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1. INTRODUCTION

The increasing demand for higher computing power, smaller
dimensions, and lower power consumption of integrated
circuits feads to a pressing need to downscale semicon-
ductor components. However, downscaling of conventional
MOSFETs leads to many problems, such as short-channel
effects and increased gate-leakage current. Therefore, novel
structures and materials such as multiple-gate MOSTFETS,
CNT-FETs, and molecular-based transistors are expected to
be introduced to meet the requirements for scaling.

Since the discovery of carbon nanotubes (CNTs) by Iijima in
1991 [1], significant progress has been achieved in both under-
standing the fundamental properties and exploring possible
engineering applications. The possible application for nano-
electronic devices has been extensively explored since the
demonstration of the first CNT transistors (CNT-FETs) [2, 3].

CNTs are attractive for nanoelectronic applications owing
to their excellent electrical properties. The phase space for
scattering is severely reduced owing to the one-dimensional
nature of the density of states. The low-scattering prob-
ability is responsible for high on-current in semiconducting
CNT transistors. Owing to the chemical stability and perfec-
tion of the CNT structure, carrier mobility is not affected by
processing and roughness scattering as it is in the conven-
tional semiconductor channel. The fact that there are no
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dangling bond states at the surface of CNTs allows for a wide
choice of gate insulators. This improves gate control while
meeting gate leakage constrains. The purely one-dimensional
transport properties of single-wall CNTs (SWNTs) should
lead to a suppression of short-channel effects in transistor
devices [4]. Furthermore, the conduction and valence bands
are symmetric, which is advantageous for complementary
applications, and finally, the combined impact of transport
and electrostatic benefits together with the fact that semicon-
ducting CNTs are, unlike silicon, direct-gap materials and
suggests applications in optoelectronics as well [5, 6].

Section 2 describes the fundamentals of CNTs. It pres-
ents a comprehensive overview of electron and phonon
properties along with electron—-phonon interaction param-
eters, which determine transport phenomena in CNTs. The
operation of these devices can be explained in terms of SBs
which are formed at the metal-CNT interfaces. CNT-FETs
can operate by modulating the transmission coefficient
through these barriers, which results in device characteris-
tics different from that of conventional MOSFETs.

Section 3 outlines the theory of the nonequilibrium
Green’s function NEGF) formalism. Knowledge of the single-
particle Green’s function provides both the complete equi-
librium or nonequilibrium properties of the system and the
excitation energies of the systems containing one more or one
less particle. The many-particle information about the system
is cast into self-energies, parts of the equations of motion for
Green’s functions. Green’s functions can be expressed as a
perturbation expansion, which is the key to approximate the
self-energies. Green’s functions provide a very powerlul tech-
nique for evaluating properties of many-particle systems both
in thermodynamic equilibrium and nonequilibrium situa-
tions. This formalism has been successfully used to investigate
the characteristics of nanoscale transistors [7, 8], CNT-FETs
[4, 9], and molecular transistors [10].

Section 4 discusses the numerical implementation of
the NEGF formalism to study quantum transport in CNT-
FETs. The discretization of the transport equations in both
the spatial and energy domain are discussed in detail. We
employed a tight-binding Hamiltonian and applied a mode-
space transformation to reduce the computational cost.
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The calculation of self-energies owing to electron-phonon
interactions is also presented. Finally, the iterative method for
self-consistent simulation and its convergence rate is studied.

By means of the described methodology, the physics
of CNT-FET is explored in Section 5. A comprehensive
study of the role of electron-phonon interaction on the
performance of CNT-FETs is presented.

2. FUNDAMENTALS OF CNTS

CNTs are unique nanostructures that can be considered
conceptually a prototype one-dimensional quantum wire. The
fundamental building block of CNTs is the very long, all-carbon
cylindrical SWNT, one atom in wall thickness and tens of
atoms around the circumference (typical diameter ~1.4 nm).
Initially, CNTs gained great interest in research community
because of their exotic electronic properties, and this interest
continued as other remarkable properties were discovered and
promise of practical applications developed. In this Section,
some basic definitions relevant to the structural properties of
CNTs are provided, and applications of CNTs in electronics,
especially CNT-based transistors, are discussed.

2.1. Theoretical Background

The structure of CNTs has been explored early after their
discovery by high-resolution transmission electron micros-
copy techniques yielding direct confirmation that the CNTs
are scamless cylinders derived from the honeycomb lattice
representing a single atomic layer of crystalline graphite,
called a graphene sheet. The structure of a SWNT is conve-
niently explained in terms of its one-dimensional unit cell,
defined by the vectors C, and T as shown in Figure 1.

Figare 1. The chiralvector Ch = na, + ma, is defined on the honeycomb
Jattice of carbon atoms by unit vectors a, and a, and the chiral angle 8
with respect to the zig-zag axis (8 = 0). The diagram is constructed for
(n, m) = (4, 2).

