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A self-consistent Schrödinger–Poisson model for the calculation of the electron subband structure of
ultra-thin body (UTB) devices for arbitrary substrate orientation is presented. The proposed approach
is based on a two-band k � p Hamiltonian and takes the band nonparabolicity and arbitrary strain into
account. Despite its small matrix size compared to full-band approaches, an excellent description of
the band structure over a wide range of the Brillouin zone is assured. Furthermore, emphasis is put on
the efficiency and accuracy of the numerical, two-dimensional k-space integration of the subband distri-
bution functions. For this purpose, the Clenshaw–Curtis method which is based on non-equidistant inter-
polation nodes is employed. Simulation results of (001) and (110) oriented silicon UTB double gate
devices demonstrate the suitability of the proposed numerical method. For Si body thicknesses in the
nanometer regime, the presence of band structure effects which are not captured by a one-band model
are clearly demonstrated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The continuous progress in the development of semiconductor
devices over the last decades has gone hand in hand with down-
scaling the device feature size [1]. For future CMOS technology
nodes, strained silicon UTB MOSFETs are considered as good candi-
dates. As the device feature sizes approach the wave length of free
electrons quantum mechanical tunneling and energy quantization
gain importance. The formation of subbands in the inversion chan-
nel of MOSFETs significantly affects the carrier transport. This is
particularly true for UTB SOI devices, because the potential well
is mainly determined by its geometrical structure. Fundamental
carrier transport properties of MOS devices can be derived from
one-dimensional vertical cuts through the channel. In that way
quantum mechanical carrier confinement and electrostatic effects
are captured. To solve the Schrödinger equation thereon, the con-
duction band in silicon is commonly approximated by three pairs
of equivalent valleys located close to the X-points of the Brillouin
zone. Near the minima the electron dispersion is well described
by a one-band model. However, a recent study [2] showed the
importance of effects that go beyond the possibilities of the para-
ll rights reserved.
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bolic band approximation (PBA) for modern UTB devices. An ana-
lytical approach to model these structures accurately has been
presented in Part 1 [3]. While such analytical considerations are
very useful to obtain a basic understanding of the problem, neces-
sary assumptions like a square well potential pose a severe limita-
tion to the model’s applicability. Therefore, a more general
numerical solution employing an efficient self-consistent Schrö-
dinger model [4] is presented here. The implemented two-band
k � p Hamiltonian is described in Section 2. A method to obtain
the electron concentration by numerical integration of the occu-
pied subbands is presented in Section 3 followed by a description
of the simulation setup in Section 4. In Section 5 the effects of band
nonparabolicity, arbitrary strain and crystal orientation on the
electronic subband structure and effective masses are investigated
and compared to full-band results.
2. Model Hamiltonian

The numerical modeling of the electron subband structure in
UTB SOI MOS structures relies on an accurate description of the
bulk Hamiltonian. In this work, we applied a two-band k � p Ham-
iltonian suggested by Hensel et al. [5,6] describing the silicon con-
duction band around the X-points.
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Fig. 1. Schematic of the silicon valleys around the X-point and their orientation. To
describe arbitrary substrate orientations and all valley types, a rotation of the two-
band k � p Hamiltonian is necessary. en is the normal unit vector to the substrate
surface. u and # are the azimuthal and polar angle from the simulation coordinate
system to the crystal coordinate system.
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Ec denotes the energy of the conduction band edge, ml and mt are
the longitudinal and transversal electron masses, respectively, and
1
M � 1

m t
� 1
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with the free electron mass m0. A shear strain and a

uniaxial deformation potential Nu0 ¼ 7 eV and Nu ¼ 9 eV describe
the effects of arbitrary strain on the band structure and
k0 ¼ 0:15 2p

a0
corresponds to the distance of the valley from the

X-point.
The quantization direction of the simulation system is assumed

to be ez ¼ ð0;0;1ÞT. To account for arbitrary crystal orientations a
rotation of the wave vector k # Uck with k ¼ ðkx; ky; k zÞT is re-
quired. The unitary transformation matrix Uc is defined by the rela-
tion ez ¼ U�1

c en, where en is the quantization direction of the
crystal coordinate system. Following the notation in the schematic
Fig. 1, using the azimuthal and polar rotation angles u and # the
transformation from the crystal coordinate system to the simula-
tion coordinate system can be written as

