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the electron mobility enhancement in ultra-thin silicon films. The influence of shear strain on the sub-
band structure in thin silicon films is investigated.
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1. Introduction

Multi-gate FinFETs and ultra-thin silicon body SOI FETs are con-
sidered as perfect candidates for the 22 nm technology node and
beyond. Strong size quantization leads to a formation of quasi-
two-dimensional subbands in carrier systems within thin silicon
films. For analytical hole subband structure calculations a six-band
k-p Hamiltonian is employed. The electron subband structure con-
sists of six equivalent minima located close to the X-points in the
Brillouin zone. Close to the minimum the dispersion is usually de-
scribed by a parabolic approximation with the transversal masses
m, and the longitudinal mass m,. Isotropic non-parabolicity takes
into account deviations in the density of states at higher energies.
A more general description is, however, needed in ultra-thin silicon
films, especially in presence of shear strain [1]. The two-band k-p
Hamiltonian accurately describes the bulk structure up to energies
of 0.5-0.8 eV [2]. It includes a shear strain component which is ne-
glected in the parabolic approximation [2-4]. Shear strain is
responsible for effective mass modification and is therefore an
important source of the electron mobility enhancement in ultra-
thin silicon films [1,5]. In Part 1 we concentrate on the analytical
analysis of the problem, allowing computationally cheap results,
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while offering already detailed characterization of the UTB silicon
films behavior under uniaxially strain. However, the assumption
of a square well potential with infinite walls is only valid in a rel-
atively small regime (as long as the ground subband energy is
much higher than the amplitude of the potential profile within
the film). As soon as this assumption breaks down, a generalized
numerical treatment of the k-p Schrédinger and Poisson equations
is required. This is taken care of in Part 2 [6], where an efficient
numerical procedure to obtain the electron subband structure
self-consistently is presented, and in this way completes the anal-
ysis of uniaxially strained UTB silicon films.

2. Method

The two-band k-p Hamiltonian of a [001] valley in the vicinity
of the X-point of the Brillouin zone in Si must be in the form [3]:

2 2 2
e (ke + ky) _ h2kyk,
H= 2—TT1[+T+U(Z) I+ 2._4ur8Xy—T 0,

+

hk,ko
m Ox (1)

where o,, are the Pauli matrices, I is the 2 x 2 unity matrix,
ko = 0.15 x 2m/ao is the position of the valley minimum relative
to the X-point in unstrained Si, k; with i € {x,y, z} is the wave vector,
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&y denotes the shear strain component in physics notations,
M =m;'—mg', and E, = 7 eV is the shear strain deformation
potential [2-5].

The confining potential U(z) along the [001] direction modu-
lates the conduction bands profiles. As long as the ground subband
energy is much higher than the amplitude of the potential profile
within the film, the confining potential in an ultra-thin silicon film
can be approximated as square well potential with infinite walls
(Fig. 1).

For a square well potential the wave function is set to zero at
the boundaries, which allows an analytical analysis of the subband
structure.

In the two-band model the wave function is a spinor with two
components. Therefore, we use the following ansatz,

(gl

where a(k) and b(k) are coefficients depending on the wave vector
k. Substituting this ansatz into the equation system delivers the fol-
lowing eigenvalue problem:

ak)\ e
(H—E)(b(k))e“ =0. 3)

Taking the determinant of Eq. (3) and setting it to zero results in
the energy dispersion relation of the subband system.

2 2 2 2
o — hzkz h (kx +ky) . ) hzkzko "
2m, 2m; m )’
with
2
6= <2Eursxy _h Iltjlky) (5)

For each energy E there are four solutions for k, (Fig. 2). Fig. 2
shows that E(E) is even with respect to k = 0. Therefore, there are al-
ways two independent values k; and k, for the wave vector, which
are complemented to four values by alternating their signs. For
energies within the gap two k values are imaginary. The wave func-
tion is then a superposition of the solutions with four eigenvectors:

@ = (hf) e (k) Je e Gk )
+ (b )™ ©)

