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Abstract—The subband structure of nanowires is com-
monly obtained through an atomistic tight binding ap-
proach. In this work an alternative, continuum based
method is investigated, namely a two-band k ·p approx-
imation of the conduction band structure. A derivation
of the subband Schrödinger equations from the bulk
model and their numerical solution are presented for
[100] nanowires. Self-consistent simulation results of
exemplary devices are examined and the influence of con-
finement on the band structure is discussed. For nanowire
thicknesses below ten nanometers band structure effects
similar to those observed using atomistic models become
apparent.

Index Terms—Two-band k·p model, quantum confine-
ment, subband structure, self-consistent solution, silicon
nanowires

I. INTRODUCTION

Short channel effects are viewed as one of the main
obstacles to further scaling of device dimensions. In or-
der to remedy these effects, multigate, gate-all-around,
and nanowire (NWFET) structures are currently under
investigation. Such structures promise improved elec-
trostatic control of the channel. However, due to the
small cross sections, quantization effects have to be
carefully considered.

In this paper, a continuum approach based on the
k · p theory is presented. The bulk Hamiltonian is
extended to take two dimensional confinement into
account. Also, the principles of discretizing the Hamil-
tonian for numerical simulation are explained. Band
structure and wavefunctions are obtained by diagonal-
izing the Hamiltonian for different electron wavenum-
bers k‖ along the nanowire axis. From these results, the
density of states, electron concentration and effective
mass are extracted.

The paper is structured as follows: In Section II
the model Hamiltonian is described as well as its
adaptation to the nanowire problem. Section III gives
an overview of the discretization scheme and discusses
numerical integration of the electron distribution over
k‖-space. In Section IV the simulation setup and the
particular devices under investigation are described,
while in Section V the results are discussed and
compared to the results obtained from other models.

II. MODEL

In order to capture the band structure effects oc-
curring in nanowires one must start with an accurate
description of the bulk band structure. For silicon,
the Hensel-Hasegawa-Nakayama model [1] provides
such a description and will thus be used in this work.
The model utilizes a two-band k · p Hamiltonian,
which represents a first-order expansion of the lowest
conduction band valleys around the X-points.
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Here V denotes the potential, i.e. the conduction
band edge; ml = 0.916me and mt = 0.196me are
the longitudinal and transversal effective masses and
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; k0 = 0.15 2π

a amounts to the distance
between the X-point and the corresponding valley
minima; σx,z denote the Pauli matrices and I the 2×2
identity matrix.

The electrons are confined to the cross section of the
nanowire, which is assumed parallel to the x, y plane,
while they can move quasi-freely in the z direction
or along the nanowire axis. In order to modify the
model to describe confined electrons, two out of three
k-components are replaced by derivatives [2]. Since
three valley pairs exist in silicon (two unprimed, one
primed), three different mappings apply,
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resulting in three different sets of terms for H11, H12,
H21 and H22:
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III. NUMERICAL APPROACH

The partial derivatives in (3) through (5) are dis-
cretized using box integration and applying Gauss’
law, resulting in the following transformations:
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The boxes are laid out on a non-uniform rectangular
grid. The gradients at the box interfaces are evaluated
by taking into account the central points of all six
boxes adjacent to the respective interface, while the
scalar quantities at the interfaces are evaluated by
averaging their values at the central points of the boxes
at either side of the interface (Figure 1).

Taking the above considerations into account, the
eigenvalue problem
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is discretized and solved using standard LAPACK
routines. This is done for a set of k‖-values, given by a
k‖-grid. The electron concentration is then computed
by numerical quadrature of the wavefunctions along
the k‖-grid according to
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where s denotes the subband index. Finally, the two-
band k·p model is evaluated self-consistently with the
Poisson equation.
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Fig. 1. Evaluation scheme for (a) the component of the gradient
perpendicular to a box boundary, (b) the in-plane component of the
gradient and (c) the value of a quantity at the surface itself
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Fig. 2. Device structure of the silicon NWMOS

IV. EXEMPLARY DEVICES

The devices under study are nanowires made of
intrinsic silicon grown in [100] direction. Their cross
section is of square shape with a cross section area
ranging from 4nm2 to 49nm2. The nanowires are
surrounded by an all-around gate structure with a 1nm
thick SiO2-layer and a metal gate, through which a
bias voltage of 1V is applied. The device structure is
displayed in Figure 2.

V. RESULTS AND DISCUSSION

A. Subband Structure

Figure 3 and 4 show the subband structure of the
5nm and 2nm devices, respectively. The confinement
projects the unprimed valleys onto the Γ-point (k‖ =
0) and causes a warping of the subbands, an effect
which could not be captured by simple effective mass
calculations. Most notably, the inverse curvature, i.e.
the effective mass, of the unprimed subbands increases
significantly for small thicknesses. Figure 5 shows
the effective mass change over nanowire cross section
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Fig. 3. Subband structure and density of states for the 5nm device
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Fig. 4. Subband structure and density of states for the 2nm device

area. For comparison, data from Wang et. al. [3]
and Zheng et. al. [4] obtained through the atomistic
tight binding approach is plotted as well. As can be
clearly seen, the effective mass calculated by two-band
k · p follows the same law as found by the other
authors. However, the two-band k · p model slightly
overestimates the effective mass increase with respect
to the tight binding data. Although it appears that the
effective mass curve obtained here is shifted towards
higher effective mass as a whole, it still asymptotically
approaches the bulk value of 0.196 for large cross
section areas. The effective mass curve can be fitted
using a power law,

m∗‖

mt,bulk
=
(
A

A0

)α
, (13)

with an estimated exponent α = −0.72. The depen-
dence of the effective mass with respect to the gate
bias was investigated as well, however it was found to

be negligible; it changes by less than one percent for
Vgate = 0 . . . 1V .

The offset of the conduction band due to con-
finement is plotted in Figure 6. The energy distance
between unprimed and primed bands increases for
small widths due to different quantization masses,
which means that for very thin nanowires only the
lower unprimed subbands are effectively populated.

B. Electron Concentration

The electron concentration of the 5nm and 2nm
device are plotted in Figure 7 and 8, respectively. In
both figures the electron concentration obtained from
the two-band k · p model is compared to the one
produced by effective mass calculations. While the
difference between the models is negligible in the
5nm case, for the 2nm device the two-band k · p
model predicts a higher concentration which is due to
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Fig. 5. Effective mass of the lowest subband (unprimed) plotted
against cross section area
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Fig. 6. Conduction band valley minimum dependence on cross
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the effective mass increase discussed in the previous
section.

VI. SUMMARY AND CONCLUSION

The Hensel-Hasegawa-Nakayama model was
adapted for calculation of silicon nanowire band
structures. It was demonstrated that by introducing
only one additional model parameter, M , a far more
accurate band structure can be obtained compared to
the simple effective mass approach. The simulated
band structure displays important features such as
subband warping and effective mass increase for
small thicknesses. The latter effect was found to agree
reasonably well with results obtained from atomistic
tight binding simulations.
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Fig. 7. Electron concentration of the 5nm device
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Fig. 8. Electron concentration of the 2nm device
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