
A Generic and Self-Optimizing Polynomial Library

Rüdiger Sonderfeld
∗

TU Wien,
Gußhausstraße 27-29, Vienna, Austria

René Heinzl
†

Institute for Microelectronics, TU Wien,
Gußhausstraße 27-29, Vienna, Austria

ABSTRACT
Application of polynomial expressions is an important con-
cept in scientific computing. The here presented implemen-
tation of such a polynomial library is designed to be generic
and to be easily adoptable to new problems while provid-
ing the necessary performance. Generic programming and
self optimization techniques are discussed. Examples from
different areas of scientific computing conclude the presen-
tation.

Categories and Subject Descriptors
I.1 [Computing Methodologies]: SYMBOLIC AND AL-
GEBRAIC MANIPULATION; D.2.11 [Software Engineer-
ing]: Architectures—Data abstraction, domain-specific ar-
chitectures

Keywords
Polynomial, finite elements, generic programming, meta-
programming, high performance

1. INTRODUCTION
Polynomials are an important and efficient tool for numer-
ous fields of science although a generic implementation with
respect to high performance is still missing. Due to the
simple rules regarding differentiation and integration poly-
nomials have found wide spread application. GSSE’s [1, 2]
algebraic topology library [3] introduces a common property
environment protocol to specify data structures for scientific
computing. The polynomial library presented here is built
on top of this library providing particular extensions to de-
scribe and manipulate polynomials. This generic approach
not only provides enough flexibility, it also has no run time
speed costs. As run time performance is highly optimized
by using meta-programming to support the compiler to pro-
duce optimal code. The language of choice is C++ due
to several reasons: C++ is a well established language in

∗Contact information: ruediger@c-plusplus.de
†Contact information: heinzl@iue.tuwien.ac.at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POOSC ’09, July 7 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-547-5/09/07 ...$10.00.

the scientific computing community and is supported with
mature tools on all major systems. Furthermore, C++ is
also a very flexible language supporting a vast amount of
paradigms and programming techniques including generic
and meta-programming.

2. POLYNOMIALS
Polynomials can be defined as a weighted sum of exponen-
tial terms in at least one variable or expression, with the
exponents being restricted to non-negative whole numbers.
Their simple definition as well as the fact that their algebraic
structure is not only closed under addition, subtraction, and
multiplication, but also under differentiation and integra-
tion, result in their widespread application. The demand
of additional properties such as, e.g., orthogonality with re-
spect to an inner product results in special classes of polyno-
mials, orthogonal polynomials, which further increases their
appeal in fields such as finite elements as demonstrated in
Section 6.2. A polynomial consists of coefficients (ai) and a
variable expression (xi):

a0 x
0 + a1 x

1 + a2 x
2 + . . . + an x

n

Thus a container representation to store the coefficients for
polynomials was chosen so that a generic C++ variable con-
tains the expression:

gsse:: polynomial <Expression , Coefficients >

Usually the expression is represented as a Boost.Phoenix
Actor [4]. But it can also be represented in different ways
which allows a highly flexible deployment of the polynomial
library and even mathematical terms which are not consid-
ered to be polynomials are representable using this concept
(e.g. Fourier series).

When storing the coefficients in a container great care
has been taken to implement the library to be generic with
respect to the type of the underlying data structure. In
this way it is possible to use compile time containers if the
size or even the concrete coefficients are already known at
compile time. This allows the compiler to inline and execute
operations at compile time.

3. RUN TIME AND COMPILE TIME
PROGRAMMING

C++ has a classic build system. Code is compiled by the
compiler into machine language and after the compilation
(and linking) the executable is run by the machine. The
compilation process is referred to here as compile time, while
the process of executing the code on the machine is referred
to as run time. Using the preprocessor and templates it is
possible to get the compiler to execute code at compile time,
which is usually referred to as meta-programming.