The circumference of any CNT is expressed in terms of
the chiral vector C, = na, + ma, which connects two crys-
tallographically equivalent sites on a two-dimensional
graphene sheet [11]. The construction in Figure 1 depends
uniquely on the pair of integers (n,m) which specify the
chiral vector. The chiral angle 6 is defined as the angle
between the chiral vector C, and the zig-zag direction
(6=10). Three distinct types of CNT structures can be
generated by rolling up the graphene sheet into a cylinder.
The zig-zag and armchair CNTs correspond to chiral angles
of 8 =0 and 0= 30°, respectively, and chiral CNTs corre-
spond to 0 < 8 < 0 30°. The intersection of the vector OB
(which is normal to C,) with the first lattice point deter-
mines the fundamental one-dimensional translation
vector T. The unit cell of the one-dimensional lattice is the
rectangle defined by the vectors C, and T.

The cylinder connecting the two hemispherical caps of
the CNT is formed by superimposing the two ends of the
vector C,. and the cylinder joint is made along the two lines
OB and AB’ in Figure 1. The lines OB and AB’ are both
perpendicular to the vector C, at each end of C, {11]. In the
(nym) notation, for C, = na, +ma,, the vectors (1,0) or {n,0)
denote zig-zag CN'Ts, whereas the vectors (11,m) correspond
to chiral CNTs [12]. The CNT diameter d,; is given by

| V3 2 n? e mi
. ]”:\BQC_C\/m nesmn 1)

CNT = 7T T

where |C | is the length of C  and a4 is the C-C
bond length (1.42 A). The chiral angle 6 is given by
f= tan‘l[\/gn/@m +1)]. For the (n,1) armchair CNT 6 = 30°
and for the (n, 0) zig-zag CNT 6 = 60°. From Figure 1 it
follows that if one limits 9 to the range 0 £ 6 < 30°, then
by symmetry, 6 = 0 for a zig-zag CNT. Both armchair and
zig-zag CNTs have a mirror plane and thus are considered
achiral. Differences in the CNT diameter d_.,, and chiral
angle 0 give rise to different properties of the various CNTs.
The number N of hexagons per unit cell of a CNT, specified
by integers (n, m), is given by

2
2(771” +n? +nm)

Nz———et 2)

d R

where d = d if n-m is not a multiple of 3d, and d,, = 3d if
n—m is a multiple of 3d, and d is defined as the greatest
common divisor (ged) of (n,m). Each hexagon in the honey-
comb [attice contains two carbon atoms. The unit cell area
of the CNT is N times larger than that for a graphene layer
and consequently the unit cell area for the CNT in recip-
rocal space is correspondingly 1/N times smaller. Table 1
provides a summary of relations useful for describing the
structure of SWNTs [13, 14].

2.2. Electronic Structure

The energy-dispersion relations of SWNTs can be calcu-
lated using zone folding [15, 16], the tight-binding method
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Table 1. Structural properties for CNTs [13].
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T:fla]+f232, f1= ,12_—
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[17], and density functional theory [18, 19]. In the simplest

method the cnergy-dispersion relations of CNTs are
obtained by folding those of graphene.

2.2.1. Electronic Band Structure of Graphene

Within the tight-binding method, the two-dimensional
energy-dispersion relations of graphene can be calculated
by solving the eigenvalue problem for a Hamiltonian H, ,,
associated with the two carbon atoms in the graphene
unit cell [13]. In the Slater-Koster scheme one gets (We
consider only the valence and the conduction z* energy
band of graphene and CNTs.)

where f(k)=—t(1+e™% +e*2) = (1 + 26 ke qcos(k a/2))

and f is the nearest-neighbor C-C tight-binding overlap

0
)

f k)
0

®)

2D

energy (Experimentally the value [f[ = 2.7¢V has been
reported [20].) [16]. Solution of the secular equation
-2D
kya

(H,_,,~EI) =0 leads to
op (k) =t 1+ 4cos (\@;\.a}os( ]+Cos( : J (4

where the E‘, »p and Eu op correspond to the z* and the
7T energy bands, Iespcctwcly Figure 2 shows the electronic
energy-dispersion relations for graphene as a function of the

/ca
2

uc [J,

Figure 2. The energy-dispersion relations for graphene are shown
through the whole region of the Brillouin zone. The lower and the up-
per surfaces denote the valence 7z and the conduction 7™ energy bands,
respectively. The coordinates of high symmetry points are I = (0, 0),
K = (0, 271/3), and M = (27N3a, 0). The energy values at the K, M, and
I' points are 0, £, and 31, respectively.

two-dimensional wave vector k in the hexagonal Brillouin
zone.

