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Initial NBTI degradation is often explained by elastic hole trapping which also considerably distorts long-
term measurements. In order to clarify this issue, short-term NBT stress measurements are performed
using different temperatures, stress voltages, and oxide thicknesses. The data shows a clear temperature
activation and a super-linear voltage dependence, thereby effectively ruling out elastic hole tunneling.
Rather, our data supports an explanation based on a thermally activated hole capture mechanism.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Degradation of transistor device parameters, such as the thresh-
old voltage VTH and the mobility, already attracted the attention of
the semiconductor industry many decades ago. When biasing the
gate at higher temperature while keeping the rest of the transistor
contacts grounded, negative bias temperature instability (NBTI)
[1,2] is observed. The conventional explanation of the resulting
degradation uses elastic hole trapping due to tunneling carrier ex-
change with the substrate (initial degradation) and the creation of
interface states (long-term degradation) [3,4]. While [3,4] claim
that processes in the short-time scale show a negligible tempera-
ture dependence, our latest results support a thermally activated
tunneling mechanism [5].

To better understand the underlying mechanisms of short-term
NBTI degradation [6] an extensive study of the short stress time
behavior from the range of ls to s is necessary. Unfortunately,
due to noise, accurate measurements in these time scales are diffi-
cult [7,8]. In particular, the noise in the ls regime makes it difficult
to extract information on the smallest time-constants contributing
to the degradation.

Currently, three fast measurement methods are used for NBTI
evaluation [9]: (i) the fast-VTH method [10] shortly interrupts the
stress (ls delay) to quickly record VTH during recovery. (ii) The
fast-ID method [11,12,6,13,14] works similarly to the fast-VTH

method but instead monitors the drain current ID near VTH which
is then converted to DVTH [6] using an initial IDðVGÞ curve. This
characteristic is only recorded around VTH so as not to prestress
the device. (iii) The on-the-fly (OTF) method [15,16,1] records the
ll rights reserved.
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degradation during stress and hence does not introduce unwanted
recovery, but suffers from the mobility degradation, which leads to
a spurious DVTH [17,18].

As usually implemented on a parameter analyzer OTF suffers
from the problem of the initial reference measurement that al-
ready prestresses the device before the actual stress starts. In con-
trast, the fast-VTH and the fast-ID methods can record an unstressed
reference value but suffer from the delay during measurement
[11,9]. Due to its non-stop recording nature, methods (i) and (ii)
[11,9] can continuously monitor recovery and, thus, allow an
extrapolation back to shorter measuring delays.

Based on this experience fast rectangular gate pulses were used
for short-term NBTI degradation in the range of 1 ls–1 s. Using this
refined measurement procedure we collect a large dataset of stress
measurements encompassing different temperatures, voltages and
oxide thicknesses.
2. Samples used and stress conditions

PMOSFETS from a standard 90 nm CMOS process with plasma-
nitrided oxide (around 6% of nitrogen) were used. Two thin oxide de-
vices (tox ¼ 1:8 nm;2:2 nm) with geometry W=L ¼ 10 lm=0:12 lm
and one thicker oxide device (tox ¼ 5 nm) with W=L ¼ 10 lm=0:24 lm
were used. The devices were stressed with gate voltages VG;str of
�1.75 V, �2.00 V, �2.25 V, and �2.50 V at temperatures of 25 �C,
75 �C, 125 �C, and 175 �C.
3. Measurement equipment and setup

State-of-the-art equipment does not meet the combined resolu-
tion and measurement speed requirements of NBTI assessment.

http://dx.doi.org/10.1016/j.microrel.2009.06.040
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Instruments either meet (and exceed) the required accuracy, but
are too slow to capture the fast NBTI degradation transients (e.g.
parameter analyzers), or deliver the necessary time resolution,
but are limited by their inherent coarse amplitude resolution
(e.g. digital storage oscilloscopes, DSO). Since in the latter case
the amplitude resolution can be enhanced by averaging, while in
the former there is no remedy for a too slow measurement, we
use a DSO to record multiple NBTI processes and take an average
of these. Care has to be taken to conform to the preconditions of
proper averaging, namely to record the same process many times.
Only in this way, the measurement noise is reduced, while the ‘hid-
den’ deterministic process is reproduced without introducing sys-
tematic errors. In our measurements this is ensured by very short
stress times, and a very low duty cycle in order to achieve full
relaxation in-between stresses.

The basic setup is described in [9] and uses a Hewlett-Packard
81101A pulse generator and a Tektronik TDS5034B digital storage
oscilloscope. It was extended to perform short-term stress mea-
surements including a fast gate-pulse mode and a differential
amplifier.