3.1 Compile Time Container
A compile time container is a container whose size is known
at compile time. Associative compile time containers use a
key which must be distinguishable at compile time. A run
time container is a container which is not a compile time con-
tainer. C++ provides a wide arrange of run time containers
derived from SGI’s STL [5] and compile time containers from
the Boost library collection [6]. An example for a run time
container is std::vector which does not have a fixed size
and contains homogeneous elements1.

std ::vector <int > v;
v.resize (10); // run time changeable size

An example for a compile time container is std::tr1::tuple
(or boost::tuple). The elements are specified at compile
time and thus is the size. A tuple can contain elements of
different types and is thus an inhomogeneous compile time
container:

boost ::tuple <int , double , string > t;
get <0>(t); // is an integer
get <1>(t); // is a double

The boost::fusion::map is an example of an associative
compile time container. The association is known at compile
time and thus the size and the mapping of the elements. The
tuple example can be translated into a map:

fusion ::map <
fusion ::pair <mpl ::int_ <0>, int >,
fusion ::pair <mpl ::int_ <1>, double >,
fusion ::pair <mpl ::int_ <2>, string >,

> m;

3.2 Meta-Functions
Meta-functions are functions evaluated at compile time. In
C++ terms a meta-function is a template-class. The func-
tion parameters are passed as template-parameters and the
result is a member-typedef called type.

template <typename Arg0 , ..., typename ArgN >
struct a_metafunction
{

typedef ... type;
};

The main use of meta-functions in the polynomial library is
to determine the result type of a run time function. Each
function has a meta-function with the same name and tem-
plate parameters in the result_of sub-namespace.

4. LAZY EVALUATION AND VIEWS
Operations in the polynomial library are“lazy”, which means
the expressions are only evaluated when the result is re-
quired. This “laziness” is achieved by using views. An op-
eration does not change the polynomial, it just provides a
new view to the polynomial. A view is a wrapper around
the polynomial or container class which allows the intercep-
tion of operations directed at the polynomial. The calcula-
tions can therefore be made precisely when the values are
accessed.

Polynomial addition is a good example for the view con-
cept. Two polynomials with the same variable are added by

1Due to space constraints, the presented code examples lack
unnecessary namespaces and headers.

summing the coefficients of same degree

p = a0 x
0 + a1 x

1 + . . . + an x
n

q = b0 x
0 + b1 x

1 + . . . + bn x
n

p + q = (a0 + b0) x
0 + (a1 + b1) x

1 + . . . + (an + bn) x
n

The addition of two polynomials can therefore be accom-
plished by providing a view which takes a reference to the
coefficient containers of the input polynomials and adding
the two corresponding coefficients when a coefficient is ac-
cessed. A simplified code example:

template <typename LhsCoef , typename RhsCoef >
struct add_view {

LhsCoef const &lhs;
RhsCoef const &rhs;

type operator [](index_type n)
{

return lhs[n] + rhs[n];
}

};

Lazy evaluation reduces the problem of unnecessary com-
putations but brings its own set of problems. In the view
presented in the listing the sum is always computed when
the coefficient is accessed. If the coefficient is accessed often,
it can therefore reduce performance. Adding a transparent
cache to the view to save already calculated values adds its
own share of management overhead and thus can even cost
more than doing a large amount of additions. Another issue
with lazy evaluation is that it gets hard to do run time pre-
dictions since a slight change in the input set might cause
the code to access more coefficients and thus suddenly in-
crease the amount of computations done. A solution to this
problem is to copy the view into a new container. This will
behave exactly as if performing the calculations in a non
“lazy” fashion. Due to these problems lazy evaluation is
used for compile time containers only.

5. COMPILE TIME / RUN TIME
TRANSPARENCY

The most suitable container to use for the coefficients usually
depends on the input and not the algorithms. It is therefore
important to provide a basic set of programming utilities
which are generic with regard to the used container type.
Compile time and run time containers have a few incompat-
ible requirements which make it hard to define a common
set of utilities.

5.1 Accessing Coefficients
Accessing a polynomial’s coefficients is an important opera-
tion. There exist two basic ways of accessing the coefficient.
Compile time accessors are used when the index of the co-
efficient to be accessed is known at compile time, while run
time accessors have to be used otherwise. The compile time
version takes the index as a template-parameter, while the
run time entity as a function argument.

namespace compiletime {
template <class Polynomial , index_type n>
typename result_of ::coeff <Polynomial , n>:: type
coeff (Polynomial const &p);

}

namespace runtime {
template <class Polynomial >
typename result_of ::coeff <Polynomial >:: type
coeff (index_type n, Polynomial const &p);

}

Access to the coefficient is then available by:

polynomial <X, Coef > p;

compiletime ::coeff <0>(p);
runtime :: coeff(n, p);

Thus it is possible for the compiler to simplify the code and
determine more information about the coefficient. Therefore
the compile time version is more flexible than the run time
version. Using inhomogeneous compile time containers in
conjunction with the run time accessor is not possible since
it is not possible to determine the return type in advance.
This reduces the flexibility of the code using the run time
accessors. A workaround to this problem can be achieved
by using the visitor pattern.

template <class Polynomial , typename Visitor >
void coeff_visitor(

index_type n,
Polynomial const &p,
Visitor v

);

However, this approach has the disadvantage of being more
complicated to use than the coeff function.

