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Abstract Graphite-related materials such as carbon nan-
otubes and graphene nanoribbons have been extensively
studied in recent years due to their exceptional electronic,
opto-electronic, and mechanical properties. To explore
the physics of carbon-based devices and to find meth-
ods to improve their functionality and performance, we
present a comprehensive numerical study employing the
non-equilibrium Green’s function formalism, in conjunc-
tion with a tight-binding model for the band-structure. The
electronic and optoelectronic properties of carbon-based de-
vices is studied. The effect of electron-phonon interactions
on the static and dynamic response of such field-effect tran-
sistors is discussed and simulation results are compared
with experimental data. The results indicate that the inclu-
sion of scattering mechanisms is essential to understand
the behavior of such devices. Due to the direct and rela-
tively narrow bandgap of carbon-based devices, they have
been considered as a candidate for future infra-red photo-
detectors. In this work, we analyze the efficiency of such
devices.
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1 Introduction

The continued miniaturization of Si integrated devices in
CMOS technology is approaching the physical limits. To
meet the scaling requirements of the ITRS roadmap [1]
novel nano-electronic devices are expected to be utilized.
Graphene, a one-atomic carbon sheet with a honeycomb
lattice, has attracted significant attention due to its unique
physical properties. From a physical point of view it is an ex-
cellent platform for the study of the massless Dirac fermion
system [2, 3]. Due to the unique linear dispersion, carriers
in graphene move at a constant speed of vF ≈ 106 m/s that
does not depend on their kinetic energy. This is similar to
the behavior of photons, which always travel at the speed
of light. In graphene the conduction and valence bands are
shaped like an inverted pair of cones that meet at zero en-
ergy in a single point in momentum space. This material
shows an extraordinarily high carrier mobility of more than
2×105 cm2/Vs at room temperature [4–7] and is considered
to be a major candidate for future high speed transistor mate-
rials. In addition, graphene has shown its ability to transport
charge carriers with spin coherence even at room tempera-
ture and is regarded as a pivotal material in the emerging
field of molecular spin electronics [8, 9].

One of the many interesting properties of Dirac electrons
in graphene are the drastic changes of the conductivity with
the confinement of electrons. Structures based on graphene
that realize this behavior are carbon nanotubes (CNTs) and
graphene nanoribbons (GNRs) with, respectively, periodic
and zero boundary conditions for the transverse electron
wave-vector. A CNT can be viewed as a rolled-up sheet of
graphene with a diameter of a few nano-meters. The way
the graphene sheet is wrapped is represented by a pair of
indices (n,m) called the chiral vector. The integers n and
m denote the number of unit vectors along two directions
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in the honeycomb crystal lattice of graphene. If m = 0, the
CNT is called zigzag. If n = m, the CNT is called armchair.
Otherwise, it is called chiral. CNTs with n−m = 3k, where
k is an integer, are metals, otherwise they are semiconduc-
tors [10]. Semiconducting CNTs can be used as channels for
transistors. CNT-FETs have been the subject of intensive re-
search for the last decade [11–13]. The limited control over
the chirality and diameter of nanotubes and thus of the as-
sociated electronic bandgap remains a major technological
problem.

Recently, graphene sheets have been patterned into nar-
row nanoribbons [14]. GNRs have attracted much interest as
they are recognized as promising building blocks for nano-
electronic devices [15]. The electronic properties of GNRs
exhibit a dependence on the ribbon direction and width. Cal-
culations based on the tight binding approximation predict
that zigzag GNRs are always metallic while armchairs can
be either metallic or semiconducting, depending on their
width [16]. However, recent DFT calculations show that
armchair GNRs are semiconducting with an energy gap scal-
ing with the inverse of the GNR width [17]. Indeed, exper-
imental results show that the energy gaps do increase with
decreasing GNR width [18]. In GNRs with zigzag edges,
transport is dominated by edge states. Owing to their high
degeneracy, these states are spin polarized, making zigzag
GNRs attractive for spintronic applications [19]. In prin-
ciple, GNRs can be patterned directly into device struc-
tures and even into integrated circuits by a single patterning
process of a graphene sheet, as has been demonstrated by
recent experiments [18, 20, 21].

Rapid changes in technological solutions and device ar-
chitectures can be anticipated by employing technology
computer-aided design (TCAD) tools. TCAD tools are used
to assist in device development and engineering at practi-
cally all stages from process definition to circuit optimiza-
tion. TCAD tools help to reduce costs of research and de-
velopment of new processes and devices. Because of the
complexity of novel nano-electronic devices, modern TCAD
tools based on quantum transport models are required for
the analysis of such devices. A multi-purpose quantum-
mechanical solver, the Vienna Schrödinger-Poisson solver
VSP, with the aim to aid theoretical as well as experimental
research on nano-scale electronic devices, has been devel-
oped at the Institut für Mikroelektronik, Technische Uni-
versität Wien [22]. VSP is a quantum mechanical solver
for closed as well as open boundary problems. The non-
equilibrium Green’s function (NEGF) formalism [23] is
used in this work. One of the advantages of using this for-
malism is that different transport regimes, such as diffusive,
quasi ballistic, and purely ballistic can be rigorously mod-
eled [23].

The outline of the paper is as follows. In Sect. 2, the
NEGF formalism is briefly described. The implementation

of this method for carbon-based devices is presented in
Sect. 3. In Sects. 4 and 5 simulation results are discussed
and conclusions are presented in Sect. 6.

