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Wide bandgap, high saturation velocity, and high thermal stability are some of the properties of 
GaN, which make it an excellent material for high-power, high frequency, and high temperature 
applications. Given the predicted wide-spread use, reliable models are needed for simulation-
based optimization. As several application areas require the devices to operate at elevated 
temperatures, a proper modeling of the temperature dependences of the band structure and 
transport parameters is highly important. We present two-dimensional hydrodynamic simulations 
of AlGaN/GaN high electron mobility transistors (HEMTs) supported by measured data at high 
temperatures. 
The temperature dependence of the low-field mobility at low and high carrier concentrations is 
modeled by using power laws [1]. Fig. 1 shows our model for the electron mobility in GaN as a 
function of temperature in the two-dimensional electron gas in comparison to experimental values 
from various groups. The model parameters are calibrated against own Monte Carlo (MC) 
simulation results and consider high-quality GaN material. A decrease of the maximum mobility 
with temperature (~T�1.5), in agreement with the power term of the acoustic phonon mobility 
expression [2] is assumed. Our MC simulation results and recent experiments from [3] confirmed 
that the latter is the dominant scattering mechanism at high temperatures. A weak temperature 
dependence (~T�0.2) of the electron mobility at high concentrations is adopted. A two-valley 
hydrodynamic mobility model describes the high-field electron transport. 
The model is used to simulate HEMT T-gate structures with the two-dimensional device 
simulator Minimos-NT [4]. Both the lg=0.25 �m and lg=0.5 �m devices share the same layer 
specification and gate width wg=2x50 �m (taken as 1x100 �m in the simulation). The structures 
consist of GaN buffer, 22 nm thick Al0.22Ga0.78N barrier layer, 3 nm thick GaN cap layer, and SiN 
passivation. The lg=0.25 �m device is used for calibration. Self-heating effects are accounted for 
by using substrate thermal contact resistance. The densities of the polarization charges at the 
channel/barrier interface and at the barrier/cap interface are determined by calibration against the 
experimental data to be 9.5×1012 cm�2 and �2.5×1012 cm�2, respectively [5]. Thus, an excellent 
agreement is achieved both for the transfer (Fig. 2) and the output characteristics at all three 
ambient temperatures. As an example Fig. 3 shows the output characteristics at 425 K. Using the 
calibrated model set, the predicted results for the lg=0.5 �m device match nicely the measured 
transfer characteristics at 300 K, 365 K, and 425 K (Fig. 4), and the output characteristics.  
The RF device performance is studied by small-signal AC analysis. Fig. 5 shows the current gain 
|h21| for the 0.25 �m device for the three temperatures. The gain decrease with higher temperature 
in the simulation agrees well with the measurements, and consequently, the calculated cut-off 
frequency ft (Fig. 6). The slight overestimation of ft can be contributed either to the hydrodynamic 
model used, or to parasitics between the gate fingers of the real structure. 
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Fig. 1 Low-field 2DEG mobility in GaN as a 
function of lattice temperature. 

Fig. 2 Calibrated transfer characteristics vs. 
exp. data (symbols) for lg=0.25 �m HEMT. 

0 4 8 12 16 20
V  [V]DS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I D
 [A

/m
m

]

exp. data
simulation

VGS=2V

VGS=1V

VGS=0V

VGS=−1V

VGS=−2V

−4 −3 −2 −1 0 1 2 3
V  [V]GS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I D
 [A

/m
m

]

300 K
365 K
425 K

VDS=7V

Fig. 3 Calibrated output characteristics vs. 
exp. data for lg=0.25 �m HEMT at 425 K.

Fig. 4 Predicted transfer characteristics 
(lines) compared to measured data 
(symbols) for lg=0.5 �m HEMT. 
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Fig. 5 Current gain |h21| for lg=0.25 �m 
HEMT, exp. data (solid lines) vs. simulation 
(dashed lines). 

Fig. 6 Simulated cut-off frequency ft (lines) 
compared to measurement (symbols) for 
lg=0.25 �m HEMT. 
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