The coefficient accessors are not simple wrappers around
the accessors of the underlying container. They check the
access and return a zero value if the container does not con-
tain the coefficient. The zero value is determined by the
coeff_trait template class:

template <class CoeffType , class Polynomial >
struct coeff_trait
{

typedef CoeffType zero_type ;

static zero_type const
zero_value = zero_type ();

};

By using partial template-specialization it is possible to de-
fine the corresponding zero value for the correct type. For
inhomogeneous polynomials default_coeff is passed as Co-
effType and the default behavior is to return an int.

5.2 Setting Coefficients
Coefficients may set using the set_coeff function. It does
not change the given polynomial but creates a new view
instead. This provides the polynomial library with a func-
tional programming style. Setting the coefficients and chang-
ing the polynomial can only be achieved by directly manip-
ulating the coefficient container.

namespace compiletime
{
template <index_type n,

class Polynomial ,
class Coeff >

typename result_of :: set_coeff <n,
Polynomial ,
Coeff >:: type

set_coeff (Polynomial const &p,
Coeff const &c);

}

namespace runtime
{
template <class Polynomial ,

class Coeff >
typename result_of :: set_coeff <Polynomial ,

Coeff >:: type
set_coeff (index_type n,

Polynomial const &p,
Coeff const &c);

}

Write access is then available by:

polynomial <X, Coef > p;

compiletime :: set_coeff <0>(p, 1);
runtime :: set_coeff (n, p, 1);

5.3 Degree
The degree of the polynomial is defined as the maximum
degree of all of its terms, where the degree of a term is given
as the sum of the degree of all variables in this term. The
polynomial library defines the degree as the index of the
highest non-zero coefficient. To obtain the correct degree
requires to use a polynomial for each variable and finally
combine them:

degree
`

3 x
4

y
2
´

= 4 + 2 = 6

struct X;
typedef polynomial <
X,
fusion ::map < pair < mpl ::int_ <4>, double > >

> inner_poly ;

typedef polynomial <
Y,
fusion ::map < pair < mpl ::int_ <2>, inner_poly > >

> the_polynomial;

By instantiating the polynomial the calculation of its degree
is possible:

the_polynomial p;
assert (degree (p) == 6);

6. EXAMPLES
To illustrate the flexibility of the polynomial library, not
only a compile time example is given, but also examples for a
finite element application and arbitrary precision arithmetic.

6.1 Compile Time Programming
The application of meta-programming is presented which
utilizes the compiler to execute code at compile time and
then reduce the result of the expressions. As an example
the derivative of a second-degree polynomial is calculated
and a second polynomial is added:

d(3 + 4.5 x + 10 x2)

dx
+ (1 + 2x) = 5.5 + 22 x

The type list represents the type of each coefficient starting
from the zero to the second degree coefficient.

struct X { } x;
typedef fusion :: vector <double ,

double ,
int > coeffs ;

typedef polynomial <X, coeffs > poly;
poly p(x, coeffs (3.0, 4.5, 10));

typedef result_of ::diff <poly , X>:: type diffed ;
diffed d = diff(p, x);

poly q(x, coeffs (1.0, 2.0, 0));

std ::cout << coeff <1>(q + d);

By compiling and evaluating the assembler code it is re-
vealed that the calculations were performed at compile time
and the binary only contains the final result of 22.

6.2 Finite Element Integration
In the theory of finite elements [7, 8], a continuous function

space is projected onto a finite function space P k, where the
space P k is the space of polynomials up to the total order
of k.

For many special cases, finite element integrals can be
computed manually and added into the source code of an
application. This results in excellent run time performance
but lacks flexibility. For more general cases, e.g., general
coefficients, they must be computed by numerical integra-
tion at run-time. To prevent an ill-conditioned system ma-
trix, orthogonal polynomials have to be chosen as numerical
integration weights. One possible type of polynomial is a
normalized Legendre polynomial [9]. Coefficients for such
a polynomial Pk of order k can be efficiently evaluated by
using the recursion procedure:

P0(x) = 1 (1)

P1(x) = x

Pk(x) =
2j − 1

j
x Pk−1(x) −

j − 1

j
Pk−2(x) k ≥ 2

To use arbitrary p-finite elements (polynomial order [10, 11])
the numerical coefficients have to be calculated either man-
ually and inserted into the source code or determined nu-
merically at run time.