2 Non-equilibrium Green’s function formalism

The NEGF formalism initiated by Schwinger, Kadanoff,
and Baym [24] allows to study the time evolution of a
many-particle quantum system. Knowing the single-particle
Green’s functions of a given system, one may evaluate
single-particle quantities such as carrier density and cur-
rent. The many-particle information about the system is cast
into self-energies, which are part of the equations of mo-
tion for the Green’s functions. A perturbation expansion of
the Green’s functions is the key to approximate the self-
energies. Green’s functions provide a powerful technique to
evaluate the properties of a many-body system both in ther-
modynamic equilibrium and non-equilibrium situations.

Four types of Green’s functions are defined as the non-
equilibrium statistical ensemble averages of the single par-
ticle correlation operator [25]. The greater Green’s function
G> and the lesser Green’s function G< deal with the sta-
tistics of carriers. The retarded Green’s function GR and the
advanced Green’s function GA describe the dynamics of car-
riers.

G>(1,2) = −i�−1〈ψ̂(1)ψ̂†(2)〉,
G<(1,2) = +i�−1〈ψ̂†(2)ψ̂(1)〉,
GR(1,2) = θ(t1 − t2)[G>(1,2) − G<(1,2)],
GA(1,2) = θ(t2 − t1)[G<(1,2) − G>(1,2)].

(1)

The abbreviation 1 ≡ (r1, t1) is used, 〈. . .〉 is the statistical
average with respect to the density operator, θ(t) is the unit
step function, ψ̂†(r1, t1) and ψ̂(r1, t1) are the field operators
creating or destroying a particle at point (r1, t1) in space-
time, respectively. The Green’s functions are all correlation
functions. For example, G> relates the field operator ψ̂ of
the particle at point (r1, t1) in space-time to the conjugate
field operator ψ̂† at another point (r2, t2).

Under steady state condition the Green’s functions de-
pend only on time differences. One usually Fourier trans-
forms the time difference coordinate, τ = t1 − t2, to energy.
For example, the lesser Green’s function is transformed as
G<(1,2) ≡ G<(r1, r2;E) = ∫

(dτ/�)eiEτ/�G<(r1, r2; τ).
Under steady-state condition the equation of motion for

the Green’s functions can be written as [26]:

[E − H ]GR,A(1,2) −
∫

d3 �R,A(1,3)GR,A(3,2) = δ1,2,

(2)

G≶(1,2) =
∫

d3
∫

d4 GR(1,3)�≶(3,4)GA(4,2), (3)
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where H is the single-particle Hamiltonian operator, and
�R, �<, and �> are the retarded, lesser, and greater self-
energies, respectively. An exact evaluation of the self-energy
is possible only for some rather pathological cases. For real
systems one has to rely on approximation schemes. Hence,
a natural approach is to retain the single-particle picture and
assume that each particle moves in a single-particle potential
that comes from its average interaction with all other parti-
cles. Thus, as a first-order approximation one can keep just
the first-order contribution to the self-energy [27]. However,
using the non-interacting Green’s functions in self-energies,
which is referred to as Born approximation, is not fully con-
sistent. In reality, of course, the background particles also
move in an average potential coming from the presence of all
the other particles. Thus instead of non-interacting Green’s
functions, one has to use the exact Green’s functions in the
self-energy [27]. Throughout this work the first-order self-
energy is employed [25, 28]. In addition, the self-consistent
Born approximation is applied [29]. Based on these ap-
proximations the electron-phonon self-energy can be written
as [28]:

�e-phonon(r1, t1; r2, t2)

=
∑

q,λ

eiq·(r1−r2)M2
q,λG(r1, t1; r2, t2)Dλ(q; t1, t2), (4)

where Dλ is the phonon Green’s function, Mq,λ is the
electron-phonon interaction matrix element for phonons
with wave-vector q, and polarization λ.

3 Implementation

This section describes the implementation of the outlined
NEGF formalism for the numerical analysis of CNT and
GNR based devices. A tight-binding Hamiltonian is used
to describe transport phenomena in such devices. The self-
energy due to electron-photon interactions are studied next.

3.1 Tight-binding Hamiltonian

In graphene three σ bonds hybridize in an sp2 configuration,
whereas the other 2pz orbital, which is perpendicular to the
graphene layer, forms π covalent bonds. Each atom in an
sp2-coordinated CNT has three nearest neighbors, located
aC−C away.

We use a first nearest-neighbor tight-binding Hamil-
tonian of the π band electron to describe the electronic prop-
erties of GNRs and CNTs:

H = t
∑

〈i,j〉
a

†
i aj . (5)

The notation 〈i, j 〉 means that the summation is restricted to
the pairs of the nearest-neighbor carbon atoms, t = Vppπ ≈
−2.7 eV is the hopping parameter, and the on-site potential
is assumed to be zero.

Figure 1(a) shows that a zigzag CNT is composed of
rings (layers) of A- and B-type carbon atoms, where A

and B represent the two carbon atoms in a unit cell of
graphene. Each A-type ring is adjacent to a B-type ring.