To obtain the required resolution of better than 10�4 in ID, the
equipment was designed to deliver a settled gate stress voltage
VG;str within ±1 mV in 1 ls. For this reason, a battery using a pas-
sive voltage divider and a fast electronic switch are used. As a sec-
ond measure to suppress noise, the ID of the device under test
(DUT) is compared to a reference current, giving only differences,
which can be captured with higher resolution prior to digitization.

According to [9] the degradation of mobility is small for stress
times below 10 s. Also, in the technologies investigated, the impact
of the gate current on the measurement results was found to be
negligible. The recorded ID-shift is thus regarded as due to a VTH-
shift alone.

4. Pulse settings

In order to automatically perform the required averaging of the
recorded ID, rectangular gate pulses were used for short-term NBTI
stresses in the range of 1 ls–1 s. Each gate pulse was followed by a
100 times longer recovery sequence which allowed for full recov-
ery of the built-up degradation [19].

Consequently, we use a pulse train with tlead ¼ ttrail ¼ 5 ns, a
width tW ¼ tstr and a period of tP ¼ 100 tstr, consisting of N pulses.
The product NtP is only limited by the overall contingent measure-
ment time tM ¼ NtP. A compromise between the recovery time
in-between pulses (� tP) to let the device fully recover and a
reasonably high N has to be found in order to gain sufficient
measurement accuracy through averaging.

Since the oscilloscope uses a linear time scale, but NBTI stress
must be assessed on a logarithmic scale spanning at least 3 to 4
decades, we had to split the stress time of 1 s into three intervals.
The according values of tstr; tP, and N are shown in Table 1, as well
as the resolution, which also equals the minimum stress time of
the respective stress sequence.

In order to combine the three sequences into a single degrada-
tion curve with a maximum effective resolution from 1 ls to 1 s,
the three stress sequences are chosen to overlap for at least one
decade of time. Since only differences of currents (ID) are recorded,
Table 1
Details of the rectangular stress pulses used to maximize the amount of recorded
information together with the resolution.

Sequence tW ¼ tstr tP N Resolution

1 1 ms 0.1 s 1000 0.16 ls
2 100 ms 10 s 10 16 ls
3 1000 ms 100 s 5 160 ls
the overlap regions provide information to align the sequences to a
single stress characteristic. An example is displayed in Fig. 1. The
offset is due to different DSO settings in each measurement
sequence.
5. Data extraction

Since both the measurement equipment and the pulse genera-
tor are operated at their limits, a few points have to be carefully
considered during the final data extraction.

5.1. Gate voltage criteria

Monitoring VG gives insight into the time evolution of the actual
waveform, which has to be checked carefully [11]. A deep analysis
of the times recorded reveals that the pulse length is around 0.3%
longer than originally set by the pulse generator. This factor has to
be accounted for and the real stress times tstr of the sequences need
to be extracted using the applied gate pulse. As shown in Fig. 2 the
pulse is affected by the transient behavior and a possible overshoot
due to the non-instantaneous switching between VG;rel, which is
applied in-between the pulses, and VG;str. Therefore, after the tran-
sition regime, a steady state value of VG;str is determined and set as
VG;ref (usually taken at tstr=2). Then an error criterion, i.e.
jVG;str � VG;ref j=VG;ref 6 ±� is employed. Since noise is apparent in
all three sequences, � has to be chosen large enough to not disrupt
the pulse, usually in the range of � � 0:3%. Starting at VG;ref and
moving as well to lower (to the beginning of the pulse) and higher
(to the end of the pulse) times sets new borders of our accepted
stress time tstr.

A second possibility to determine tstr is to skip the first data-
points during the transient until a specific time tskip. This method,
displayed in Fig. 2, is far easier to implement and gives stable re-
sults for various values of tskip. Anyway, it suffers from the fact that
for every measurement tskip has to be adjusted manually. Hence,
the first method is chosen.

5.2. Offset

Acquisition of 25 kSamples yields 3 to 4 usable decades in time
for each sequence. The combined sequences result in 5 to 6 dec-
ades in time, with a possibly too large deviation of VG;str from
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Fig. 1. Top: different DSO settings are responsible for the vertical offset. This has to
be corrected to make the stress sequences coincide. Bottom: merged stress sample
using a log-fit and shifted to the reference time t0;ref ¼ 2 ls.
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Fig. 2. Top: the inset shows the gate stress pulses. The main graph is enlarged to
make the transient and the overshoot visible. This is due to the limited switching
speed of the oscilloscope when moving from VG;rel to VG;str and back. The therefore
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datapoints corresponding to the here varied parameter time tskip does affect the
shifting stability but only slightly changes the shift DID=ID0 (1%).
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VG;ref during the first decade. In the remaining decades the data can
be either fit by a logarithmic time dependence

DIDðtstrÞ
ID0

¼ IDðtstrÞ � ID0

ID0
¼ �B log10ðtstr=t0;refÞ ð1Þ

with ID0 ¼ IDðt0;refÞ, or a power-law �A ðtstr=t0;refÞn with a very small
exponent n � 0:04. ID0 is obtained at stress-level with a delay t0;ref

and thus not equal to IDð0Þ [20] and results in an offset of the rela-
tive degradation, see Fig. 3.

