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Green’s function asymptotic in two-layered periodic medium
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Abstract. Green’s function asymptotic properties of the wave field in a two-layered periodic medium is analytically examined.

The solution is constructed by the stationary phase method. It is shown that some singularities occur in this approach. Namely,

the Green’s function asymptotical form is proportional to the distance from a source as R−5/6, instead of the expected R−1

behavior. Thus, the power flux density in this directions decreases very slowly (as R−5/3) and as a consequense there exists a

set of ultra-propagation power channels. We focus on the description of the vicinity of a singular cone where the usual

stationary phase method fails and determined a smooth transition from the standard asymptotic form to the new one. Finally, a

detailed analysis of the obtained results is given.

Introduction

The Green’s function method applied to periodic structure has

theoretical significance, but studying propagation and scatter-

ing of waves is one of the most effective methods to investigate

systems with periodically varying in space properties [1,2].

This method is widely adopted in investigations of liquid crys-

tals [3] and photonic band structures [4]. Here we study the

field of a point source, i.e. the Green’s function in a two lay-

ered medium (a1, a2) with a step-like spatial variation of wave

numbers (k1, k2) and one-dimensional periodicity for large dis-

tances from the source (Fig. 1). It is important to point out that

the specified formulas do not depend on size and other struc-

tural parameters. It is shown that forbidden zones exist in such

a media. The results are illustrated by numerical calculations.

1. Green’s function integral representation

We consider a scalar field and are not interested in polarization

effects. The Green’s function G(z, z1, r⊥) is the solution of

the equation
(

� + k2(z)
)

G(z, z1, r⊥) = −δ(r − r1),

which satisfies the limiting absorption principle. Taking ad-

vantage of the known integrated representation of the one-

dimensional Green’s function [5,6] we receive the following

asymptotic representation

G(z, z1, r⊥) ≈ −
1

√

8π3r⊥

∫

V (z>)V −(z<)

W(q)

√
q

× exp (i(qr⊥ + p(q)|z − z1| − π/4)) dq. (1)

Fig. 1. Considered structure. The values a1, a2, k1, k2 are the layer

widths and the wave numbers of the medium. T is the periodicity.

2. Method of a stationary phase

The asymptotic form of the Green’s function in the far zone

is to be considered, thus we calculate the integral (1) by the

method of the stationary phase. In order to perform this it is

necessary to find stationary points. The equation for definition

of stationary points in polar coordinates (the origin is combined

with a source r⊥ = R cos ϕ, |z − z1| = R sin ϕ) looks like

p′(q) = −ctgϕ. (2)

A typical quasi-momentum derivative curve p′(q) is repre-

sented in Fig. 2.

Let the polar angle vary in the sector ϕ∗ + ǫ < ϕ < π/2,

where ǫ > 0. Then the Green’s function asymptotic is defined

by the unique stationary point q = q1 and can be presented in

the form

G(z, z1, r⊥, q1)≈−
V (z>)V −(z<)

2πW(q1)

√

q1

p′′(q1)r⊥ |z−z1|
× exp i(q1r⊥+p(q1)|z−z1|+π/4(sign(p′′(q1))−1)). (3)

3. Green’s function singularities

Received asymptotic (3) becomes inapplicable in a vicinity of

q = q∗, p′(q∗) = −ctgϕ∗. At this point the function p′′(q) is

zero (special direction). In order to construct a smooth asymp-

totic form we rewrite (3) as

G(z, z1, r⊥, qi) = A(z, z1, r⊥, qi) × exp (iF (z, z1, r⊥, qi)) ,

Fig. 2. The dispersion diagram p(q) and quasi-momentum derivative

curve p′(q). The 1–2 dotted line shows the forbidden zone. It is

visible, that the equation (2) has a unique root at ctg ϕ < ctg ϕ∗, two

roots at ctg ϕ = ctg ϕ∗ and three roots in other cases. The angle ϕ∗ is

defined by the structure parameters.
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Fig. 3. The dependence of the forbidden zone number (n) on the

relative layers width and the wave numbers. One can see that by

varying the structure parameters in a certain way we obtain a different

number of forbidden zones, i.e. number of special directions.

where F(z, z1, r⊥, qi) = qir⊥ + p(qi)|z − z1|

A(z, z1, r⊥, qi)=−
e−i π

4

2π

√

qi

p′′(qi)r⊥ |z−z1|
V (z>)V −(z<)

W(qi)
.

In this form the smooth asymptotic may be written as

Gs(z, z1, r⊥, q(2,3)) = eiφ
(

C1Ai(ψ) + C2Ai(1, ψ)ψ−1/2
)

,

where

φ = (F (q3) + F(q2)) /2, ψ = (3/4 (F (q3) − F(q2)))
2/3 ,

C1 =
√

πψ1/4 (A(q3) + A(q2)) ,

C2 = i
√

πψ1/4(A(q3) − A(q2)).

Therefore, in the sector 0 < ϕ < ϕ∗ + ǫ the Green’s function

is the sum of two items

G(z, z1, r⊥) = G (z, z1, r⊥, q1) + Gs

(

z, z1, r⊥, q(2,3)

)

.

Here qi are the roots of the equation (2). Similar expressions

arise at the description of a wave field in the vicinity of a caus-

tic. In our case this asymptotic form describes the complex

interference picture in the far zone. It is possible to derive

an expression for the power flux density if we define it as

P = i(G∇G∗ − G∗∇G)/2. In this case power propagation

features the special directions, but proportional to R−5/3 rather

than R−2. Results of numerical calculations of the Green’s

function and power flux density are represented in Fig. 4.

Thus, in contrast to a homogeneous medium, the Green’s

function for the periodic layered structure has a number of fea-

tures. There are areas in which the wave field is described not

only by a single wave, but by a sum of wave fields with the

maximal number is defined by the properties of the structure

and does not exceed number of extending normal waves for

a wave guide consisting of two layers with periodic boundary

conditions. Also, there exist allocated directions in which there

is an occurrence or disappearance of an additional beam sum-

mand. The asymptotic of the wave field for these directions is

Fig. 4. Directional patterns of the Green’s function G(ϕ) and the

power flux density P(ϕ). The presence of the allocated directions

corresponding to slower decrease are clearly visible.

described through the Airy function and in these directions the

Green’s function and the power flux density decreases slowly.

Such a structure can be used as an attractive optical material

for controlling and manipulating the light flow. The obtained

results offer additional features leading to new device concepts

(e.g. microscale structure for the lightconfinement with radi-

cally different characteristics compared to conventional optical

fiber [7]), when some technological aspects such as manufac-

turability and principal difficulties such as disorder are being

under control.
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