2.2.2, Electronic Band Structure of SWNTs

The electronic structure of an SWNT can be obtained from
that of graphene. Assuming periodic boundary conditions
in the circumferential direction characterized by the chiral
vector C,, the wave vector associated with the C, direc-
tion becomes quantized, while the wave vector associated
with the direction of the translational vector T (along the
CNT axis) remains continuous for a CNT of infinite length.
Thus, the energy bands consist of a set of one-dimensional
energy-dispersion relations which are cross sections of
those of graphene. Expressions for the reciprocal lattice
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vectors, K, along the CNT axis, (C, - K,=0,T K, = 2n), and
K, in the circumferential duectlon (C ‘K, =0, T K,=2m)
aIe given by (see Table 1)

(—b_,bl +11b2), K, :—]%]*(I’}’[bl —nbz). %)

N

The one-dimensional energy-dispersion relations of

an SWNT can be written as
v K,
Eeny (k)= Eg42D k—=—+vK, |, (6)
| K |

where —n/T<k<n/T is a one-dimensional wave vector
along the CNT axis and v = 1,...,N. The periodic boundary
condition for a CNT gives NV discrete k values in the circum-
ferential direction. The N pairs of energy-dispersion
curves given by (6) correspond to the cross sections of the
two-dimensional energy-dispersion surface of graphene.
If the cutting line passes through a K point of the two-
dimensional Brillouin zone, where the 7 and 7* energy
bands of graphene are degenerated by symmetry, then the
one-dimensional energy bands have a zero energy gap.
When the K-point is located between two cutting lines,
K is always located in a position one-third of the distance
between the two adjacent K, lines [16], and thus a semi-
conducting CNT with a finite energy gap is formed. If for
a (n,m) CNT, n-m is exactly divisible by 3 the CNT is
metallic. CNTs with residuals 1 and 2 of the division n-m
by 3 are semiconducting.

Figure 3 shows the energy-dispersion relations for the
(5,5) armchair, the (9,0) zigzag, and the (10, 0) zig-zag
CNTs. In general (n,n) armchair CNTs yield 4n energy
subbands with 2n conduction and 2n valence bands. Of
these 2n bands, two are nondegenerated and n-1 are
doubly degenerated. The degeneracy comes from the two
subbands with the same energy dispersion, but different
v values. All armchair CNTs have a band degeneracy
between the highest valence and the lowest conduction

band (Fig. 3(a)). In zig-zag CNTs the lowest conduction
and the highest valence bands are doubly degenerated
(Fig. 3(b) and Fig. 3(c)).

In armchair and zig-zag CNTs, the bands are symmetric
with respect to k& = 0. Since the band of an armchair CNT has
a minimum at point k = 2n/3a, it has a mirror minimum at
point k=-27/3a and therefore two equivalent valleys are
present around the point +2x/34. The bands of zig-zag
and chiral CNTs can have at most one valley (Fig. 3(b) and
Fig. 3(c)).

In armchair CNTs, the bands cross the Fermi level at
k=2*2r/3a. Thus, they are expected to exhibit metallic
conduction [13]. There is no energy gap for the (9,0)
CNT atk = 0, whereas the (10,0) CNT indeed shows an
energy gap.

Electrical conduction is determined by states around the
Fermi energy. Therefore, it is useful to develop an approximate
relation that describes the dispersion relations in the regions
around the Fermi energy £,=0. This can be done by replacing

the expression for f(/c)=-f(1+2e‘5kf"”/2 cos(k),a/2)) in (3)
with a Taylor expansion around the point (0, £ 47/3a), where
the energy gap is zero and f{k) = 0. It is straightforward to show
that f(k)=(i\3ar/2)(k, FiB,), with B=k T (4n/3a). The
corresponding energy-dispersion relation can be written as [21]

ﬁa—\/ +B; Q)

The energy bands for (#,0) zig-zag CNTs can be obtained
by imposing the periodic boundary conditions, which define
the number of allowed wave vectors k in the circumferen-
tial direction as nka = 2znv, (v = 1,. 211) This yields the
one-dimensional dispersion relations for the 4n states of
the (1,0) zig-zag CNT

=25 2 J ; M%w% o

- n/[a <k, <nh3a.

Eg‘zD(k) +| f k

k/k

max

k/K k/k

Max max

Figure 3. Onc-dimensional energy-dispersion relations of (a) the (3, 5) armchair CNT, (b) the (9, 0) zig-zag CNT, and (¢) the (10, 0) zig-zag CNT.

k. for armchair and zig-zag CNTs correspond to k=

max

nondegenerate bands.

=7fa and k
nax

= 7/N3a, respectively. Solid lines denote degenerate bands and dashed lines
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Therefore, the energy gap for subband v can be written as
the difference between the energies of the + and —branches
atk =0

’) ”
EY = 3at£(v - _z_’ij (9)

na 3

The energy gap has a minimum value of zero corresponding
to v =2n/3. If n is not a multiple of three, the minimum
value of v-2n/3 is equal to 1/3. This means that the
minimum energy gap is then given by

£ - J3at _2152 2a, ot . 0.8eVnm
£3 na dey dewr

(10)

whered, ., = na/wis the diameter of the CNT in nanometers.
Based on (8) and (9), the DOS for semiconducting zig-zag
CNTs is given by

glE) = (11
z 3mac_t )E E‘//Z
which is an approximation valid as long as (E-F,) <<t [22].

2.3. Phonon Properiies

The phonon-dispersion relations of SWNTs can be calcu-
lated using zone folding [16], tight-binding methods [23-26],
density functional theory [27-35], and symumetry-adapted
models [36-40]. The phonon-dispersion relations of SWNTs
can be understood by zone folding of the phonon-dispersion
branches of graphene.

