software
designer, programmer, tester, and end-user is one person,
a situation which complicates and slows down the develop-
ment process as a whole, as the source code is often only
poorly commented or documented in other ways. There-
fore once the initial developers have moved on to different
tasks, reconstruction of the intended semantics of the low
level implementation becomes extremely costly. This more
often than not results in complete abandonment of already
tried, tested and often tediously debugged implementations
for further developments, as the resource requirements for
such endeavors become prohibitive in favor of completely
new redevelopments. A step such as this necessarily requires
the allocation of considerable resources and not only aban-
dons the development of the old code base, but also much
of the experience associated with it.

It is for this reason, that a multitude of software appli-
cations and tools, which provide methods and libraries for
the solution of very specific problem classes, has been de-
veloped. However, they are mostly specialized for a certain
type of underlying mathematical model. Only in the recent
past have environments for various highly differing problems
been developed and published, all with their advantages and
disadvantages. However, it is important to note that appli-
cations not developed with interoperability in mind impose
restrictions on possible solution methods which can not be
foreseen at the beginning of program development.

It is therefore highly desirable to rejuvenate the implemen-
tation which is already available so that it utilizes advanced
technologies and techniques while at the same time keep-
ing as much of the already obtained experience and trust
related to the original code base. It is therefore proposed
to approach this task in an evolutionary fashion initially in-
cluding as much of the old implementation as possible and
gradually replacing it to bring it up to date to what may
appear as revolutionary when compared to the initial tech-
niques. Such a procedure is only made feasible by using an
environment based on concepts.



2. GENERIC ENVIRONMENT
The combination of different programming paradigms fits
the scenario of scientific computing exceptionally well. The
generic programming paradigm establishes homogeneous in-
terfaces between algorithms and data structures without
sub-typing polymorphism. Functional programming eases
the specification of equations and offers extendable expres-
sions while retaining the functional dependence of formulae
by higher order functions. Also, this type of specification of
access, algebraic manipulation, and traversal circumvent the
problems of an imperative implementation. The features of
meta-programming offer the embedding of domain-specific
terms and mechanisms directly into the host language as
well as compile time algorithms to obtain optimal run time.
Developments toward an alternative compilation model and
active library design are also an important step [1, 2]. How-
ever, reusability of traditional application parts and even
libraries is often extremely limited due to the following is-
sues:

- Numerical data types. There are numerous well-known
numerical data types which also are often optimized for
special applications in order to yield high performance.
Only with generic interfaces can these performance-en-
hancing measures be used in different kinds of applica-
tions.

- Topologies. Numerical schemes often require different un-
derlying topological data structures. While some appli-
cations perform well using structured grids, other appli-
cations require unstructured meshes with varying local
feature sizes. Although the nature of these topologies is
totally different, standardized interfaces for all topologi-
cal data types have to be provided.

- Different dimensions. Special symmetries that are en-
countered in many problems of scientific computing can
be used to reduce the effective dimension of a calcula-
tion. Even though all problems can be treated in their
full dimension, an enormous gain in performance by using
lower dimensional data structures can not be neglected.

- Equation system assembly. Most of the solver mecha-
nisms require an initialization of the values of their own
interfaces. Therefore, an interface which abstracts these
specialties and makes the solvers accessible in a general
manner is required. With such an interface the governing
equations can be formulated independently of the actual
data structures of the solver.

- Solution of large equation systems. A lot of problems re-
sult in large equation systems which have to be solved.
There are solvers available for various special cases, which
perform well under certain circumstances but fail to con-
verge sometimes. Therefore, interface design has to guar-
antee that different solvers can be used.

To circumvent the stated issues, a set of requirements for
library-centric application design in the field of scientific
computing is given in the following to allow the transforma-
tion of the concepts for scientific computing into generically
applicable and efficient software components. The achieved
library-centric design is facilitated, as the following criteria
are met:

- The environment is complete, so all applications can be
written exclusively using its libraries (as well as standard
libraries). Indeed, completeness increases usability enor-
mously, because no components have to be added while
existing components can be adapted.