We introduce c(k) as the ratio between b(k) and a(k).
odd function with respect to k, (only k, is preserved):

c(k) is an

E,

Fig. 1. Potential in an ultra-thin SOI film of a single-gate MOSFET (left) and a
corresponding model square well potential with infinite walls.
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Fig. 2. Conduction band profile close to the X-point for # = 0 (solid lines, n = 0.5
(dashed lines), and 1 = 4 (dashed-dotted line).
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c(ky) = = — ! 7
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Additionally, fulfilling the boundary conditions
Y(z==xt/2)=0
demands that a(-k,) = +a

vie) = atka) < ( C(il) >e”q‘2 = ( _Cg’<1) )eiikl ‘Z>
+ ) ((c(}c) )eik” + <—c}k2) ) e’”‘”) (8)

After some simplifications the two pairs of independent
equations

(k,) is satisfied. This results in

a(kq) cos(kit/2) + a(ky) cos(kat/2) =0, 9)
a(ky)c(kq) sin(k1t/2) + a(ka)c(kz) sin(k,t/2) = 0, (10)
and

a(ky) sin(kqt/2) + a(kz) sin(kzt/2) = 0, (11)
a(ky)c(kq) cos(kit/2) + a(ky)c(ky) cos(kat/2) =0, (12)

are obtained. Expressing a(k;) with Egs. (9) and (11) and putting
them into Eqgs. (10) and (12) leads to these two conditions:

_C(ky)
tan(kt/2) = ckr) tan(kyt/2), (13)
cottknt/2) = 82 cotiint/2 (14)
! (k) (kat/2)-
After transforming the equations into dimensionless form
ko KK, | E 9
X]‘Z_TO’ EO_TI’ S_ET)’ ﬂ—fov (15)

and few calculation steps found in the Appendix A.1, the equations
can be written in the form of:

/;72
tan (Xakot/2), (16)

tan(X1k0t/2
X1 N+ + X3
+ 2
cot(X kot /2) = X MEVI T o (Xakot /2). (17)

X] VI:‘: /’12+X2
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For solving this equation system it is convenient to reformulate
the equations as

2

. Xz ;1 + 172 +X1 .
sin(Xkot/2) cos(Xzkot/2) = . sin(X;kot/2)
RUERVILEDS

x cos(X1kot/2), (18)

/2 + X2
cos(X1kot/2) sin(Xakot/2) = XM=V T4
UERV D¢

x sin(X;kot/2). (19)

cos(Xykot/2)

HH

X1 and X, coexist in the equations. Therefore, we need an extra
relation to re-express X; as a function of X, or vice versa, the der-
ivation of which can be found in the Appendix A.1:

X3 =X5+4+4\/X5+ 12, (20)
X5 =X +4-4\/X5 +n2. (21)

Eliminating one of the two X’s with Eq. (20) or Eq. (21) in Egs.
(18) and (19) allows us to calculate X as a function of strain #. Then
we can calculate the energy as a function of strain # by using Eq. (4).

3. Results

Interestingly, Eqs. (16) and (17) coincide with the ones obtained
from an auxiliary tight-binding consideration [7]. For # =0 Egs.
(16) and (17) become equivalent. For higher strain values Egs.
(18) and (19) must be solved numerically. The value

X; = \/Xf +4 — 4,/n% + X2 becomes imaginary at high strain val-

ues. In this case the trigonometric functions in Eqs. (16) and (17)
or Egs. (18) and (19) are replaced by the hyperbolic ones. Special

care must be taken to choose the correct branch of /X2 + 72 in
Egs. (16) and (17) or alternatively Eqgs. (18) and (19). The sign of

X% + 12 must be alternated after it becomes zero, as it is dis-
played in Fig. 3.

Figs. 4 and 5 show the energies of the subbands as a function of
shear strain for two different film thicknesses. Shear strain opens
the gap between the two conduction bands at the X-point making
the dispersions non-parabolic [2], which makes the Egs. (16) and
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Fig. 3. The right-hand side of Eqs. (16) and (17) plotted close to the point

\/1? + X* = 0.1t is clearly seen that the sign of the square root must be alternated at
this point.
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Fig. 4. Subband quantization energies E, (normalized to the ground subband
energy) for a film thickness of 3.3 nm. The valley splitting appears for non-zero
shear strain 7.
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Fig. 5. The same as in Fig. 4 for a film thickness 6.5 nm. The valley splitting depends
strongly on the film thickness. The valley splitting is maximal at high strain values.

(17) non-equivalent. This removes the subband degeneracy and
introduces the valley splitting. Figs. 6 and 7 show the energy differ-
ence between two unprimed subbands AE, as a function of strain
for the same quantum number n. We now analyze the limiting
cases of Egs. (16) and (17).