2.3.1. Phonon-Dispersion Relations of
Graphene

Since there are two carbon atoms, A and B, in the unit cell
of graphene, one must consider six coordinates. The secular
equation to be solved is thus a dynamical matrix of rank 6,
such that six phonon branches are achieved.

The phonon-dispersion relation of the graphene
comprises three acoustic (A) branches and three optical (O)
branches. The modes are associated with out-of-plane (2),
inplane longitudinal (L), and inplane transverse (T) atomic
motions (Fig. 4(a)).

S

Figure 4. Atomic motions of carbon atoms in graphence can be along
the out-of-plane (Z), inplane transverse (T), and inplane longitudinal
(L) directions.

Figure 4(b) shows the phonon-dispersion branches of
graphene. The three phonon-dispersion branches, which
originate from the T'-point of the Brillouin zone corre-
spond to acoustic modes: an out-of-plane mode (ZA), an
inplane transverse mode (TA), and inplane longitudinal
acoustic (LA), listed in the order of increasing energy. The
remaining three branches correspond to optical modes: one
out-of-plane mode (Z0O), and two inplane modes (TO) and
(LO) [13].

While the TA and LA modes display the normal linear
dispersion around the I'-point, the ZA mode shows a
q* energy dispersion which is explained in [13] as a conse-
quence of the D point-group symmetry of graphene.
Another consequence of the symmetry is the linear cross-
ings of the ZA-Z0 and the LA-LO modes at the K point,

2.3.2. Phonon-Dispersion Relations
of SWNTs

The phonon-dispersion relations for an SWNT can be deter-
mined by folding that of a graphene layer (see Section 2.2.2).
Since there are 2N carbon atoms in the unit cell of a CNT,
ON phonon-dispersion branches for the three-dimensional
vibrations of atoms are achieved. The corresponding one-
dimensional phonon energy-dispersion relation for the
CNT is given by

o (q) = [ |K7|+HK1]s (12)

where A = 1,...,6 denotes the polarization, y, = 0,...,N-1
is the azimuthal quantum number, and -7/ T <g<n/T is the
wave vector of phonons. However, the zone-folding method
does not always give the correct dispersion relation for a
CNT, especially in the low-frequency region. For example,
the out-of-plane tangential acoustic (ZA) modes of a
graphene sheet do not give zero energy at the ¢ = 0 when
rolled into a CNT. Here, at g = 0, all the carbon atoms of
the CNT move radially in and out-of-plane radial acoustic
vibration, which corresponds to a breathing mode (radial
breathing mode, RBM) with a nonzero frequency [23]. To
avoid these difficulties, one can directly diagonalize the
dynamical matrix.

Fundamental phonon polarizations in CNTs are
radial (R), transverse (T), and longitudinal (L.). Zone center
phonons, also referred to as I'-point phonons, can belong to
the transverse acoustic (TA), the LA, the RBM, the out-
of-plane optical branch (RO), the transverse optical (TO),
or the longitudinal optical (LO) phonon branch. The LO
phonon branch near the I'-point has an energy of = 190eV,
whereas the energy of the RBM phonon branch is inversely
proportional to the CNT diameter

hOppm =28meV [ deyr (13)

where d,, is the diameter of the CNT in nanometer
[27,28]. Zone boundary phonons, also referred to as
K-point phonons, are found to be a mixture of fundamental
polarizations [41].
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2.3.3. Electron—-Phonon Interaction

The electron—phonon interaction Hamiltonian for CNTs
can be written as [42]

N _ j
Hel—ph - 2 M/(',\/’,k,\/,l('/\",v’Ck’,v'
kv kw2 (14)

i
X(b(/,,u,?ﬁb,qﬁu’z ) )

where ¢, ,and ¢, are the electron creation and annihilation
operators, respectively, b_, _, ; and b, ; are the phonon

creation and annihilation operators, respectively, and
My v 18 the electron-phonon matrix clement

_n
2pexrLo

Qi

Mk’,v’,/\’,\g?t = Mk’,v',/(,v,)» ’ (15)

where p_, is the mass density of the CNT, L is the normal-
ization length, and M., ., is the reduced electron-
phonon matrix element of the transition from the initial
electronic state k,v to the final state k',v’, where k is the wave
vector and v is the azimuthal quantum number of electrons.
Because of energy conservation for a scattering event it
holds £y . —FE; =+ hmi’u,)ﬂ where ¢ is the wave vector, f is
the azimuthal quantum number, and A is the polarization
of the phonon. The matrix element obeys selection rules
arising from wave vector and azimuthal quantum number
conservation, g = k'—k and y = v-v".

Because in the CNT two degrees of freedom are confined,
an electron can only be scattered forward or backward in
the axial direction, preserving or changing the sign of the
band velocity, respectively. The scattering processes invoke
either intrasubband or intersubband transitions. The intra-
subband processes are important for the electrical and the
heat transport in CNTs and for the relaxation of an excited
electron or hole in the same subband. The intersubband
processes contribute to the radiationless relaxation of
electrons (holes) from a given subband to a subband with
a lower (higher) energy [42]. The scattering of electrons
can take place within a given valley or between two valleys,
the two possibilities being termed intravalley and intervalley
scattering processes.

