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The subband structure in thin silicon films under stress is rigorously 
analyzed. Calculations of the effective masses in the subbands show a 
dependence on shear strain and film thickness simultaneously. Both, the 
effective masses and the subband splitting determine the transport properties 
in silicon films. A decrease of the transport effective mass controlled by the 
shear strain component leads to a mobility enhancement even in ultra-thin 
silicon films. This increase of mobility and thus drive current combined with 
the improved channel control makes multi-gate MOSFETs based on thin 
films preeminent candidates for the 22nm technology node and beyond.  

 
Introduction 

 
Downscaling of MOSFETs as institutionalized by Moore's law is successfully 
continuing because of innovative changes in the technological processes and the 
introduction of new materials. The thereby made possible aggressive size reduction of 
semiconductor devices has lead to an enormous increase in computational power and 
speed of integrated circuits. The 32nm MOSFET process technology recently 
developed by Intel [1] involves new hafnium-based high-k dielectric/metal gates and 
represents a major change in the technological process since the invention of 
MOSFETs. Although alternative channel materials with a mobility higher than in 
silicon were already investigated [2, 3], it is commonly believed that strained silicon 
will be the main channel material even for MOSFETs beyond the 32nm technology 
node.  
With scaling apparently approaching its fundamental limits, the semiconductor industry 
is facing critical challenges. New engineering solutions and innovative techniques are 
required to improve CMOS device performance. Strain-induced mobility enhancement 
is the most attractive solution to increase the device speed and will certainly take a key 
position among other technological changes for the next technology generations. In 
addition, new device architectures based on multi-gate structures with better 
electrostatic channel control and reduced short channel effects will be developed. A 
multi-gate MOSFET architecture is expected to be introduced for the 22nm technology 
node. Combined with a high-k dielectric/metal gate technology and strain engineering, 
a multi-gate MOSFET appears to be the ultimate device for high-speed operation with 
excellent channel control, reduced leakage currents, and low power budget.  
Confining carriers within thin films reduces the channel dimension in transversal 
direction, which further improves gate channel control. The quantization energy in 
ultra-thin silicon films may reach a hundred meV. The parabolic band approximation 
usually employed for subband structure calculations of confined electrons inversion 

ECS Transactions, 23 (1) 389-396 (2009)
10.1149/1.3183743 ©  The Electrochemical Society

389



 
layers becomes insufficient in ultra-thin silicon films. A recent study of subband 
energies and transport in (001) and (110) oriented  films reveals that even non-parabolic 
isotropic dispersion is not sufficient to describe experimental data, and a direction-
dependent anisotropic non-parabolicity must be introduced [4]. 
A comprehensive analysis of transport in multi-gate MOSFETs under general stress 
conditions is required for understanding the enhancement of device performance. 
Besides the biaxial stress obtained in silicon films grown epitaxially on a SiGe 
substrate, modern techniques allow the generation of large uniaxial stress along the 
[110] channel. Stress in this direction induces significant shear lattice distortion. The 
influence of the shear distortion on subband structure and low-field mobility has not yet 
been carefully analyzed. 
The two-band k·p model [5-8] provides a general approach to compute the subband 
structure, in particular the dependence of the electron effective masses on shear strain. 
In case of a square potential well with infinite walls, which is a good approximation for 
the confining potential in ultra-thin silicon films, the subband structure can be obtained 
analytically [9]. This allows an analysis of subband energies, effective masses, non-
parabolicity and the low-field mobility on film thickness for arbitrary stress conditions. 
In the following we briefly review the main ideas behind the two-band k·p model for a 
valley in the conduction band of silicon. Then we shortly analyze the unprimed 
subband structure in (001) ultra-thin films, obtaining analytical expressions for the 
effective masses and non-parabolicity parameter. With these parameters the non-
parabolic subband approximations for the subband dispersions are constructed. The 
non-parabolic subband dispersions are embedded into a subband Monte Carlo code in 
order to enable the computation of the low-field mobility. Results of the mobility 
enhancement calculations are finally analyzed. 
 