- The components of the environment are usable for a
broad range of different applications.

- The interoperability of the environment is not affected
by its completeness. Even though all the libraries can be
used by themselves, they provide standardized interfaces,
which guarantees compatibility for data structures which
have not been foreseen in the initial design.

An additional requirement for application design is related
to an efficient use of programming paradigms. A basic layer
can be identified, which has to implement a formal topologi-
cal interface for container properties as well as for traversal,
thereby establishing a consistent interface for data struc-
tures and quantity storage. The object-oriented and generic
programming paradigms are best suited to accomplish this.
On top of this layer, functional expression specification fa-
cilities are required, which can be modeled best by the func-
tional programming paradigm. The concept of a domain-
specific embedded language (DSEL) in C++ requires the
additional concept of meta-programming resulting in an ac-
tive library concept to implement and guarantee an overall
high performance [3].

In this particular case the generic scientific simulation en-
vironment (GSSE) [4–6] is used which was specifically de-
signed to address the described issues and meat the pre-
sented requirements for scientific computing. Therefore it is
easy to build virtually any kind of simulation or scientific
software using the components of the GSSE.

3. MONTE CARLO APPLICATION
Monte Carlo simulations are a power-full, yet computation-
ally expensive numerical tool with seemingly unlimited ar-
eas of application [7]. The high numerical cost have always
made researchers very keen on utilizing every optimization
available. For low level codes this often results in portabil-
ity issues as every different platform may require drastically
different implementations to perform well, as the platform
specifics, which should be accounted for by the compiler
automatically, are done manually. The use of the generic
environment GSSE and the possibilities it provides allows
to optimize the implementation even when the platform on
which it is to be run changes while ensuring a high level of
abstraction.

The following will use the Monte Carlo algorithms from
the field of semiconductor simulations used to calculate so-
lutions to Boltzmann’s equation for electrons, which is pop-
ularly given in the form:

»

∂
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+ v grad

q
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p

–

f = Q (f) (1)

Where the left hand side describes classical Newton trajec-
tories including the electric field and the right hand side
models interactions of an electron with the semiconductor
crystal.

Only the trajectories traversing the simulation domain ac-
tually depend on geometry and the associated quantity com-
plex. Therefore the implementation of this part makes use of
the GSSE, which provides high performance operations for
virtually arbitrary dimensions and topologies at high run
time performance.

In contrast to this, the collision term on the right hand
side does not depend on the geometric properties, but only
makes use of the current state of the electron (its position
and its momentum) along with a quantity complex, which
is also provided by the GSSE, and a collection of physical
collision models.

To facilitate treatment using the Monte Carlo method
Equation (1) is usually reformulated, as is also done in this
particular example. An algorithm has been developed to
calculate the correction of quantum mechanical results due



to classical scattering interactions [8, 9]. The problem takes
the form of a Fredholm integral equation of the second kind
and is then further broken down to integrals such as:

Z
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ff
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−
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t
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where x is a point in the phase space and S and λ describe
the scattering and which can be evaluated using the Monte
Carlo approach using a rejection technique.

The rejection technique is shortly sketched in Figure 1.
At a given point x a current rate is chosen randomly using
a distribution from the interval [0; 1[ multiplied by an upper
bound for all the scattering. Then the scattering models are
evaluated at this point x and the individual rates, thusly
calculated are summed in order to determine the interval λi

which contains the current rate. The scattering mechanism
associated with this interval then chooses the new state of
the electron.

λi

λtotal

current rate

upper bound

scattering
models

f(x)

x

Figure 1: Schematic illustration of the used Monte
Carlo aglorithm.

This shows the following requirements to implement this
algorithm:

- A reliable random number generator.

- A rate has to be determinable for every scattering mech-
anism.

- A transition from an initial state to a final state has to
be available for every scattering mechanism.

- An upper bound needs to be available for the function
f(x), where it is possible to choose a constant, but more
efficient, when employing polynomial functions.

During the simulation the scattering models are evaluated
repeatedly in order to choose the next state of the electron
under consideration. Therefore high performance is among
the requirements of the collision model.