Fig. 1 (a) Layer layout of a
(n,0) zigzag CNT. The
coupling coefficient between
nearest neighbor carbon atoms
is t . (b) Zigzag CNT and the
corresponding one-dimensional
chain with two sites per unit cell
with hopping parameters t and
tν2 = 2t cos(πν/n)
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Within nearest-neighbor tight-binding approximation the to-
tal Hamiltonian matrix is block tri-diagonal [30]

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H 1 t2

t
†
2 H 2 t1

t1 H 3 t
†
2

t2 H 4 t1
t1 H 5 •

• •

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

where the diagonal blocks, Hi , describe the Hamiltonian of
A-type or B-type carbon ring and off-diagonal blocks, t1
and t2, describe the coupling between adjacent rings. In a
(n,0) zigzag CNT, there are n carbon atoms in each ring,
thus, all the sub-matrices in (6) have a size of n × n. The
tight-binding Hamiltonian for GNRs can be obtained in a
similar way [31]. In the nearest-neighbor tight binding ap-
proximation, carbon atoms within a ring are not coupled to
each other so that Hi is a diagonal matrix. The value of a
diagonal entry is the potential at that carbon atom site. In
the case of a coaxially gated CNT, the potential is constant
along the CNT circumference. As a result, the sub-matrices
Hi are given by the potential at the respective carbon ring
times the identity matrix Hi = Ui = Ui I . Each A-type ring
couples to the next B-type ring according to t1 = tI and to
the previous B-type ring according to t2:

t2 =

⎡

⎢
⎢
⎣

t t

t t

t t

• •

⎤

⎥
⎥
⎦ . (7)

However, it should be noticed that these Hamiltonian matri-
ces are only for zigzag CNTs and they appear differently for
other CNT types.

3.2 Mode-space transformation

A mode space approach significantly reduces the size of
the Hamiltonian matrix [32]. Due to quantum confinement
along the CNT circumference, circumferential modes ap-
pear and transport can be described in terms of these modes.
If M modes contribute to transports, and if M < n, then the
size of the problem is reduced from n×N to M ×N , where
N is number of carbon rings along the CNT. If the poten-
tial profile does not vary sharply along the CNT, subbands
are decoupled [32] and one can solve M one-dimensional
problems of size N .

Mathematically, one performs a basis transformation on
the Hamiltonian of the (n,0) zigzag CNT to decouple the

problem into n one-dimensional mode space lattices [30]

H ′ =

⎡

⎢
⎢
⎢
⎣

S−1

S−1

S−1

•

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

U1 t2

t
†
2 U2 t1

t1 U3 t
†
2

• •

⎤

⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎣

S

S

S

•

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

U ′
1 t ′2

t ′2
†

U ′
2 t ′1

t ′1 U ′
3 t ′2

†

• •

⎤

⎥
⎥
⎥
⎥
⎦

, (8)

with U ′
i = S−1 Ui S, t ′1 = S−1 t1 S, t ′2 = S−1 t2 S, where

S is the transformation matrix from the real space basis to
the mode space basis. The purpose is to decouple the modes
after the basis transformation, i.e., to make the Hamiltonian
matrix blocks between different modes equal to zero. This
requires that after the transformation, the matrices Ui , t1,
and t2, become diagonal. Since Ui and t1 are identity
matrices multiplied by a constant, they remain unchanged
and diagonal after any basis transformation, U ′

i = Ui and
t ′1 = t1. To diagonalize t2, the elements of the transfor-
mation matrix S have to be the eigen-vectors of t2. These
eigen-vectors are plane waves with wave-vectors satisfy-
ing the periodic boundary condition around the CNT. The
eigen-values are tν2 = 2te−iπν/n cos(πν/n), where ν =
1,2, . . . , n [30]. The phase factor has no effect on the results
such as charge and current density, thus it can be omitted
and tν2 = 2t cos(πν/n) can be used instead.

After the basis transformation all sub-matrices, Ui , t1,
and t2 are diagonal. By reordering the basis according to the
modes, the Hamiltonian matrix takes the form

H ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H 1

H 2

•
Hν

•

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(9)

Hν =

⎡

⎢
⎢
⎢
⎢
⎣

U1 tν2
tν2 U2 t

t U3 tν2
tν2 U4 t

• •

⎤

⎥
⎥
⎥
⎥
⎦

,

where Hν is the Hamiltonian matrix for the ν-th mode [30]
The one-dimensional tight-binding Hamiltonian Hν de-
scribes a chain of atoms with two sites per unit cell, an on-
site potential U and hopping parameters t and tν2 (Fig. 1(b)).
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The spatial grid used for device simulation corresponds to
the circumferential rings of carbon atoms. Therefore, the
rank of the matrices for each subband are equal to the total
number N of rings. Self-energies can be also transformed
into mode space �ν , see Sects. 3.3 and 3.4. The Green’s
functions can therefore be defined for each subband (mode)
and one can solve the system of transport equations for each
subband independently

[EI − Hν − �Rν ]GRν = I , (10)

G≷ν = GRν

�≷ν

GAν

. (11)

3.3 Contact self-energies

Boundary conditions have to be specified to model the con-
tacts, which act as a source or drain for electrons. While
the matrix representing the Hamiltonian of the device has
a finite dimension, the total Hamiltonian matrix is infinite
dimensional due to the semi-infinite contacts.

The influence of the contacts can be represented by con-
tact self-energies added to the total self-energy [26]. The
self-energy matrices for the contacts and the Hamiltonian
matrix for the device have the same rank, but the self-
energy matrices are highly sparse. For example, only one
carbon ring at the source end of the channel couples to the
source, thus only one sub-matrix is non-zero for the source
self-energy. Similarly, only one sub-matrix is non-zero for
the drain self-energy. Non-zero blocks of the contact self-
energies are given by [33]

�R
C = t

†
CD gR

C1,1
tCD, (12)

�<
C = +i �CfC, (13)

�>
C = −i �C (1 − fC), (14)

where sub-scripts C denote the contact and D the device, fC

is the Fermi factor of the contact, gR
C

is the surface Green’s
function of the contact, and finally, the broadening functions
are defined as

�C = i (�R
C − �A

C) = −2�m[�R
C]. (15)

Surface Green’s functions can be calculated using a recur-
sive relation described in [33, 34]. In this section two types
of contacts are discussed: semi-infinite CNTs acting as ideal
ohmic contacts and Schottky type metal-CNT contacts. The
respective surface Green’s functions and self-energies for
the both contact types are derived next.