2.3.4. Electron—-Phonon Matrix Elemenis

An important case is the intrasubband scattering of elec-
trons, v/ =v, therefore, y=0 and A can be any of six
different phonon polarizations. One can omit the index
4 and write the phonon frequency as oA (q) and the
reduced electron—phonon matrix element for a given band
as My kv = M (), where the weak dependence on k is
neglected.

For intravalley processes, most of the phonons have g =0
and are referred to as I™-point phonons. Near the I" point a
linear dispersion relation for acoustic phonons is assumed,

®4p (q)szP!qL (16)

where v, is the acoustic phonon velocity. For OP the energy
is assumed to be independent of the phonon wave vector

®op (9)=00p (17)

Near the TI'-point the reduced electron—-phonon matrix
elements can be approximated by

Mar(q)=Mar | q| (18)
for acoustic phonons and by
MOP(Q)“MOP (19)

for OP [42]. Phonons inducing intervalley processes have a
wave vector of |g| = q,, where g, is a wave number corre-
sponding to the K-point of the Brillouin zone of graphite.
For such phonons one can neglect the g-dependence,
o, (q) = 0, and M (q)=Mx [42].

To calculate the electron—phonon matrix elements, one
can employ the orthogonal tight-binding [43], the nonor-
thogonal tight-binding [42], and density functional theory
[44] for the band structure and a force constant model
for the lattice dynamics [13, 45]. Electron-phonon matrix
elements depend on the chirality and the diameter of the
CNT [42-44].

2.4. CNTs in Electronics

The one-dimensional nature of CNTs severely reduces
the phase space for scattering, allowing CNTs to realize
maximum possible bulk mobility of this material. The
low-scattering probability and high mobility are respon-
sible for high on-current of CNT transistors. Further-
more, the chemical stability and perfection of the CNT
structure suggests that the carrier mobility at high gate
fields may not be affected by processing and roughness
scattering as in the conventional semiconductor channel.
Similarly, low scattering together with the strong chemical
bonding and high thermal conductivity allows metallic
CNTs to withstand extremely high-current densities
(up to ~10° A cm™).

Electrostatics is improved in these devices as well. The
fact that there are no dangling bond states at the surface
of CNTs allows for a much wider choice of gate insulators
other than conventional SiO,. This improved gate control
without any additional gate leakage becomes very impor-
tant in scaled devices with effective SiO, thickness below
1 nm Also, the strong one-dimensional electron confine-
ment and full depletion in the nanometer-scale diameter of
the SWNTs (typically 1-2nm) should lead to a suppression
of short-channel effects in transistors [4].

The combined impact of transport and electrostatic
benefits together with the fact that semiconducting CNTs
are, unlike silicon, direct-gap materials, suggest applica-
tions in optoelectronics as well [5, 6]. As far as integra-
tion is concerned, semiconducting CNTs benefit from their
band structure which exhibits essentially the same effective
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mass for electrons and holes. This should enable similar
mobilities and performance of n- and p-type transistors
which is necessary for a complementary metal-oxide semi-
conductor (CMOS)-like technology. Finally, since CNTs
can be both metallic and semiconducting, an all-CNT
electronics can be envisioned. In this case, metallic CNTs
could act as high current-carrying local interconnects [46],
while semiconducting CNTs would form the active devices.
The most important appeal of this approach is an ability to
fabricate one of the critical device dimensions (the CNT
diameter) reproducibly.

2.4.1. Fabrication and Performance
of CNT-FETs

The first CNT field-effect transistors (CNT-FETs) were
reported only a few years after the initial discovery of CNTs
[2,3]. These early devices were relatively simple in structure:
Noble metal (gold or platinum) electrodes were lithograph-
ically patterned atop an oxide-coated, heavily doped silicon
wafer, and a SW-CNT was deposited atop the electrodes.
The metal electrodes served as the source and drain, and
the CNT was the active channel. The doped substrate served
as the gate electrode, separated from the CNT channel by
a thick (~100-200 nm) oxide layer. These devices displayed
clear p-type transistor action, with gate voltage modula-
tion of the drain current over several orders of magnitude.
The devices displayed high parasitic resistance (=1 MQ),
low drive current, low transconductance (g ~1 nS), high
subthreshold slope {§= [d(logy 1)/ dVg] o1y /decade),
and no current saturdtion. Owing to the thick gate diele¢-
tric, these devices required large values of the gate voltage
(several volts) to turn on, making them unattractive for
practical applications.