3.1 Legacy Application
The legacy application has been write in plain ANSI C. All
available scattering mechanisms are implemented as individ-
ual functions, which are called subsequently. The scatter-
ing models require a variable set of parameters, which leads
to non-homogeneous interfaces in the functions represent-
ing them. To alleviate this to some extent global variables
have been employed completely eliminating any aspirations
of data encapsulation and posing a serious problem for at-

tempts for parallelization to take advantage of multi-core
CPUs. The code has the very simple and repetitive struc-
ture:

double sum = 0;
double current_rate = generate_random_number ();

if (A_key == on)
{

sum = A_rate (state , parameters );

if (current_rate < sum )
{
counter ->A[state ->valley ]++;
state_after_A (st, p);
return ;

}
}

if (B_key == on)
{
sum += B_rate (state , state_2 , parameters );

if ( current_rate < sum)
{
counter ->B[state ->valley ]++;
state_after_B (state , state_2 );
return ;

}
}
...

Extensions to this code are usually accomplished by copy
and paste, which is prone to simple mistakes by oversight,
such as failing to change the counter which has to be in-
cremented or calling the incorrect function to update the
electron’s state.

Furthermore, at times the need arises to calculate the sum
of all the scattering models (λtotal in Figure 1), which is
accomplished in a different part of the implementation, thus
further opening the possibility for inconsistencies between
the two code paths.

The decision which models to evaluate is done strictly at
run time and it would require significant, if simple, modifica-
tion of the code to change this at compile time, thus making
highly optimized specializations very cumbersome.

The functions calculating the rates and state transitions,
however, have been well tested and verified, so that aban-
doning them would be wasteful.

3.2 Evolved Application
Scientific computing requires not only high performance com-
ponents evaluated and optimized at compile time, but also
run time exchangeable physical models and the ability to
cope with various boundary conditions. The two most com-
monly used programming paradigms, object oriented and
generic programming, differ in how the required functional-
ity is implemented.

Object oriented programming directly offers run time poly-
morphism by means of virtual inheritance. Unfortunately
current implementations of inheritance use an intrusive ap-
proach for new software components and tightly couples a
type and the corresponding operations to the super type. In
contrast to object-oriented programming, current applica-
tions of generic programming are limited to algorithms us-
ing statically and homogeneously typed containers but offers
highly flexible, reusable, and optimizeable software compo-
nents.

As can be seen, both programming types offer different
points of evaluation. Run time-polymorphism based on con-
cepts [10] (run time concepts) tries to combine the virtual
inheritance run time modification mechanism and the com-
pile time flexibility and optimization.



Inheritance in the context of run time polymorphism is used
to provide an interface template to model the required con-
cept where the derived class must provide the implementa-
tion of the given interface. The following code snippet

template <typename StateT > struct scatter_facade
{
typedef StateT state_type ;

boost :: shared_ptr <scattering_concept >
scattering_object;

struct scattering_concept
{
virtual ~ scattering_concept() {} ;
virtual numeric_type
rate(const state_type & input) const = 0;

virtual void
transition (state_type & input) = 0;

};

template <typename T> struct scattering_model :
scattering_concept

{
T scattering_instance;
scattering_model(const T& x) :
scattering_instance(x) {}

numeric_type
rate(const state_type & input) const ;

void transition ( state_type & input) ;
};

numeric_type
rate(const state_type & input) const ;

void transition (state_type & input) ;

template <typename T>
scatter_facade(const T& x) :
scattering_object(new

scattering_model <T>(x)) {}

~ scatter_facade() {}
};

therefore introduces a scattering_facade which wraps a
scattering_concept part. The virtual inheritance is used
to configure the necessary interface parts, in this case rate()
and transition(), which have to be implemented by any
scattering model. In the given example the state_type is
still available for explicit parametrization.