3.1. Small strain values

The valley splitting was shown to be linear in strain for small
shear strain values and to depend strongly on the film thickness
[7]. To support these findings we reformulated Egs. (18) and (19)
for the sum and the difference of X; and X. First we introduce
the transformation rules for y, and y, as,

:X]7X2 X+ X3

Ya="50 and y="15 (22)
or
Vo +¥n)’ =X7 and  (y, —a)* =X5. (23)



140 T. Windbacher et al. /Solid-State Electronics 54 (2010) 137-142

10
S
=
e 5
Lu:
<

0

L 1 L 1 L 1 L
0 5 10 15 20

n

Fig. 6. Difference of the subband quantization energies AE, (normalized to the
ground subband energy) from Eqs. (18) and (19) for a film thickness of 3.3 nm. The
valley splitting appears for non-zero shear strain .
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Fig. 7. AE,(n) for a film thickness of 6.5 nm. The splitting depends strongly on the
film thickness.

We only show the derivation for Eq. (18), due to the similarity
with Eq. (19). Using the above given transformation and rewriting
Eq. (18) to separate y, and ¥, leads to the following expression.

c(X2)

sin(y,kot) + sin(ynkot) = )

(= sin(y,kot) + sin(ynkot)). (24)

Further simplification steps result in:

C(X2) — c(X1)
c(Xa) + c(X1)

Now we re-express y, as function of y, (Appendix A.2 resulting

sin(y,kot) = sin(ykot). (25)

in

B 1-— yz _ 1,,2
2 n
The derivation of the fraction containing c(X;) and c(X,) can be
found in Appendix A.2.

Y, sin ( llyﬁy’;zkot)
VA -y)(T-n2-y3)

For zero stress the ratio on the right-hand side of Eq. (27) is equal
to zero, and the standard quantization condition q, = nn/ket is
recovered. Due to the plus/minus sign in the right-hand side of
Eq. (27), the equation splits into two non-equivalent branches for
1 # 0 and non-parabolic bands. Eq. (27) is nonlinear and can be
solved only numerically. However, for small # the solution can be
sought in the form y, =g, +{, where { is small. Substituting
¥, = g, into the right-hand side of Eq. (27) and solving the equation
with respect to ¢, we obtain for the valley splitting:

2 - .
_ [T\ Evéy sin(kot)
AEn - 4<k0t) kot |1 — q%l ' (28)

In accordance with earlier publications [8-10], the valley split-
ting is inversely proportional to the third power of ko and the third
power of film thickness t. The value of the valley splitting oscillates
with film thickness, in accordance with [9,10]. In contrast to previ-
ous works, the subband splitting is proportional to the gap ¢ at the
X-point, and not at the I'-point. Since the parameter #, which
determines non-parabolicity, depends strongly on shear strain,
the application of uniaxial [110] stress to [001] ultra-thin Si film
generates a valley splitting proportional to strain.

sin(y,kot) = +

(27)

3.2. High values of n

For high strain values the dispersion Eq. (4) of the lowest con-
duction band become parabolic again (shown in Fig. 2) and the
quantization levels in a square well potential with a parabolic band
must be recovered in this limit. We note that in the limit
6 > EoX, = 2,/=7] and Egs. (16) and (17) take the form [7]:

tan(X1kot/2) ~ Z(())é; lﬂ (29)
cot(Xikot/2) ~ Z g&; \/lﬁ (30)

For large 1 Eq. (29) has the solution X; = m(2n — 1)/kot while
Eq. (30) gives X; = 2mtn/kot which results in the well-known quan-
tization result X; = nn/kot, n =1,2,3,... for subbands in an infi-
nite potential square well with a single parabolic band. For the
difference in energy AE, between the two subbands degenerate
at n = 0 we get AE, = E;(4n — 1) in the limit of large #, which is
perfectly consistent with the results shown in Figs. 6 and 7.

4. Conclusion

We used the two-band k-p model to investigate the subband
structure in (001) silicon films stressed along [110] direction. It
is shown that the unprimed subbands with the same quantum
number split for non-zero shear strain. For small strain values
the splitting is linear in strain. For large strain the quantization
relations in an infinite square well potential with a single parabolic
band are recovered resulting in the largest subband splitting. Uni-
axial stress is currently used to enhance performance of modern
MOSFETs, where it is introduced in a controllable way. Therefore,
the valley splitting can be controlled by adjusting strain and thick-
ness t.