Uc ¼
cosðuÞ cosð#Þ � sinðuÞ cosðuÞ sinð#Þ
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Furthermore, the different valley orientations m ¼ x; y; z need to
be considered. Using the transformations
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the total transformation matrix for valley m and the crystal orienta-
tion is given by Um ¼ Uv;mUc. To take strain into account for each val-
ley type, the strain tensor is transformed by ~e # U T

v;m~eUv;m . Therefore,
the diagonal blocks of the two-band k � p Hamiltonian (2) for arbi-
trary substrate orientation and valley sort m are rewritten as
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The off-diagonal coupling components are substituted by the
relation

Hbc;m ¼ 2Nu0exy � kTUT
m

0 �h2

M 0
0 0 0
0 0 0

2
64
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75Umk:

The quantization is introduced by the replacement kz ! �i@z.
The discretization is realized with a finite difference scheme with
hard wall boundary conditions. The resulting eigenvalue problem
gives rise to discrete energies describing the subband structure.

3. Numerical quadrature of subbands

The contribution of subband g and valley m to the equilibrium
electron concentration is given by

ng;mðzÞ ¼
1

ð2pÞ2
Z

BZ
d2kjwg;mðk; zÞj

2f0ðEg;mðkx; kyÞ � EFÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}fg;mðk;zÞ; ð3Þ

where wg;m is the normalized wave function and f0 is the Fermi dis-
tribution function, EF denotes the Fermi level and Eg;mðkx; kyÞ the
dispersion relation of the subband. Therefore, to calculate the
electron occupation of a subband g a numerical, two-dimensional
k-space integration is required. Hence, one seeks after a numerical
quadrature scheme that gives good accuracy on a coarse grid. Con-
trary to previous work which made use of harmonic and cubic
spline interpolation for k-space integration [7], we applied the
Clenshaw–Curtis method [8] for this purpose. In the integration
interval [�1,1] the zeros of the Chebyshev polynomial given by
xk :¼ cosðk p

NÞ with k ¼ 0;1; . . . ;N are used as nodes. The weights
are written explicitly as [9]

wk ¼
ck

N
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cos 2jk
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� � !

with bj ¼ 1 if j ¼ N=2, or bj ¼ 2 if j < N=2, and ck ¼ 1 if k mod N ¼ 0,
or ck ¼ 2 otherwise. An advantage of this method is the ability to
use subsets of half the number of the nodes for a lower degree rule.
This allows for adaptive numerical quadrature schemes which have
proven suitable for energy domain integration as shown for the
NEGF method in [10]. Furthermore, the accuracy of the numerical
quadrature can be checked by comparing the integral of a higher
and a lower order rule. The two-dimensional integration is carried
out by repeated one-dimensional integration of fg;mðkx; ky; zÞ (cf.
(3)).

ng;mðzÞ ¼
1

ð2pÞ2
Z k x ;max

kx ;min

Z ky ;max

ky ;min
fg;mðk x; ky; zÞdky

 !
dkx

For the k-space integration of the subbands provided by the two-
band Hamiltonian excellent accuracy has been achieved with only
19 nodes per k direction.