To interface this novel approach a core structure is imple-
mented which wraps the implementations of the scattering
models:

template <typename ParameterType >
struct scattering_rate_A
{
...
const ParameterType& parameters ;

scattering_rate_A
(const ParameterType& parameters ):
parameters (parameters ) {}

template <typename StateType > numeric_type
operator () (const StateType & state) const
{
return A_rate (state , parameters );

}
};

By supplying the required parameters at construction time
it is possible to homogenize the interface of the operator().
This methodology also allows the continued use of the old
data structures in the initial phases of transition, while not
being so constrictive as to hamper future developments.

The functions for the state transitions are treated similarly
to those for the rate calculation. Both are then fused in
a scattering_pack to form the complete scattering model
and to ensure consistency of the rate and state transition
calculations and which also models the run time concept as
can be seen in the following part of code:

template <scattering_rate_type ,
transition_type ,
parameter_type >

struct scattering_pack
{
...
scattering_rate_type <parameter_type >
rate_calculation;

transition_type <parameter_type >
state_transition;

scattering_pack
(const parameter_type& parameters ) :
rate_calculation( parameters ),
state_transition( parameters )

{}

template <typename StateType >
numeric_type rate(const StateType & state) const
{
return rate_calculation(state );

}

template <typename StateType >
void transition (StateType & state)
{
state_transition(state );

}
}

The blend of run time and compile time mechanisms allows
the storage of all scattering models within a single container,
e.g. std::vector, which can be iterated over in order to
evaluate them.

typedef std :: vector <scatter_facade_t
<state_type > >
scatter_container_type ;

scatter_container_type scatter_container ;
scatter_container.push_back ( scattering_model) ;

For the development of new collision models easy extendabil-
ity, even without recompilations, is also a highly important
issue. This approach allows the addition of scattering mod-
els at run time and to expose an interface to an interpreted
language such as, e.g., Python [11].

In case a highly optimized version is desired, the run time
container (here the std::vector) may be exchanged by a
compile time container, which is also readily available from
the GSSE and provides the compiler with further opportu-
nities for optimizations at the expense of run time adapt-
ability.

3.3 Incurred Benefits
While the described approach initially slightly increases the
burden of implementation, due to the fact that wrappers
need to be provided, it gives a transition path to integrate
legacy codes into an up to date frame while at the same
time not to abandoning the experience associated with it.
The invested effort allows to raise the level of abstraction,
which in turn allows to increase the benefits obtained from
the advances in compiler technologies. This in turn inher-
ently allows an optimization for several platforms without
the need for massive human effort, which was needed in pre-
vious approaches.

In this particular case, encapsulating the reliance on global
variables of the functions implementing the scattering mod-
els to the wrapping structures, parallelization efforts are



greatly facilitated, which are increasingly important with
the continued increase of computing cores per CPU.

Furthermore the results can easily be verified as code parts
are gradually moved to newer implementations, the only
stringent requirement being link compatibility with C++.
This test and verification can be taken a step further in case
the original implementation is written in ANSI C, due to
the high compatibility of it to C++. It is possible to weave
parts of the new implementation into the older code. Pro-
viding the opportunity to get very a fine grained comparison
not only of final results, but of all the intermediates as well.

Such swift verification of implementations allows to also
speed up the steps necessary to verify calculated results with
subsequent or contemporary experiments, which should not
be neglected, in order to keep physical models and their
numerical representations strongly rooted in reality.

4. CONCLUSION
An approach to reuse and port legacy implementations in

conjunction with up to date programming techniques has
been presented. It uses the already existing generic high
performance framework GSSE as a foundation. Addition-
ally run time concepts are employed to provide high flexi-
bility at run time while also enforcing the adherence to the
specified interfaces to satisfy requirements. By combining
the features of run time and compile time methodologies
the migration path of implementations to higher abstrac-
tion levels is able to exploit the advances in language tools
such as compilers, which provide automated adaptations to
various target platforms.

As it is not feasible to provide a monolithic software li-
brary suitable for each and every case in general, it is the
goal to extract and refine generally useful components, which,
due to the fact of keeping interoperability in mind, can be
used to quickly and adaptively construct high performance
solutions for various problems encountered in scientific com-
puting.
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