In mode-space representation (see Sect. 3.2) the matrices
in (12) to (15) become one-dimensional. Thus, the respec-
tive quantities for each mode can be treated as numbers and
the computational cost decreases considerably.

Fig. 2 Computing the surface Green’s function for the left contact.
The surface Green’s function for the ith ring inside the contact is gi

3.3.1 Semi-infinite CNT contacts

Figure 2 shows the device region coupled to a semi-infinite
CNT acting as an ohmic contact. gR

Li,i
is the surface Green’s

function for the ith ring in the left extension, ordered from
the channel-contact interface. The recursive relation [33]
can be applied to the CNT in Fig. 2 and gives

[AL1
− t2 gR

L2,2
t
†
2]gR

L1,1
= I ,

(16)
[AL2

− t1 gR
L3,3

t
†
1]gR

L2,2
= I ,

where ALi
= EIi − ULi

− �R
Scati,i

[33], and t1 and t2 are
the coupling matrices. Since the potential is invariant inside
the contact, AL1

= AL2
. Furthermore, gR

L3,3
= gR

L1,1
due to

the periodicity of the CNT lattice. Using these relations, (16)
represent two coupled matrix equations with two unknowns,
gR

L1,1
and gR

L2,2
, which can be solved by iteration. However,

in mode-space representation matrices t1 and t2 are replaced
by the numbers t1 = t and tν2 , respectively. As a result, the
surface Green’s function for each mode can be calculated
analytically by solving a quadratic equation,

gRν

L1,1
= A2

L1
+ t2

1 − tν
2

2 −
√

[A2
L1

+ t2
1 − tν

2

2 ]2 − 4A2
L1

t2
1

2AL1 t
2
1

.

(17)

The self-energy of the left contact for the νth mode is there-
fore given by

�Rν

L = t2
1 gRν

L1,1
. (18)

A similar relation holds for the right contact self-energy.

3.3.2 Schottky type metal-CNT contacts

At the metal-CNT interface a Schottky barrier (SB) forms,
which governs the operation of CNT-FETs [35]. The metal
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region acts as a source and a sink of electrons in the device
region. In this work Pd contacts are assumed. For transport
calculation based on a simplified tight-binding Hamiltonian,
describing only the interaction between dz orbitals of Pd and
pz orbitals of the carbon atoms, the self-energy for this SB
contact can be written as

�Rν

SB = t2
M−C gR

M1,1
, (19)

where tM−C is the hopping parameter between metal and
carbon atoms and gR

M1,1
is the surface Green’s function of the

metal contact. The contact model in (19) assumes injection
from the contact into all CNT subbands.

Based on ab-initio calculations, it has been shown that
the electronic band structure of the Pd-graphene system near
the Fermi level can be reproduced by considering the hy-
bridization between graphene and Pd bands, using tPd−C =
0.15 eV [36].

The surface Green’s function contains information about
the band-structure of the metal contact. To calculate the
surface Green’s function, one has to specify an appropri-
ate Hamiltonian for the contacts. For example, one can em-
ploy the tight-binding method [37], density functional the-
ory [36], or extended Hückel theory [38]. Contacts can be
approximated as semi-infinite leads along the transport axis,
and infinite in the transverse directions. Therefore, the sur-
face Green’s function can be calculated iteratively along the
transport direction [34].

3.4 Scattering self-energies

By transforming the self-energies (4) into mode-space one
obtains [39]

�
≷ν

e-phononi,j
(E)

= i
∑

q,λ

∫
d(�ωq,λ)

2π
eiq(zi−zj )M2

q,λ,ν

× G≷ν

i,j
(E − �ωq,λ)D

≷
λ (q,�ωq,λ), (20)

where zi is the position of some lattice point i along the
CNT axis. Note that due to the one-dimensional nature of
CNTs, the coordinate and wave-vector variables are all one-
dimensional. In (20) only intra-subband scattering process
are considered [40]. To include inter-subband scattering
processes the summation in (20) would have to run over the
all subbands ν′ with the electron-phonon matrix elements
Mq,λ,ν,ν′ .

The electron-phonon self-energies in the self-consistent
Born approximation are expressed in terms of the full elec-
tron and phonon Green’s functions. One should therefore
study the influence of the bare electron states on the phonons
first, and then calculate the effect on the electrons of the

renormalized phonon states [25]. In this work we assume
that the phonon renormalization can be neglected. By do-
ing so we miss to capture a possible reduction of the phonon
lifetime. The above considerations also appeal to the Migdal
theorem [41] which states that the phonon-induced renor-
malization of the electron-phonon vertex scales with the ra-
tio of the electron mass to the ion mass [27]. Therefore, one
can assume that the phonon bath is in thermal equilibrium so
that the full phonon Green’s function Dλ can be replaced by
the non-interacting Green’s functions which can be obtained
analytically [42]. As a result (20) can be written as

�<ν

e-phononi,j
(E)

=
∑

q,λ

eiq(zi−zj )M2
q,λ

× [(
nB(�ωq,λ) + 1

)
G<ν

i,j
(E + �ωq,λ)

+ nB(�ωq,λ)G
<ν

i,j
(E − �ωq,λ)

]
, (21)

�>ν

e-phononi,j
(E)

=
∑

q,λ

eiq(zi−zj )M2
q,λ

× [(
nB(�ωq,λ) + 1

)
G>ν

i,j
(E − �ωq,λ)

+ nB(�ωq,λ)G
>ν

i,j
(E + �ωq,λ)

]
, (22)

where, in both equations, the first term on the right hand
side is due to phonon emission and the second term due
to phonon absorption. The summation over wave-vector q

in (21) and (22) can be generally transformed into an inte-
gral over the first Brillouin zone

∑

q

= L

2π

∫
dq, (23)

where L is the normalization length. To calculate the
electron-phonon self-energies the integral in (23) must be
evaluated.