4. Simulation setup

To properly incorporate the electrostatics in realistic devices a
self-consistent Schrödinger–Poisson scheme has been employed.
The electron concentration in the quantized well is calculated by
using (3) with the dispersion relation obtained by (2). The carrier
concentration in the gate regions is calculated classically. The
hereby obtained charge density is used as input for the Poisson
equation and the procedure is iterated until convergence is
achieved. As test device a silicon ultra-thin body double gate
nMOSFET with 3 nm film thickness and 1 nm oxide thickness has
been simulated. The donor doping of the polysilicon gates was
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ND ¼ 1:0� 1020 cm�3 and the Si film was lightly p-doped at NA ¼
2:0� 1016 cm�3.
5. Results and discussion

The ultra-thin body DG-nMOS device has been simulated using
two different substrate orientations. The self-consistent results for
(001) and (110) substrates are presented in the following sections.
5.1. Substrate orientation (001)

Fig. 2 shows the numerically calculated dispersion relation of
the first and second unprimed subband of the UTB device. The con-
tour plots illustrate the ellipsoidal deformation of the subband
Fig. 2. Dispersion relation of the first (solid line) and second (dashed line) unprimed sub
(from left to right exy ¼ 0:0%; exy ¼ 0:5%, and exy ¼ 1:0%). The contours are stepped in

Fig. 3. Occupation of the first and second unprimed subband and the first primed subban
The grid corresponds to the nodes of the numerical quadrature.

Fig. 4. Similar to Fig. 3 but with shear strain e xy ¼ 0:5%. The unprimed subbands are d
subband is not affected by shear strain.
structure caused by shear strain. The results are in good agreement
with analytical considerations [11].

The occupied subbands are illustrated in Fig. 3 for zero gate
voltage. The origin of the plots corresponds to the X-point. The left
and the middle figure show the first and second unprimed sub-
band, respectively. On the right side the first primed subband is gi-
ven. The superimposed grid corresponds to the nodes of the
Clenshaw–Curtis quadrature. The method results in an accumula-
tion of grid points at the boundary of the integration domain.

The application of exy ¼ 0:5% shear strain leads to an deforma-
tion of the electronic subband structure. Fig. 4 shows the effect on
the occupied subbands. The numerical integration routine is able
to handle such different integrand shapes and the self-consistent
Schrödinger/Poisson scheme typically converges within ten
iterations.
band of a 3 nm wide, (001) silicon quantum well for different values of shear strain
20 meV intervals.

d of a 3 nm wide silicon quantum well. The gate voltage of the DG-nMOSFET is 0 V.

eformed and shifted downwards with respect to the primed subband. The primed
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Fig. 5. Self-consistent calculation of the conduction band edge of a (001) Si-DG-
nMOSFET with 3 nm well width and 1 nm oxide thickness. The normalized wave
functions ðnm�1Þ are overlayed at their respective energy levels.

-0.4 -0.2 0 0.2 0.4 0.6
V

G
 [V]

0

5

10

15

20

25

C
ap

ac
ita

nc
e 

[f
F 

µm
-2

]

Classical, t=3 nm

k·p, t=3 nm

k·p, t=5 nm

k·p, t=10 nm

Fig. 7. Capacitance versus gate voltage for different film thicknesses t of the (001)
silicon UTB DG-MOS device.
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As a result of this self-consistent simulation, the carrier concen-
tration and the conduction band edge are obtained. Fig. 5 shows
the conduction band edge provided by the converged iteration
scheme. Within the well the squared wave functions for the four
lowest, twofold degenerate unprimed subbands are displayed at
their corresponding energy levels.

For each of these subbands the electron occupation is calculated
by k-space integration. The resulting carrier concentration within
the well is depicted in Fig. 6. For comparison, the classically calcu-
lated results are included. As shown, the difference in the total
electron concentration because of shear strain is more pronounced
at a lower gate bias voltage. The CV characteristics of the device are
given in Fig. 7. The charge is calculated by summing up the charge
density in the polysilicon gate region. The classically obtained re-
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Fig. 6. Self-consistent calculation of the electron concentration of a (001) Si-DG-
nMOSFET with 3 nm film thickness. The effect of shear strain exy ¼ 0:5% on the
electron concentration is illustrated for various gate bias.
sult is included for comparison and illustrates its overestimation
of carriers within the well region. Additionally, the well width t
of the (001) silicon UTB DG-MOS device has been varied. As ex-
pected, a thinner film leads to an increased threshold voltage.
The simulations have been repeated with shear strain of
exy ¼ 0:5% and results are shown in Fig. 8. Since strain moves the
unprimed subband ladder down in energy, the subbands are,
therefore, already occupied at lower bias. This effectively shifts
the whole capacitance-voltage characteristics to lower gate
voltages.