The approximation of the confinement potential by the
square well potential with infinite walls is valid in ultra-thin
body films as long as the ground subband energy is much higher
than the amplitude of the potential profile within the film. With
the film thickness increased this approximation breaks down in
both single- and double-gate UTB structures at higher carrier
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concentrations/gate voltages, and a generalized numerical treat-
ment of the k-p Schrédinger and Poisson equations is required.
An efficient numerical procedure to obtain the electron subband
structure self-consistently is described in detail in Part 2 of the

paper [6].
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Appendix A
A.1. Re-expressing X; as a function of X5

In the first step the Hamiltonian Eq. (1) and the energy disper-
sion Eq. (4) are transformed to dimensionless units with the given
expressions.

k, n’k; E B
E—T[, 3—507 U—EO~

ke - 31)

The energy dispersion then takes the following form:
2 my (K + k2
a(X)%i,/nuxﬂ—(zx ,zy>- (32)
mek;

Setting the determinant of the dimensionless Hamiltonian to
zero allows to express X as a function of energy &:

X\
or <7—£> -X*-y=0. (33)
Re-expressing the fourth order Eq. (33) as second order equa-
tion s —ée+e2 —¢—n2=0by
E=X2 (34)

we find the solution,

E=2(1+6) £ /4(1+ 6 — 42 — ) or
522(1+8)i2m7 (35)

preserves all four solutions of X. Embracing two sets of X values in
two separate equations leads to the following equations:

2
5:<1i\/1+28+r/2) —n, (36)
2
x§:(1+ 1+2£+112) s (37)
2
X2 = (1 —\/1+28+172) —n (38)
Using the identities:

Xi+X5
o

2 w2
)%:2\/1 +2&+ 12, (40)

2(1+e), (39)

leads to the desired expressions X;(X3) and X;(X;):

, X2 - x2\°

X2 = <1+142> -1, (41)
2 2\ 2

X3 = <1X14X2> -1 or (42)

X2 = X2+ 444\/X5+ 2, (43)

Xo=X24+4-4\/X>+ 2. (44)

The transformation to dimensionless units completes the corre-
sponding expression for c(X):

X
X)=———. (45)
nEy/n?+X
A.2. Expressing the equations as differences

In order to rewrite Eq. (24) as a function of y, the following set
of rules is needed:

Gn +yn) =X, (46)
n = Yn) =Xa, (47)
or
X1 +X

Sy, (48)
Xi—-Xy

7 = n (49)
The following identities (Egs. (41) and (42)):
2 2\ 2
(RS <1 = 4X2> 7 (50)
_ X2 — X2
Yoty =1+=,22, (51)
_ X3 - X3
Yo == (52)
allow to write y,, as function of y,,,
Va Vet =1+yuyn, (53)
Vil =yi)=1-y; -1, (54)
o _l-yi-n’
Vn=—7" TR (55)
and y, as function of y,,
Yoyt =1+yuyn, (56)
Ya(l=y2) =1-ya -1, (57)
1 _}—12 _ ’,12
2 n

Starting with the fraction of Eq. (25) in dimensionless form

— c(Xa)—c(X1) : : E
=ty and putting in the definition of c(X), leads to the term

below:
Xa(n+ /12 +X3) = X4 (ﬂi VP +X§>
X2<ni /12 +Xf) + X4 (nﬂ: /2 +X§>

Proceeding by substituting X; with Eq. (46) and X, with Eq. (47),

2 2
and using the identity /X3, + 12 = ‘1 +42%

can be rewriting as a function of ¥, and y,,,

I=

(59)

= |1 £ ¥ny,|, the term
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[ = (_)7 _yn)(r’ + (1 +ynyn)) — (yn ‘|‘yn)(17i (1 _.VHyn)) (60)
- (_)7 _yn)(’/’j: (1 +ynyn)) +(J7n 'f'.yn)(”:t (1 _.)_/nyn))7

Expanding the brackets and reorganizing the expression results
in:
_ w15y
V(N £152)

After substituting “f’j—y}”z for y, the expression simplifies to:

(61)

(1 + %)

I= : (62)
—v2_pn2
(15 y3), /55
and can be reformulated to the term used in Eq. (26):
== 2l (63)

VaA=yHT=yi-n?)
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