3.4.1 Scattering with optical phonons

In this section the self-energies due to the interaction of elec-
trons with optical phonons (OP) are evaluated. The phonon
energy and the electron-phonon matrix elements for OP
phonons are assumed to be approximately constant and in-
dependent of the phonon wave-vector [40]. Under these as-
sumptions all terms except the exponential term in (21)
and (22) can be taken out of the integral (23) and one ob-
tains [43]
∫ π/(3aC−C)

−π/(3aC−C)

dq

2π
exp(iq(zi − zj ))

=
{ 1

3aC−C
, zi − zj = 0,

0, zi − zj = k × 3aC−C,
(24)
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where k is an integer number. Equation (24) yields only di-
agonal elements of the electron-phonon self-energy. As dis-
cussed in Sect. 3.1, by employing the nearest neighbor tight-
binding method, (block) tri-diagonal matrices are achieved.
Keeping only diagonal elements of the electron-phonon self-
energy, the matrices remain (block) tri-diagonal. Therefore,
an efficient recursive method [33] can be used to calculate
the inverse matrices. This implies considerable reduction of
computational cost and memory requirement.

Using the result of (24), the self-energy due to scattering
with optical phonons can be written as

�<ν

OPi,j
(E) = δi,jDOP

[(
nB(�ωOP) + 1

)
G<ν

i,j
(E + �ωOP)

+ nB(�ωOP)G<ν

i,j
(E − �ωOP)

]
, (25)

�>ν

OPi,j
(E) = δi,jDOP

[(
nB(�ωOP) + 1

)
G>ν

i,j
(E − �ωOP)

+ nB(�ωOP)G>ν

i,j
(E + �ωOP)

]
, (26)

where DOP is given by

DOP = �

2ρCNT L ωOP
M̃2

OP
L

�z
= �

2nmCωOP
M̃2

OP, (27)

where �z = 3aC−C/4. In (27) the mass density of a (n,0)

zigzag CNT has been replaced ρCNT = nmC/�z, where mC

is the mass of a carbon atom.
The retarded self-energy can be calculated as [43]

�r
OPi,j

(E) = − i

2
�OPi,j

(E) + P
∫

dE′

2π

�OPi,j
(E′)

E − E′ , (28)

where

�OPi,j
(E) = i[�>

OPi,j
(E) − �<

OPi,j
(E)]

= 2�m[�<
OPi,j

(E)]. (29)

Since the lesser and greater self-energies are assumed to be
diagonal, the retarded self-energy is also diagonal.

3.4.2 Scattering with acoustic phonons

Interaction with acoustic phonons (AP) can be approximated
as an elastic process, E ± �ωAP ≈ E. Near the �-point a
linear dispersion relation for acoustic phonons is assumed,
ωAP(q) ≈ υAP|q|, where υAP is the sound velocity. Further-
more, at room temperature low energy phonons have an ap-
preciable occupation, such that

nB ≈ nB + 1 ≈ kBT

�υAP|q| � 1. (30)

With (30) and the elastic approximation the contributions
due to phonon emission and absorption become equal and

can be lumped into one term. As a result the self-energies
due to acoustic phonon interaction are written as [43]

�
≷ν

APi,j
(E) =

∑

q

eiq(zi−zj ) �

2ρCNTLυAP|q|M̃
2
AP|q|2

× 2
kBT

�υAP|q|G
≷ν

i,j
(E)

=
∑

q

eiq(zi−zj ) kBT

ρCNTLυ2
AP

M̃2
APG≷ν

i,j
(E). (31)

With the exception of the exponential term all terms in (31)
can be taken out of the sum and one can convert the sum
into an integral over q , see (23) and (24). The self-energies
simplify to

�
≷ν

APi,j
(E) = δi,jDAPG≷ν

i,j
(E), (32)

where similar to (27) DAP is given by

DAP = kBT

ρCNTLυ2
AP

M̃2
AP

L

�z
= kBT

n mCυ2
AP

M̃2
AP. (33)

This derivation again yields a diagonal self-energy matrix
due to the interaction of electrons with acoustic phonons.
The retarded self-energy is obtained as [43]

�Rν

APi,j
(E) = δi,jDAPGrν

i,j
(E). (34)

Due to the approximations made the retarded self-energy for
scattering with acoustic phonons is simplified and directly
proportional to the retarded Green’s function. Therefore, one
does not need to evaluate the integrals like (28), which im-
plies a considerable saving of computational cost.

3.4.3 Scattering with photons

The Hamiltonian of the electron-photon interaction can be
written as

Ĥe-photon =
∑

〈i,j〉

q

m0
A · 〈i|p̂|j 〉 (35)

where p̂ is the momentum operator and A is the vector po-
tential. It can be shown that in second quantization the vector
potential A is given by

A = â

√
�Iω

2Nωεc
(b̂e−iωt + b̂†e+iωt ). (36)

The direction of A is determined by the polarization of the
field, which is denoted by â. By using the operator relation
p̂ = (im0/�)[Ĥ , r̂] it can be written as [44, 45]:

Ĥe-photon =
∑

〈l,m〉
Ml,m(b̂e−iωt + b̂†e+iωt )â

†
l âm, (37)

Ml,m = (zm − zl)
ie

�

√
�Iω

2Nωεc
〈l|Ĥ0|m〉, (38)
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Fig. 3 The sketch of a CNT and GNR based transistor and photo-
detector. The length of the CNT-FET is 50 nm and the length of the
photo-detector is 15 nm. In a photo-detector, incident photons gener-

ate electron-hole pairs and the electric field drives electrons and holes
towards the drain and source contacts, respectively

where zm denotes the position of the carbon ring at site m

(Fig. 3), Iω is the flux of photons with the frequency ω, and
N is the photon population number. The incident light is
assumed to be monochromatic, with polarization along the
CNT axis, see Fig. 3.