Following these initial results, advances in CNT-FET
device structures and processing yielded improvements
in their electrical characteristics. Rather than laying the
CNT down upon the source and drain electrodes, relying
on weak van der Waals forces for contact, the CNTs were
first deposited on the substrate and the electrodes were
patterned on top of the CNTs. In addition to Au, Ti, and
Co were used [47-49] with a thermal annealing step to
improve the metal-CNT contact. In the case of Ti, the
thermal processing leads to the formation of TiC at the
metal-CNT interface [48], resulting in a significant reduc-
tion in the contact resistance from several MQ to ~30k<.
On-state currents ~1yA were measured, with a trans-
conductance of ~0.3uS — an improvement of more than
two orders of magnitude relative to the van der Waals
contacted devices. This CNT-FET device configuration has
been extensively studied in the literature. More recently, it
has been found that Pd forms a low resistance contact to
CNTs for p-type devices [50]. It is speculated [50] that Pd
offers improved sticking or wetting interaction to the CNT
surface relative to other metals, as well as good Fermi
level alignment relative to the CNT conduction band, see
Section 2.4.2.

As mentioned above, early CNT-FETs were p type in air
(hole conduction). However, itwas found that n-type conduc-
tion could be achieved by doping from an alkali (electron

donor) gas [51] or by thermal annealing in vacuum [48]. In
addition, it is possible to achieve an intermediate state, in
which both electron and hole injection occur, resulting in
ambipolar conduction [48]. The ability to controllably fabri-
cate both p- and n-type CNT-FETs is a key to the formation
of logic circuits.

Early experiments on CNT-FETs were built upon
oxidized silicon wafers, with the substrate itself serving
as the gate and a thermally grown oxide film, typically
~100nm or thicker, serving as the gate dielectric. The
thick gate oxide required relatively high gate voltages
(~10V) toturn on the devices, and the use of the substrate
as the gate implied that all CNT-FETs must be turned
on and off together, precluding the implementation of
complex circuits. A more advanced CNT-FET structure
[52] is shown in Figure 5. The device comprises a top-
gate separated from the CNT channel by a thin-gate
dielectric. The top-gate allows independent addressing
of individual devices, making it more amenable to inte-
gration in complex circuits, while the thin-gate dielec-
tric improves the gate to channel coupling, enabling
low-voltage operation. In addition, the reduction of the
capacitance owing to gate-source and gate-drain overlap
suggests that such a device structure would be appro-
priate for high-frequency operation. Such a CNT-FET
can also be switched using the conductive substrate as a
bottom gate, allowing for direct comparison between top
and bottom gate operation. Operating the device with
the top-gate yields distinctly superior performance rela-
tive to bottom gate operation, with a lower threshold
voltage (-0.5V wvs. ~12V), higher transconductance
(3.25uS vs. 0.1 uS), and superior subthreshold behavior
(130 mV/decade vs. 2 V/decade) [52].

In order to gauge whether or not CNT-FETs have poten-
tial for future nanoelectronic applications, it is important to
compare their electrical performance to those of advanced
silicon devices. Wind et al. [52] demonstrated that although
the device structure is far from optimized, the electrical
characteristics, such as the on-current and the transcon-
ductance of the device shown in Figure 5, exceed those of
the state-of-the-art silicon MOSFETs. Further enhance-
ments to CNT-FET structures, such as the use of high
dielectric constant gate insulators [53, 54] and additional
improvements in the metal-CNT contact resistance at the
source and drain [50], have lead directly to improved CNT-
FET performance. Such improvements can also be applied
to n-type CNT-FETs [55].

Gate Insulator (SiOs) CNT

Drain {T1)
23 00

Source (T4}
£ PO XK
(Si04)

(p+-+ Si)

Figure 5. Schematic cross section of top-gate CNT-FET,
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2.4.2. SB Model of CNT-FET Operations

In general a charge transfer will take place at the metal-
CNT interface leading to band bending and the creation
of an SB. For example, a CNT-FET with titanium-carbide
contacts shows equal hole and electron currents depending
on the sign of the applied gate bias, so-called ambipolar
conduction [48]. This suggests the existence of two barriers,
one for electrons and one for holes, of approximately equal
height, implying that each must be about half the band gap
(E£,/2 = 300 meV). Applying conventional semiconductor
analysis, which assumes that thermionic emission contrib-
utes mostly to the total current through a SB, indeed yields
similar thermal activation barriers for electrons and holes;
however, on the order of 10 meV [48]. This finding suggested
that the thermionic contribution alone cannot account for
the observed current levels, which is supported by modeling
results showing that SBs in one dimension are much thinner
than their planar analogues [56, 57]. Consequently, carrier
tunneling through these thin barriers becomes the domi-
nant conduction mechanism and cannot be neglected when
quantifying the barrier height [58].