5.2. Substrate orientation (110)

A (110) silicon ultra-thin body nMOSFET with 1 nm oxide
thickness and varying film thickness has been simulated. Contour
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Fig. 8. Similar to Fig. 7 but with shear strain of exy ¼ 0:5%. Due to strain, the
characteristics are shifted slightly to lower gate voltages.
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Fig. 10. Dispersion of the primed subband around the X-point for the two-band
k � p method and with PBA (dashed line) for a film thickness of t ¼ 3 nm. The valley
is shifted towards the X-point in the nonparabolic case.
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Fig. 9. Dispersion of the unprimed subband around the X-point for the two-band
k � p method and with PBA (dashed line) for a film thickness of t ¼ 3 nm.
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plots of the dispersion relations for a film thickness of t ¼ 3 nm are
depicted in Figs. 9 and 10 for the lowest unprimed and primed sub-
band, respectively. The minimum of the primed valley moves to-
wards the X-point with decreasing film thickness, which can not
be seen with the parabolic band approximation. The dispersion
of the first and second primed subband calculated by the two-band
k � p method shows a splitting at the X-point even without strain,
whereas parabolic bands cross (Fig. 11).

The transverse masses of a (110) Si thin film have been ex-
tracted by fitting a parabola near the valley minimum. Fig. 12 gives
the transverse effective masses in [001] direction of the unprimed
valley as a function of the UTB well width. The two-band k � p re-
sults are compared to full-band calculations provided by the linear
combination of bulk bands (LCBB) method and show excellent
agreement with the values of [12]. Fig. 13 depicts the decrease of
the transverse mass in ½�110� direction of the primed subband by
reducing the film thickness. The application of 1 GPa tensile stress
in ½�110� direction greatly enhances the the effect of mass reduc-
tion, as shown for the first primed subband. Likewise, the energy
levels of the valleys depend on film thickness. Fig. 14 shows the
lowest primed and unprimed subband energies. One gigapascal
tensile stress in ½�110� is applied to shift the primed subband down
in energy and thereby attain a redistribution of electrons by
decreasing the occupation of the unprimed subbands. As shown,
the primed subband moves significantly below the unprimed sub-
band. Thereby, tensile stress simultaneously reduces the transport
mass of the primed valley and increases their occupation leading to
mobility and current enhancement in ½�110� direction.
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6. Summary and conclusion

An accurate self-consistent two-band k � p Schrödinger–Poisson
model, which describes the electronic subband structure for arbi-
trary quantization directions has been implemented. Only one
additional parameter M characterizing the band coupling is intro-
duced. The Clenshaw–Curtis method is employed for the 2D k-
space integration of the subbands. The carrier concentration and
the conduction band edge are calculated in a self-consistent itera-
tion scheme. The effects of strain and band nonparabolicity are ac-
counted for. Numerical results for (001) and (110) Si UTB devices
are investigated. In ultra-thin films quantization and band coupling
lead to a substantial deformation of the subbands which is not
covered by the parabolic band approximation: in (001) substrates
the effects of nonparabolicity on the subband dispersion are
illustrated. For (110) silicon a shift of the primed valley minimum
towards the X-point is observed, which affects the energy differ-
ence to the unprimed ladder. Furthermore, tensile stress in ½�110�
moves the primed subbands below the level of the unprimed
subbands.
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