We employed the lowest order self-energy of the electron-
photon interaction based on the self-consistent Born approx-
imation [28]:

�<
e-photonl,m

(E)

=
∑

p,q

Ml,pMq,m

× [
NωG<

p,q(E − �ω)+ (Nω +1)G<
p,q(E +�ω)

]
(39)

where the first term corresponds to the excitation of an elec-
tron by the absorption of a photon and the second term cor-
responds to the de-excitation of an electron by emission of a
photon.

3.4.4 Excitonic states

Two basic theories on the electronic excitations have been
developed: single-particle excitations and electron-hole pair
excitations [25]. In a semiconducting material, an electron
can be excited from the valence to the conduction energy
band, by gaining an energy higher than the band gap energy
of the material. The energy difference for an optical tran-
sition between the valence and the conduction bands on a
single-electron picture is directly related to the excitation en-
ergy. An excitonic picture, however, cannot be represented
by this model. An exciton consists of a photo-excited elec-
tron and a hole bound to each other by Coulomb interaction
in a semiconducting material. For semiconductors such as
Si, Ge, and III–V compounds one can calculate the bind-
ing energy of an exciton in three-dimensional materials by

a hydrogenic model with a reduced effective mass and a di-
electric constant, giving a binding energy on the order of
10 meV, with discrete levels below the single-particle ex-
citation spectra. Thus optical absorption to exciton levels
is usually observed only at low temperatures. However, in
CNTs and GNRs, because of their one-dimensional geom-
etry and decreased electrostatic screening, the binding en-
ergy of the excitons can be large [46, 47]. Excitons may
play an important role in CNT and GNR optoelectronic de-
vices. The treatment of excitons in device simulation, which
is beyond the scope of this work, imposes a challenge and
requires careful future studies. Both single-particle and ex-
citonic effects are essential for explaining optical processes
in CNTs and GNRs [48]. In this work we focused on the
single-particle picture, which at present seems to be the only
practically feasible approach to device simulation and opti-
mization [44, 45, 49, 50].

3.5 Evaluation of observables

To solve the Poisson equation in a self-consistent scheme
one has to know the carrier density profile in the device. To
study device characteristics the current through the device
needs to be calculated. In this section the numerical evalua-
tion of these two observables is discussed.

3.5.1 Carrier density

The Green’s function matrices G
≷ν

i,j are defined in the basis
set of ring numbers i, j and subbands ν. Thus the diagonal
elements correspond to the spectrum of carrier occupation of
those basis sites with a given energy E. So the total electron
and hole density (per unit length) at a site i is given by [43]

ni = −4i
∑

ν

∫
dE

2π

G<ν

i,i

�z
, (40)
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pi = +4i
∑

ν

∫
dE

2π

G>ν

i,i

�z
, (41)

where the summation runs over all the subbands contribut-
ing to transport and �z is the average distance between
rings. The period of the zigzag CNT in the longitudinal
direction contains four rings, ABAB, and has a length of
3aC−C. Therefore, the average distance between the rings is
�z = 3aC−C/4. The factor 4 in (40) and (41) is due to dou-
ble spin and double subband degeneracy. To evaluate these
integrals numerically an adaptive energy grid should be se-
lected such that the numerical error of the calculation can be
controlled [51].

3.5.2 Current

Under steady-state condition the current density at the posi-
tion zi+1/2 between the sites i and i + 1, is given by [28]

J
i+1/2 = q

�

∑

j≥n+1

∑

k≤n

∫
dE

2π

× (
H

j,k
G<

k,j
(E) − G<

j,k
(E)H

k,j

)

= q

�

∑

j≥n+1

∑

k≤n

∫
dE

2π
2�e

[
H

j,k
G<

k,j
(E)

]
, (42)

Based on the nearest neighbor tight-binding method in
mode-space (see Sect. 3.2) (42) can be simplified to

J
ν

i+1/2
= 4q

�

∑

ν

∫
dE

2π
2�e

[
t
ν

i+1,i
G<ν

i,i+1

]
, (43)

where the summation runs over all the subbands contribut-
ing to transport. The factor 4 in (43) is due to double spin
and double subband degeneracy.

4 CNT-FETs

The electron-phonon coupling strength and the phonon
energy depend on the chirality and the diameter of the
CNT [40]. In this section the device response is studied for a
wide range of electron-phonon interaction parameters. The
simulated device structure is shown in Fig. 3.

4.1 Electron-phonon coupling strength

Figure 4(a) shows the ballisticity as a function of the
electron-phonon coupling strength. The ballisticity is de-
fined as ISc/IBl, the ratio of the on-current in the presence
of electron-phonon interaction to the current in the ballistic
case [52]. The left part of Fig. 4(b) illustrates an electron
losing its kinetic energy by emitting a phonon. The electron
will be scattered either forward or backward. In the case of
backward scattering the electron faces a thick barrier near
the source contact and will be reflected with high probabil-
ity, such that its momentum will again be directed towards
the drain contact.