Similar conclusions can be drawn from the subthreshold
behavior of CNT-FETs, in particular when plotted as a
function of gate oxide thickness. The switching behavior of
an MOSFET is described by the inverse subthreshold slope,
S =(kgT /q)In(10)(1+Cp / C,) where Cp, and C, are the
depletion and gate capacitance, respectively. In the case of
a fully depleted device, C, is zero and, therefore, S depends
only on the temperature, having a value of 65mV/decade
at room temperature. The original CNT-FETs with thick
gate oxides in back-gated geometry had unexpectedly high
S values of approximately 1V/decade. On the other hand,
when devices are fabricated using thinner oxides, such as
the top-gated CNT-FET in [52], the value of § dropped
significantly into the range of 100-150mV/decade [52],
80mV/decade [59], and 67-70mV/decade [60]. Such a
dependence of S is not consistent with the bulk switching
mechanism which should give 65mV/decade in the long
channellimit. Instead, this kind of scaling of the subthreshold
slope with oxide thickness is compatible with the existence
of sizeable SBs at the metal-CNT interfaces, and theo-
retical modeling showed that the gate field impact on this

2)
/ .. [Drain

Source

(;ulci L‘

interface is responsible for the observed improvement in
S [61, 62].

Further evidence of the presence of SBs in CNT-FET
devices is found in local gating experiments, where the on-
current is shown to increase significantly by application of
a local potential from a metal-coated scanning probe tip
only at the positions above the metal-CNT interface [63].
Similarly, the impact of SBs in the subthreshold charac-
teristics of the CNT-FET is clearly observed in transistors
with multiple top-gates [64]. In this case, local gates over
the metal-CNT interface are used to electrostatically thin
the SBs and reduce the value of § closer to that of the bulk
switching device [64].

Hole (electron) injection into the CNT depends on the
line-up of the metal Fermi level and the valence (conduc-
tion) band of the CNT, which is defined here as the SB
height. In this picture, other details of the contacts such
as any changes in the metal-CNT coupling as a function
of the curvature of the CNT are incorporated in an effec-
tive Schottky tunneling barrier height. This barrier height
depends on a number of material parameters such as the
band gap of the CNT, work-function difference, as well
as the interface quality. The CNT band gap is inversely
proportional to the diameter of the CNT, according to (10).
Figure 6(a) shows qualitative band diagrams for CNT-FETs
with different diameters. Assuming a constant work func-
tion for all CNTs (The work function is defined as the sum
of the CNT electron affinity and half of the band gap in the
bulk.), the SB increases linearly with increasing band gap.
On a log scale, current injection through the SB is inversely
proportional to the barrier height. Therefore, the CNT-
FET with a small diameter delivers low on-current. The
choice of the metal contacts also affects the device perfor-
mance. Figure 6(b) depicts the band diagrams for CNT-
FETs using different source and drain contact materials.
Identical energy band gaps are drawn here to represent
CNTs of the same diameter. CNT-FETs with Pd contacts
deliver the highest on-current, since Pd has the highest
work function (5.1 eV), which forms a low SB height to the
valence band of the CNT. The trend shown follows that of
the clean metal work functions: 4.3 ¢V for Ti and 4.1 eV
for Al [65].

b)

Drain

_Source.

T

Figure 6. (a) Schematic band diagram showing the different SB heights for (b) CNT-FETSs with the same contact, but with different CNT diameters
and (¢) CNT-FETs with the same diameter, but using Pd, Ti, and Al contacts, respectively.
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The effect of ambient air on the performance and
functionality of CNT-FETs can also be understood within the
framework of the SB model of conduction. In particular, this
model helps to clarify and separate the effects owing to the
bulk of the CNT channel from those arising from the effects
at the contact between the metal electrode and the CNT.

It has been proposed that, for example, oxygen adsorption
leads to doping of CNTs [66]. However, the effect of oxygen
on the transport properties of a CNT-FET is a reversible
transition from p (devices prepared in air) to n type after
annealing the transistor in vacuum [67]. In contrast, the depo-
sition of an n-type dopant such as potassium shifts the transfer
characteristics with respect to the gate voltage. It is known
that the work function of a metal surface is altered signifi-
cantly upon the adsorption of gases owing to the formation of
interface dipoles. Thus, the local work function of the metal
electrode can be modified considerably by the adsorption of
oxygen at the contacts. If the work function of the metal elec-
trode changes the line-up of the metal Fermi energy with the
CNT, bands will shift (Note that this is unique for the contact
between a metal and a CNT. In a conventional, planar semi-
conductor device the position of the Fermi energy is pinned
by metal-induced gap states [S6].) [57].

2.4.3. Prototype CNT-FET Circuits

The promising characteristics of individual CNT-FETs have
lead to initial attempts at integration of several CNT-FETs
into useful circuits that can perform a logic operation, or
function as memories [68] or sensors [69]. In the following,
we limit our discussion to advances in logic circuitry. The
CNT logic gates have been, in most cases, based on a
complementary technology analogous to silicon CMOS,
which is important as it may ease integration of CNTs onto
this well-established technology.

