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In order to describe carrier transport in inversion layers we have developed a two-dimensional non-par-
abolic macroscopic transport model up to the sixth order. To model the transport parameters with as few
simplifying assumptions as possible, we apply an extraction technique from Subband Monte Carlo sim-
ulations followed by an interpolation within these Monte Carlo tables through the whole inversion layer.
Important effects like surface-roughness scattering as well as quantization are inherently considered in
the Subband Monte Carlo data, which are used to model higher-order mobilities as well as the macro-
scopic relaxation times as a function of the effective field and the carrier temperature. The parameters
are compared with the results obtained from models using bulk Monte Carlo data, where neither surface
roughness nor quantization are considered. The models are applied to a UTB SOI-MOSFET and their pre-
dictions are discussed for different gate lengths.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

For gate lengths larger than 25 nm, where source-to-drain tun-
neling currents can be neglected [1], it is justified to treat carrier
transport in lateral direction classically. An accurate way to de-
scribe classical transport is to solve the Boltzmann transport equa-
tion (BTE), for instance with the time consuming Monte Carlo (MC)
technique. However, on an engineering level, an efficient way to
find approximate solutions of the BTE is by the method of mo-
ments [2]. By multiplying the BTE with special weight functions,
making an approximation of the scattering integral with a macro-
scopic relaxation time and integrating over k-space, one can obtain
the drift-diffusion, the energy transport, and the six-moments
model [3]. A detailed discussion of this derivation follows in the se-
quel. The challenge here is to model higher-order transport param-
eters like the energy relaxation time s1, the second-order
relaxation time s2, the energy mobility l1, and the second-order
mobility l2 (see Fig. 2) as accurately as possible. A good choice is
the calculation of parameter tables extracted from MC simulations
for a parameter interpolation within a device simulator. So far,
bulk MC data has been investigated [4]. There the influence of
impurity, acoustic and optical phonon scattering on higher-order
transport parameters has been studied. However, the impact of
important inversion layer effects like surface-roughness scattering,
and the quantization on higher-order parameters have not been ta-
ken into account. Hence, using bulk MC data for modeling trans-
port parameters within the inversion layer of a device is
ll rights reserved.
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insufficient. In [5] surface-roughness scattering has been approxi-
mated using the semiempirical Matthiesen rule.

We present a method for modeling these important inversion
layer effects as well as a 2D six-moments transport model in order
to be consistent with 2D transport in an inversion layer.

2. Transport model

Macroscopic transport models can be systematically derived
using the method of moments [6]. Here the moments for the 2D
and the 3D case are defined as

xD
j ðrÞ ¼

2

ð2pÞD
Z 1

�1
Xjðr;kÞfDðr; kÞdDk ¼ nhXjðr;kÞi ¼ � Xjðr;kÞ �

ð1Þ
with xj(r) as the macroscopic values together with the microscopic
counterpart Xj(r,k). f(r,k) is the distribution function whereas D is
the dimension factor (D = 2 or D = 3) n is the carrier density. Appli-
cation of these moments to the BTE

ot f þ v � $rf � qE � $pf ¼ ðot f Þcoll; ð2Þ

gives the moment equations for electrons which read

ot � Xjðr;kÞ � þ$r � vXjðr;kÞ � þqE� $pXjðr;kÞ �
¼ ot � Xjðr;kÞ�coll ð3Þ

ot � Xjðr;kÞ � þ$r � v� Xjðr;kÞ � þqE� $p � Xjðr;kÞ �
¼ ot � Xjðr;kÞ�coll ð4Þ

for the even scalar-valued moments and for the odd vector-valued
moments, respectively. Eq. (3) is the starting point for the deriva-
tion of the balance equations, whereas Eq. (4) describes the fluxes.
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Fig. 1. Transport parameters of a 2D electron gas in an inversion layer are extracted
self-consistently and modeled through a whole device with a device simulator.
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Fig. 2. Extracted second-order mobility as a function of the driving field for
different effective fields. The device simulator interpolates between these curves.
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Here, the even moments Xj are defined as h�ji and the odd ones are
h v�jiwith v as the velocity of the carrier, � is the average kinetic en-
ergy, and j 2 N0. The odd macroscopic counterparts of these micro-
scopic values are defined here as nhvi = Jn, the current flux, hv�i = Sn