Elastic scattering conserves the energy of carriers, but the
current decreases due to elastic back-scattering of carriers.
Figure 5(a) shows that for elastic scattering the source and
drain current spectra are symmetric. As the electron-phonon
coupling strength increases, resonances in the current spec-
trum are washed out and the total current decreases due to
elastic back-scattering. In the case of inelastic scattering,

Fig. 4 (a) Ballisticity versus electron-phonon coupling strength for a
CNT of 50 nm length. Results for both elastic and inelastic scatter-
ing with different phonon energies are shown. The operating point

is VG = VD = 1 V. (b) Sketch of phonon emission and absorption
processes in the channel
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Fig. 5 The spectra of the source and drain currents. (a) The effect of elastic phonon scattering with different coupling strengths is shown. (b) The
effect of inelastic phonon scattering with different coupling strengths is shown. The phonon energy is �ω = 100 meV

Fig. 6 (a) Ballisticity versus phonon energy for a CNT of 50 nm
length. Results for inelastic scattering with different electron-phonon
couplings are shown. VG = VD = 1 V. (b) Ballisticity versus phonon

energy with D = 10−1 eV2 at the bias point VG = VD = 1 V. The con-
tributions due to phonon absorption and emission are shown

carriers acquiring enough kinetic energy can emit a phonon
and scatter into lower energy states. Therefore, as shown in
Fig. 5(b), the source and drain current spectra are not sym-
metric. As the coupling strength increases more electrons
are scattered into lower energy states.

4.2 Phonon energy

Figure 6(a) shows the dependence of the ballisticity with re-
spect to the phonon energy. With increasing phonon energy
the effect of phonon scattering on the current is reduced,
because scattered electrons lose more kinetic energy and
the probability for traveling back to the source contact de-

creases. The considerable decrease of ballisticity for low en-
ergy phonons is due to the phonon absorption process. The
right part of Fig. 4(b) shows an electron absorbing energy
from a phonon and scattering into a higher energy state. In
this case, the probability for arriving at the source contact
increases. This process can severely reduce the total cur-
rent.

Figure 6(b) separately shows the effects of the phonon
emission and absorption processes on the ballisticity. As the
phonon energy decreases, the phonon occupation number in-
creases exponentially, and the self-energy contributions of
these two components increase. However, due to the higher
probability for back-scattering of electrons in the case of
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Fig. 7 (a) The ratio of the gate-delay time in the ballistic case to that
in the presence of electron-phonon interaction. For comparison, the
ratio ISc/IBl is also shown. (b) The spectra of the source and drain cur-
rents. The effect of inelastic scattering with different phonon energies

is shown. The electron-phonon coupling strength is D = 2×10−1 eV2.
A considerable increase of the electron population close to the conduc-
tion band-edge as the phonon energy increases is visible

phonon absorption, this component reduces the total current
more effectively than the phonon emission process does.

4.3 Switching response

To illustrate the effect of electron-phonon interaction on the
dynamic response of the device, the gate-delay time defined
as τ = (Qon −Qoff)/Ion [53] is considered, where the quasi
static approximation is assumed. It has been shown that the
quasi static approximation for CNT based transistors is jus-
tified for frequencies below THz [54].

Figure 7(a) shows the ratio of the gate-delay time in the
ballistic case to that in the presence of electron-phonon in-
teraction, τBl/τSc, as a function of the electron-phonon cou-
pling strength. As the phonon energy increases the gate-
delay time increases. This behavior can be attributed to the
average electron velocity in the channel, which is high for
ballistic electrons and low for electrons scattered to lower
energy states.

Figure 7(b) shows the spectra of the source and drain cur-
rents for different inelastic phonon energies. Electrons can
emit a single phonon or a couple of phonons to reach lower
energy states. The probability of multiple phonon emissions
decreases as the number of interactions increases. Therefore,
as the phonon energy increases, the occupation of electrons
at lower energy states increases. As shown in Fig. 7(b), the
electron population close to the conduction band-edge con-
siderably increases as the phonon energy increases. There-
fore, as the phonon energy increases the mean velocity of
electrons decreases and the carrier concentration in the chan-
nel increases (Fig. 8). The increased charge in the channel
results in an increased gate-delay time.

In general the electron-phonon interaction parameters de-
pend on the diameter and the chirality of the CNT [40].
CNTs with a diameter dCNT > 2 nm have a band gap
EG < 0.4 eV, which render them unsuitable as channel
for transistors. Since the fabrication of devices with a di-
ameter dCNT < 1 nm is very difficult, we limit our study
to zigzag CNTs with diameters in the range of dCNT =
1–2 nm. Scattering with acoustic phonons is treated as
an elastic process. The electron-phonon coupling is also
weak for acoustic phonons (DAP < 10−3 eV2), which im-
plies that elastic back-scattering of carriers is weak. In-
elastic scattering is induced by optical (OP), radial breath-
ing mode (RBM), and K-point phonons [55, 56]. Con-
sidering the class of CNTs discussed above, energies of
these phonons are �ωOP ≈ 200 meV, �ωRBM ≈ 25 meV,
and �ωK1 ≈ 160 meV and �ωK2 ≈ 180 meV [52, 56]. The
corresponding coupling coefficients are DOP ≈ 40 ×
10−3 eV2, DRBM ≈ 10−3 eV2, and DK1 ≈ 10−4 eV2, and
DK2 ≈ 10−3 eV2 [52]. As discussed in Sect. 4.2, high en-
ergy phonons such as OP and K-point phonons reduce the
on-current only weakly, but can increase the gate-delay time
considerably due to charge pileup in the channel. Low en-
ergy phonons such as the RBM phonon can reduce the on-
current more effectively, but have a weaker effect on the
gate-delay time. However, due to strong coupling, scatter-
ing processes are mostly due to electron-phonon interaction
with high energy phonons. Therefore, at room temperature
the on-current of short CNT-FETs can be close to the bal-
listic limit [57], whereas the gate-delay time can be signifi-
cantly below that limit [58–60].