Two-Band Hamiltonian 
 
The subband structure in a confined system must be based on accurate bulk bands 
including strain, where several options are available. The conduction band dispersions 
computed with several methods in [100] and [110] directions are compared in Fig.1. 
The method based on non-local empirical pseudo-potentials from [10] is the most 
accurate one as compared to DFT band structure results obtained with VASP [11]. The 
sp3d5s* tight-binding model with parameters from [12] does not reproduce the 
anisotropy of the conduction band correctly. In addition, an accurate calibration of the 
parameters of the sp3d5s* model to describe the modification of the conduction band in 
strained silicon is still lacking.  
The k·p theory is a well established method to describe the band structure analytically. 
As illustrated in Fig.1, the k·p method reproduces the band structure accurately at 
energies below 0.5eV, which is enough to describe the subband structure and transport 
properties of advanced MOSFETs. From symmetry consideration the two-band k·p 
Hamiltonian of a [001] valley in the vicinity of the X point of the Brillouin zone in 
silicon must be in the form [6]: 
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zy ,σ  are the Pauli matrices, I is the 2×2 unity matrix, mt and ml are the transversal and 
the longitudinal effective masses, ak /215.00 π×=  is the position of the valley 
minimum relative to the X point in unstrained silicon, xyε  denotes the shear strain 
component, 1

0
11 −−− −≈ mmM t , and D =14eV is the shear strain deformation potential [5-

8]. The two-band Hamiltonian results in the following dispersion relations [6]:  
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The negative sign corresponds to the lowest conduction band, 
                              222 )/( MkkD yxxy −= εδ .                                                               (3) 
All moments as well as energies in (2) are counted from the X-point of the Brillouin 
zone. The classical parabolic approximation is obtained from (2), when coupling 
between the two conduction bands described by the parameter δ  is neglected. 
Coupling between the bands is small, when the wave vectors |kx|, |ky| << k0 (M/ml)1/2 and  
shear strain εxy = 0. Due to band coupling the dispersion relations (2) become non-
parabolic in strained silicon, if the shear strain component is non-zero, and/or at higher 
energies. In order to check the accuracy of (2) we have carried out numerical band 

                                   
   
Figure 1. Comparison of bulk dispersions close at the minimum of the [001] valleys 
of the conduction band in [100] and [110] directions. DFT [11] and EPM [7,10] 
results are similar, while the sp3d5s* tight-binding model [12] underestimates 
anisotropy significantly. 
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structure calculations with the empirical pseudo-potential method (EPM) with 
parameters from [7,10]. Excellent agreement between the two-band k·p model (1) and 
the EPM results was found up to an energy of 0.5eV. Equation (2) is valid in a larger 
range of energies compared to a parabolic dispersion relation with isotropic non-
parabolic correction and can be used to determine the subband structure in thin films.  
 

Subbands in Ultra-Thin Silicon Films 
 
For [001] silicon films the confinement potential gives an additional contribution U(z)I 
to the Hamiltonian (1). In the effective mass approximation described by (1) with the 
coefficient in front of xσ set to zero, the confining potential U(z) is known to quantize 
the six equivalent valleys of the conduction band of bulk silicon into the four-fold 
degenerate primed and the two-fold degenerate unprimed subband ladder [12]. In ultra-
thin films the unprimed ladder is predominantly occupied. In order to analyze the 
subbands, we approximate the confining potential of an ultra-thin silicon film by a 
square well potential with infinite potential walls. Generalization to include a self-
consistent potential is straightforward though numerically involved [13].  
Because of the two-band Hamiltonian, the wave function Ψ  is a spinor with the two 
components |0> and |1>. For a wave function with space dependence in the form 

)exp( zikz  the coefficients 0A  and 1A  of the spinor components are related via the 
equation ( )Ψ=Ψ zkEH . For a particular energy E there exist four solutions ki (i=1,…,4) 
for kz of the dispersion relation (2), so the spatial dependence of a spinor component is 
in the form ∑ =

4

1
)exp(

i i
i zikAα . The four coefficients are determined by the boundary 

conditions that both spinor components are zero at the two film interfaces. This leads to 
the following dispersion equations: 
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becomes imaginary at high η  values, the trigonometric functions in (4) are replaced by 
the hyperbolic ones. Special care must be taken to choose a correct branch of 22

2 η+k  
in (5): the sign of 22

2 η+k must be alternated after the argument becomes zero. 
Introducing 2/)( 21 kkyn −= , (4) can be written in the form [14]:  
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We solve (6) by perturbation techniques. For small η  and thick films the right-hand 
side in (6) can be ignored. The subband relations are found from the condition 
 
                                   )/( 0tknyn π= .                                                                              (7) 
 