the energy flux, and hv�2i = 2/m*Kn the second-order temperature
flux which correspond to the fluxes of the model. The even macro-
scopic values for 2D are defined [4] as �1� = n, ��� = kB Tn, and
��2� = 2(kBTn)2b, whereas for 3D the even moments read
�1� = n, �� � = 3/2kBTn, and ��2 � = 15/4(kBTn)2b. Here b is
the kurtosis and denotes the deviation from a heated Maxwellian
distribution function and is defined as

b ¼ D
Dþ 2

� �2 �
� ��2 : ð5Þ

In order to obtain an expression for the right hand side of the BTE
that can be handled analytically, a macroscopic relaxation time
approximation is introduced. The equations read

ot � Xðr; kÞ�even
coll � �

� Xðr; kÞ � � � Xðr; kÞ�0

sj
¼ x� x0

sj
; ð6Þ

ot � Xðr; kÞ�odd
coll � �

� Xðr; kÞ � � � Xðr; kÞ�0

sj
¼ �

Jj

sj
; ð7Þ

for the balance as well as for the flux equations, respectively. Here, Jj

are the fluxes in the transport equations. Within the relaxation time
approximation the moments relaxes to its equilibrium state with
the time constant sj after removing all driving fields. In the diffusion
approximation [7], the non-diagonal tensorial components in the
fluxes vanish. Putting everything together, the six-moments model
reads

/0 : D0otn�
1
q0

$rJn ¼ 0; ð8Þ
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; ð9Þ
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q
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 !
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 !
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with D0 = 1, D1 = 1, D2 = D/2, D3 = (2 + D)/2, D4 = (2 + D)D/24�D, and
D5 = (4 + D)(2 + D)/4 as the dimension factors of the transport mod-
el. (D = 2 for two dimensions, and D = 3 for three dimensions), and
Hi the non-parabolicity factors [4]. For parabolic bands, Hi equals
unity. Each moment equation contains information on the next
higher one. As a consequence one has to truncate the equation hier-
archy in order to get a fully defined equation set. Most important is
the closure relation, which includes the information of the higher-
order moments and thus determines the accuracy of the system.
For instance, in the case of the drift-diffusion model the electrons
are assumed to be in thermal equilibrium (Tn = TL) with the lattice
[8] whereas the closure relation of the six-moments model is linked
to the kurtosis [9] and empirically described as bc with c = 2.7 [4]. A
description of the non-parabolic energy transport model with the
closure relations used in the device simulator is given in [4]. Fur-
thermore all macroscopic models are discretized using an extended
Scharfetter-Gummel type scheme [4].

Another crucial step is the modeling of the transport parame-
ters. In order to account for quantization effects and surface-
roughness scattering, a self-consistent coupling of a Subband
Monte Carlo simulator (SMC) and a Schrödinger–Poisson (SP) sol-
ver (see Fig. 1) has been developed [10,11]. The SP solver solves
the quantum confinement and the SMC simulator calculates 2D
transport in each subband [12]. Convergence is reached by an ex-
change of energies, wavefunctions, and subband occupations (see
Fig. 1). Hence, higher-order parameters like the second-order
mobility l2 (see Fig. 2) can be extracted. This has been done for dif-
ferent effective fields. In order to study the higher-order parameter
behavior through a whole device, our device simulator Minimos-
NT [13] calculates the effective field through the channel and inter-
polates mobilities as well as relaxation times corresponding to the
effective field using the pre-calculated SMC tables. In the drain and
source regions, where no quantization is considered, fullband bulk
MC tables are used. In the case of the energy transport and the six-
moments model, an additional interpolation parameter within the
MC table is the average energy. So higher-order parameters lj and
sj read as lj(Eeff,Tn) and sj(Eeff,Tn), whereas in the drift-diffusion
model the additional parameter is the driving field. Hence the
mobility l0 can be written as l0(Eeff,E).
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3. Results and discussion

The transport models are divided into two parts. The micro-
scopic part corresponding to the SMC extractions and a macro-
scopic part coming from the method of moments. To determine
both parts of the model, UTB SOI-MOSFETs with a bulk thickness
of 4 nm and several gate lengths are investigated.