The intrinsic (without parasitic capacitances) gate-delay
time for the ballistic case can be approximated as τ ≈
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Fig. 8 (a) The profile of the electron velocity near the source con-
tact. (b) The profile of the electron concentration along the device. The
results for the ballistic case and for electron-phonon interaction are
shown. As the phonon energy increases the electrons scatter to lower

energy states. Therefore, the electron velocity decreases and the car-
rier concentration increases. The electron-phonon coupling strength is
D = 10−1 eV2 and the bias point is VG = VD = 1 V

1.7 ps/µm, or equivalently fT ≈ 100 GHz/µm [53]. The
highest reported intrinsic cutoff frequency for a device with
a length of 300 nm is fT ≈ 30 GHz [61], which is far be-
low the ballistic limit. Inelastic electron-phonon interaction
with high energy phonon has to be considered to explain the
results.

5 Photo-detectors

When scattering via a self-energy is introduced, the deter-
mination of the Green’s function requires inversion of a ma-
trix of huge rank. To reduce the computational cost, the lo-
cal scattering approximation is frequently used [28, 39,
43, 62, 63]. In this approximation the scattering self-energy
terms are diagonal in coordinate representation. It allows
one to employ the recursive algorithm for computing the
Green’s functions [28, 33]. The local approximation is well
justified for electron-phonon scattering induced by deforma-
tion potential interaction [43]. However, we show that this
approximation is not justified for electron-photon interac-
tion.

For the given CNT device (Fig. 3(a)) the calculated photo
current is shown in Fig. 9(a). The current is shown as a func-
tion of the number of included off-diagonal elements of the
retarded self-energy for electron-photon interaction. By in-
cluding only the diagonal elements of the self-energy (local
scattering approximation) the calculated current is only four
percent of its value in case of full matrix consideration. This
behavior can be well understood by the fact that electron-
photon self-energy is in general non-local in real space. The
off-diagonal elements of the Green’s function indicate the
correlation between different sites. Due to the wave-like be-
havior of electrons the correlation length between neighbor-

ing sites is on the order of the electron-wave length. Fig-
ure 9(b) shows the Green’s function in a two-coordinate
representation. Off-diagonal elements are relatively strong
which indicate the need for a full matrix description. To
investigate GNR photo-detectors we study the quantum effi-
ciency which is defined as α = (Iph/q)/(Pop/�ω), where Iph

is the photo current and Pop is the incident optical power.
Figure 9(c) shows the quantum efficiency of the CNT as
a function of the incident photon energy. The efficiency is
maximized when the photon energy matches the band-gap
of the CNT. However, at this energy the inclusion of off-
diagonal elements becomes more important. This can be un-
derstood by the fact that at that peak the carrier energies are
close to the conduction and valence band energies, where
they have longer wave-lengths. The result is in agreement
with experimental data where the maximum quantum effi-
ciency is estimated to be between 10–20% [64].

Figure 10(a) shows the density for the first three subbands
of an (12,0) armchair GNR . Van-hove singularities in the
density of states result in large photon-assisted transitions
from the valence to the conduction band [65]. Some of the
most important transitions are marked.

Figure 10(b) shows the calculated quantum efficiency of
the investigated device as a function of the incident photon
energy. The efficiency is maximized, when the photon en-
ergy matches the bandgap of the GNR. The maximum quan-
tum efficiency ranges from 9% to 11% and is fairly indepen-
dent of the bandgap [45]. An experimental and a theoretical
study of CNT based photo-detectors has estimated a quan-
tum efficiency in the 10–20% range [45, 64]. Due to peri-
odic boundary conditions, the subbands of CNTs appear as
two-folded degenerate. However, in GNRs this symmetry is
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Fig. 9 (a) The calculated photo-current as a function of the included
off-diagonal elements of the retarded self-energy (�R). The full ma-
trix size is 60×60. (b) The retarded Green’s function in two-coordinate
representation. The existence of relatively strong off-diagonal elements
indicate the non-locality of the interaction and the need to include the

full matrix. (c) The quantum efficiency of the CNT as a function of the
incident photon energy. The number of included off-diagonal elements
of the self-energy has a strong influence on the calculated quantum
efficiency

Fig. 10 (a) The density of
states of an (12,0) armchair
GNR. Some of the most
important transitions are
marked: Eij denotes a transition
from the ith valence band to the
j th conduction band. (b) The
calculated quantum efficiency as
a function of the incident photon
energy

removed and subbands are no longer degenerate. It is, there-
fore, reasonable to expect a maximum quantum efficiency
of 10% in GNR devices.

6 Conclusion

The coupled system of transport and Poisson equations
was solved self-consistently. The NEGF method in con-
junction with a tight-binding model for the band-structure
is used to describe transport phenomena in CNT-based de-
vices. Employing the described model, both the static and
dynamic response of CNT-FETs was investigated. The ef-
fect of electron-phonon interaction on the device character-
istics is discussed in detail. In agreement with experimental
data, our results indicate that at room temperature electron
phonon interaction affects the steady-state current of CNT-
FETs only weakly, whereas the switching response of such
devices can be significantly affected. In addition we present
a study of CNT- and GNR-based photo-detectors. Due to
the lack of band-degeneracy, photo-current in GNR devices
is roughly half of that of their CNT counterparts. Although
CNT photo-detectors show better performance, the fabrica-
tion of GNRs might be more compatible with current semi-
conductor technologies, which renders them well suitable
for future optoelectronic applications.
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