5.3. Initial measurement as ultimate reference?

Unfortunately, the transition from the end of stress to the
following recovery is always accompanied by some delay and finite
transition times. Effects faster than 1 ls are not visible in our
experiments. The delay of the first measurement equal to the ini-
tial measurement is broadly discussed in literature [10,20,13,21].

Some [4,8,22] argue 1 ls to be probably sufficiently short
enough.
However, as setting the reference time t0;ref different to zero
(t0;ref ¼ 0 would be the ideal case) depends on the used equipment,
different values are obtained which strongly influence the follow-
ing stress behavior (Fig. 3).

5.4. Final setting of parameters

The finally extracted data is more or less sensitive to the values
of the parameters t0;ref and �. For � a value of 0.3% is used. As can be
seen in Fig. 2 a t0;ref slightly after the first value should be selected
to both eliminate the influence of the first noisy points and delay
time. Hence, t0;ref ¼ 2 ls appears a reasonable compromise.
6. Discussion

In order to understand the microscopic physics behind the
short-time degradation, the temperature, voltage, and oxide thick-
ness dependence of the prefactor B is investigated.

6.1. Temperature scaling

The temperature dependence of DID=ID0 is displayed in Fig. 4 for
the thinnest device (tox ¼ 1:8 nm) with VG;str ¼ �2:25 V. In the
range 25–125 �C, the data can be perfectly fit by a logarithmic time
dependence (differences would not be visible in the plots). A slight
deviation is observed for higher temperatures for tstr > 10 ms,
possibly due to the onset of the mechanism responsible for the
long-time power-law behavior with a larger power-law exponent
n � 0:12.

Apart from that, different temperatures can be scaled well to
the data at Tref ¼ 175 �C, as shown by the dotted lines in Fig. 4,
and the indicated scaling factors marked by arrows.

6.2. Voltage scaling

The voltage dependence is depicted for tox ¼ 1:8 nm and T =
175 �C (Fig. 4). Scaling to VG;ref ¼ �2:50 V leads to perfect
congruence. Again, the scaling factors are shown next to their
corresponding values.
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6.3. Oxide thickness scaling

Due to the relatively low DID=ID0 degradation for tox ¼ 5:0 nm
resulting from the low-voltage stress conditions studied here
(small Eox), noise seriously limits the accuracy. Nonetheless, good
scalability for different tox devices (1.8, 2.2, and 5.0 nm) can be
obtained (Fig. 4).

6.4. Extracted prefactors

The prefactors B of the log-fit of various tox;VG;str, and T are
displayed in Fig. 5. In agreement with previous experiments, it is
observed that low VG;str results in small temperature activation,
while VG;str larger than the operating voltage gives a notable activa-
tion energy of 0.1 eV. Note that this value is in agreement with
activation energies extracted at long stress times [6]. Fitting the
data to a power-law A ðtstr=t0;refÞn results in a exponent n � 0:04
for short-term, roughly a third of the often reported n � 0:12 of
the long-term behavior.

The lower graph of Fig. 5 represents the prefactor B plotted for
different tox with different temperature T. In the devices with
tox ¼ 1:8 nm, all the stress voltages are above the operating voltage
and result in a marked temperature activation. For tox ¼ 2:2 nm the
transition from no temperature activation to temperature activa-
tion is observed for T = 175 �C between VG;str ¼ �2:00 V and
VG;str ¼ �2:25 V. For the thickest oxides used in this study,
tox ¼ 5:0 nm, the applied stress fields are very small, resulting in
no temperature activation.
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All these dependencies support thermally activated tunneling
mechanism [5] rather than elastic (and thus temperature-indepen-
dent) hole tunneling [3].

7. Conclusions

Ultra-fast short-time NBT stress measurements from the ls to s
regime using different temperatures, stress voltages, and oxide
thicknesses have been performed. In this initial degradation phase,
the data can be well fit by logarithmic time dependence [10,9,8].
Alternatively, a power-law using an exponent considerably smaller
(n � 0:04) than generally observed during long-time stress
(n � 0:12) could be used. On the other hand, the extracted
activation energy of about 0.1 eV is compatible with the values
typically obtained during long-time stress [6]. Finally, the
extracted temperature and voltage dependencies rule out elastic
and thus temperature-independent hole tunneling as being
responsible for short-time NBT degradation as proposed by Denais
et al. [3,4]. Another possible explanation could involve an inelastic
tunneling process [5].
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