The polynomial library presented here is then used to
store manually pre-calculated integration tables at compile
time (order 1-5). If the user requires higher order finite el-
ements, numerical coefficients are calculated at run time to
any order.

6.3 Arbitrary-Precision Arithmetic
The application of the polynomial library to perform arbitrary-
precision arithmetic (or “bignum arithmetic”) is also pre-
sented here. It uses the fact that a number is in essence a
polynomial with a fixed base.

1372 = 1 · 103 + 3 · 102 + 7 · 10 + 2

This can easily be translated into C++ code by using the
polynomial library. Note, that the first element in the array
is the zero coefficient:

typedef unsigned char byte_t ;
typedef array <byte_t , 4> coeffs_t ;

coeffs_t coeffs = {{2, 7, 3, 1}};

gsse:: polynomial <mpl ::int_ <10>,
array <byte_t , 4> > p(coeffs);

Since computer systems usually operate on binary numbers
base-2 is the optimal choice. The difference between poly-
nomial arithmetic and arbitrary-precision arithmetic is that
the coefficients need to be realigned to the base after each
operation.

7. OUTLOOK
A major problem with the polynomial library due to tem-
plates are hard to read compiler error messages. With the
upcoming revision of the C++ Standard [12] (referred to as
“C++0x”) concepts will be introduced to the language as a
form of type system for template parameters. This will allow
the library to define specifications about the template pa-
rameters and thus will improve the readability of compiler
output. At the moment every operation provides a meta-
function in the result_of sub-namespace to determine the

result type of the operation. A large part of the source code
is dedicated to these meta-functions. The introduction of
decltype and auto in C++0x will allow the elimination of
these meta-functions leading to a great reduction of the code
size.

8. CONCLUSION
To fully harvest a polynomial library compile time and run
time access and evaluation have been implemented. Special
consideration is placed on the use of performance optimizing
techniques such as lazy evaluation and compile-time evalua-
tion. By developing the compile time (lazy) version first, the
run time (non-lazy) layer can be integrated easily to provide
not only high performance but also great flexibility.

9. ACKNOWLEDGMENTS
We want to thank Philipp Schwaha for his support and Prof.
Siegfried Selberherr for the resources at the Insitute of Mi-
croelectronics, TU Wien. This work has been supported by
the Austrian Science Fund FWF, project P19532-N13.

10. REFERENCES
[1] R. Heinzl, P. Schwaha, and S. Selberherr. A High

Performance Generic Scientific Simulation
Environment. In B. Kaagström et al., editor, Lecture
Notes in Computer Science, volume 4699/2007, pages
996–1005. Springer, Berlin, June 2007.

[2] R. Heinzl, P. Schwaha, F. Stimpfl, and S. Selberherr.
Parallel Library-Centric Application Design by a
Generic Scientific Simulation Environment. In Proc. of
the POOSC, Paphos, Cyprus, July 2008.

[3] R. Heinzl. Data Structure Properties for Scientific
Computing. In Proc. of the POOSC, Genova, Italy,
July 2009.

[4] Boost. Boost Phoenix 2, 2006.
http://spirit.sourceforge.net/.

[5] P. Plauger, M. Lee, D. Musser, and A. A. Stepanov.
C++ Standard Template Library. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2000.

[6] Boost. Boost C++ Libraries. http://www.boost.org.
[7] C. Johnson. Numerical Solutions of Partial

Differential Equations by the Finite Element Method.
Cambridge University Press, Cambridge, UK, 1987.

[8] O. C. Zienkiewicz and R. L. Taylor. The Finite
Element Method. McGraw-Hill, Berkshire, England,
1987.

[9] M. Abramowitz and I. A. Stegun. Handbook of
Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Dover, New York, 1964.

[10] I. Babuscaronka, M. Griebel, and J. Pitkäranta. The
Problem of Selecting the Shape Functions for a
p-Type Finite Element. Int. Journal for Numerical
Methods in Engineering, 28(8):1891–1908, 1989.

[11] V. Korneev, J. E. Flaherty, J. T. Oden, and J. Fish.
Additive Schwarz Algorithms for Solving hp-Version
Finite Element Systems on Triangular Meshes. Appl.
Numer. Math., 43(4):399–421, 2002.

[12] Open Standards. C++0x Standard.