Substituting (7) into the right-hand side of (6) and solving (6) for small strain η  one 
obtains the following dispersion relation for the unprimed subbands n:  
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It follows that the subband degeneracy is preserved only, when shear strain is zero and 
either kx=0 or ky=0. (8) demonstrates that the unprimed subbands are not equivalent. 
We first analyze the splitting in energy between the two unprimed subbands with the 
same n, which is usually called the valley splitting [12]. According to (8), shear strain 
induces a valley splitting linear in strain, for small shear strain values [14]:  
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The valley splitting is inversely proportional to (k0t)3 and oscillates with the film 
thickness, in agreement with earlier work [12,15].  
To find the valley splitting at higher strain values, (6) must be solved numerically. 
Results shown in Fig.2 demonstrate that valley splitting can be effectively controlled by 
adjusting the shear strain and modifying the effective thickness t of the electron system. 
It is interesting to note that for extremely high strain values the dispersion of the lowest 

 
       a.                                                                 b. 
Figure 2 a. Normalized positions of the subband minima with respect to the strain-
dependent conduction band minimum as function of dimensionless shear strain for a 
film of the thickness t=5.43nm.  
b. Strain-dependent splitting between the minima of the unprimed subbands with the 
same n.  
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conduction band becomes parabolic again, and the quantization levels in a square well 
potential are therefore recovered in this limit. Although the value of strain in this limit 
is unrealistic, this result will be used to analyze dispersion relations for the primed 
subbands. 
Uniaxial stress along [110] channel direction, which induces shear strain, is already 
used by industry to enhance the performance of modern MOSFETs. Therefore, its 
application to control valley splitting does not require expensive technological 
modifications. A possibility to introduce valley splitting larger than the Zeeman spin 
splitting makes silicon promising for future spintronic applications [16]. 
As seen from Fig.3a, the valley splitting in ultra-thin silicon films can be quite large 
already for reasonable stress values. In this case the higher subband becomes 
depopulated, prompting for mobility enhancement in (001) ultra-thin films strained 
along [110] direction.  
The dispersion relation (9) predicts different effective masses in [110] direction for the 
unprimed subbands with the same n even without strain: 
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Numerically found values of the masses for the two ground subbands are shown in 
Fig.3b. Contour plots of the subband dispersions for the two ground subbands are 
shown in Fig.4. It is to note, that the subband dispersions are not equivalent. This has a 
profound effect on the valley splitting. Without shear strain the Landau levels in the 
external [001] magnetic field B are determined using the Bohr-Sommerfeld 
quantization conditions: 

  

          a.                                                                 b. 
Figure 3 a. Shear strain induced splitting of the ground subbands for several film 
thicknesses. In ultra-thin films splitting is larger than kT already for moderate stress. 
b. Effective masses of the two ground subbands. In ultra-thin films effective masses 
of the two ground subbands are different even without stress. 
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where 
cmm

eB
c

21

=ω  is the cyclotron frequency. Therefore, the magnetic field induces a 

valley splitting linear in the field strength B, in agreement with recent experimental 
results [16]. 
 
A large value of the valley splitting observed by measuring conductance through a 
point contact can also be attributed to the difference in the subband dispersions, in 
particular, to the effective mass difference (10). Indeed, confining the electron system 
laterally in [1-10] direction by the potential, the following dispersion relation of 
propagating modes within the point contact is obtained: 
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Here )2,1(
2

)2,1( / mκω =  and Vb  is a gate voltage dependent shift of the conduction band in 
the point contact [17]. The energy minima of the two propagating modes with the same 
p are separated by || 21 ωω −=∆ pE  and they are resolved in the conductance of a point 
contact as two distinct steps. The difference in the effective masses (10) and, 

                  
            a.                                                                  b. 
Figure 4 Dispersions of the two ground subbands for a film thickness of 1.36nm:  
a. Without strain the subbands are degenerate at the minimum. The lower subband 
dispersion is described by the unification of the two ellipses with different masses 
(10), while the second subband is described by their intersection. The difference in 
quasi-classical orbits of the motion in the magnetic field is responsible for the 
subband splitting (11) in orthogonal magnetic field. 
b. Shear strain of 1% removes the degeneracy between the minima of the ground 
subbands shown in Fig.3a. The subband dispersions are now characterized by the 
corresponding effective masses in [110] and [1-10] directions (Fig.3b). 
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correspondingly, the valley splitting can be greatly enhanced by reducing the effective 
thickness t of the film.  
 

Conclusion 
 
A rigorous analysis of the subband structure in thin silicon films is performed. The 
thickness dependence of the effective mass of primed subbands calculated within the 
two-band k·p model is in agreement with the earlier full-band calculations. It is 
demonstrated that within the two-band k·p model the unprimed subbands with the same 
quantum number n are not equivalent. A large splitting between the unprimed valleys 
of ultra-thin films can be introduced by a shear strain component. Calculated subband 
effective masses are shown to depend on shear strain and thickness simultaneously. 
Interestingly, the effective masses of the two unprimed valleys are different in ultra-thin 
silicon films even without strain. This results in a linear dependence of the subband 
splitting on the magnetic field strength and leads to large subband splitting in a laterally 
confined electron system in a point contact.  
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