Fig. 3 shows the second-order temperature and the carrier tem-
perature with respect to the lateral coordinate of a 40 nm gate
length device. By increasing the drain voltage, the deviation of
these two temperatures increases as well. Since the second-order
temperature is defined as the kurtosis times the carrier tempera-
ture, the difference between these two temperatures is an indica-
tion of the deviation of the distribution function from a heated
Maxwellian. The kurtosis reaches a maximum at the end of the
channel, where hot electrons meet cold electrons from the drain
region. This yields a mixture of a hot and cold distribution function.
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Fig. 3. The second-order temperature h = bT in comparison to the carrier temper-
ature T. With increasing drain voltage, the deviation from the Maxwellian
distribution (h � T, b � 1) increases.
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Fig. 4. A comparison between higher-order mobilities calculated with SMC data
and bulk MC data through an SOI-MOSFET with a gate length of 40 nm. Due to
surface-roughness scattering, the subband mobilities are lower than the bulk
mobilities.
The kurtosis increases as well in transistors with decreasing gate
lengths, where strong electric fields generate electrons very far
away from equilibrium. Therefore, the drift-diffusion model, which
is accurate for devices with channel lengths down to 100 nm, loses
its validity [14].

In Fig. 4, higher-order mobilities based on SMC data and bulk
MC data are plotted. It clearly shows the importance to use SMC
data for modeling transport properties in UTB transistors. Further-
more, surface-roughness scattering is included in the 2D model.

The velocity profiles of the three transport models calculated for
a 40 nm and a 60 nm gate length device are presented in Fig. 5.

The spurious velocity overshoot in the energy transport model
is reduced in the six-moments model, as can be observed in both
devices. As pointed out in [15] this is due to the closure relation
and the modeling of the relaxation times and cannot be eliminated
completely using a finite number of moment equations. This veloc-
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Fig. 5. A velocity profile calculated with the drift-diffusion, energy transport, and
the six-moments model for 40 nm and 60 nm SOI-MOSFETs. The 40 nm device is as
well calculated with bulk data, where no quantum effects are considered.
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Fig. 6. The Output characteristics calculated with the drift-diffusion, energy
transport, and the six-moments model of a UTB SOI-MOSFET.
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ity overshoot leads to an overestimation of the output characteris-
tics of the energy transport model.

In Fig. 6 we present the output characteristics of a 40 nm chan-
nel length SOI device calculated with the drift-diffusion, energy
transport and the six-moments model. The output current pre-
dicted by the drift-diffusion calculations is smaller compared to
the other models. This can be explained with the velocity profiles
of Fig. 5.

As a consistency check [16] for long channel devices all models
must yield the same results. We show in Fig. 7 output characteris-
tics from the energy transport and the six-moments model for sev-
eral SOI MOSFETs with different gate lengths. The differences in the
current of the two transport models decrease with further increase
of the channel length.
4. Summary and conclusion

We have developed a 2D non-parabolic six-moments model
based on SMC data in order to accurately model carrier transport
in inversion layers of aggressively scaled devices. This approach al-
lows the investigation of UTB SOI devices including the influence of
surface-roughness scattering and quantization within higher-order
moment models. A generalized set of equations has been used to
derive the 3D bulk model and a novel 2D model. A crucial step is
the modeling of the transport parameters which has been dis-
cussed in detail. The model has been used to investigate UTB
SOI-MOSFETs with different channel lengths. First, it has been
shown that the transport properties of UTB SOI devices cannot be
accurately reproduced using bulk models. Second, the importance
of using higher-order moment models for the modeling of devices
with a gate length in the deca-nanometer regime has been proven.
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