The first complementary (CMOS-like) logic gates were
reported by Derycke and coworkers [51]. In that work, two
different techniques were used to produce n-type devices.
An inverter gate was created by combining two CNT-FETs:
a p-type device in the ambient and a vacuum-annealed n-type
device. A more compact and integrated approach uses potas-
sium doping to convert one of the two CNT-FETs built on
the same CNT to n type. The masking of the other transistor
which remained p type was accomplished by photoresist. The
circuit had a voltage gain of about two, suggesting that inte-
gration, without signal degradation, of many devices along a
single CNT can be accomplished. Shortly thereafter, Bachtold
and coworkers [70] used p-type CNT-FETs along with resis-
tors to build prototype logic gates based on an older transistor-
resistor scheme. They went a step further in complexity and
wired three such inverter gates to form a ring oscillator. The
large parasitic capacitances severely degraded the perfor-
mance of the circuit which oscillated at only about 5 Hz. Later
Javey and coworkers [54] used another scheme for converting
p-into n-type CNT-FETSs and to wire up CMOS inverters with
gains in excess of 10 and CMOS ring oscillators with frequen-
cies in the 100 Hz range. Very recently Chen and coworkers
[71] reported CMOS ring oscillators operating at frequencies
up to 52 MHz. However, these reported frequencies are well
below the expected AC response of CNT-FETs, which is diffi-
cult to assess because of the relatively small current signals

in these devices. Most recently, the nonlinear current-voltage
characteristics of CNT-FETs were used to demonstrate that
DC characteristics of CNT-FETs are not affected by AC
fields at least up to 500 MHz [72]. However, operation up to
10 GHz [73] and later 50 GHz [74] have been reported, albeit
with considerable signal attenuation.

3. QUANTUM TRANSPORT MODELS

This section outlines the theory of the NEGF techniques
for modeling transport phenomena in semiconductor
devices. The NEGF techniques, initiated by Schwinger
[75], Kadanoff, and Baym [76], allow one to study the time
evolution of a many-particle quantum system. Knowledge
of the single-particle Green’s function provides both the
complete equilibrium or nonequilibrium properties of the
system and the excitation energies of the systems containing
one more or one less particle. The many-particle informa-
tion about the system is cast into self-energies, parts of the
equations of motion for Green’s functions. Green’s func-
tions can be expressed as a perturbation expansion, which is
the key to approximate the self-energies. The NEGF tech-
niques provide a very powerful technique for evaluating
properties of many-particle systems both in thermodynamic
equilibrium and also in nonequilibrium situations.

The basic approach developed in the early 1970s has
become increasingly popular during the last 10 years. The
motivation for the development of the NEGF tunneling
formalism was the metal-insulator—metal tunneling experi-
ments that received much attention during the 1960s [77].
The accelerated use of the approach was motivated by exper-
imental investigations of mesoscopic physics made possible
by high-quality semiconductor heterostructures grown by
molecular-beam epitaxy. In 1988, Kim and Arnold were the
first to apply the NEGF formalism to such a system, specifi-
cally, a resonant-tunneling diode [78]. As experimental
methods progressed, allowing finer manipulation of matter
and probing into the nanoscale regime, the importance
of quantum effects and tunneling continuously increased.
The theory was adapted to address the current systems
of interest ranging from mesoscopic to single-electronics,
nanoscaled FETs, and molecular electronics.

The general formalism for NEGF calculations of current
in devices was first described in a series of papers in the
early 1970s [79-82]. The partitioning of an infinite system
into left contact, device, and right contact, and the deriva-
tion of the open boundary self-energies for a tight-binding
model was presented in [79]. This theory was rederived for a
continuum representation in [79B], tunneling through local-
ized impurity states was considered in [81], and a treatment
of phonon-assisted tunneling was derived in [82]. In 1976,
the formalism was first applied to a multiband model (two
bands) to investigate tunneling [83] and diagonal disorder
[84], and in 1980 it was extended to model time-dependent
potentials [85].

The applications of the NEGF techniques have been
extensive including quantum optics {86], quantum correc-
tions to the Boltzmann transport equation [87, 88], high
field transport in bulk systems [89], and electron transport
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through nanoscaled systems. Over the last decade, NEGF
techniques have become widely used for modeling high-
bias, and quantum electron and hole transport in a wide
variety of materials and devices: [II-V resonant tunnel
diodes {78, 90-103], electron waveguides {104], superlat-
tices used as quantum cascade lasers [105], Si tunnel diodes
[106, 107], ultrascaled Si MOSFETs [7, 108-110], Si nano-
pillars [111, 112], CNTs [113-124], metal wires [125, 126],
organic molecules [127-143], superconducting weak links
[144], and magnetic leads [115, 145, 146]. Physics that have
been included are open-system boundaries [79], full band
structure [98, 99, 106, 107, 147], band tails [107], the self-
consistent Hartree potential [92, 148], exchange-correlation
potentials within a density functional approach [10, 114, 125,
128, 129, 131], acoustic, optical, intravalley, intervalley, and
interband phonon scattering, alloy disorder and interface
roughness scattering in Born-type approximations [93-98,
105-107], photon absorption and emission [105], energy
and heat transport [101], single-electron charging and
nonequilibrium Kondo systems [149-155], shot noise [96,
100, 156], A.C. [91, 157-162], and transient response [159,
163]. Time-dependent calculations are described further in
[164]. General tutorials on the NEGF techniques [165, 166]
and the applications can be found in [98, 167, 168].

This section continues with a brief description of stan-
dard expressions, where one shall rely on the second quan-
tization formulation. Various formulations of many-particle
Green’s function theory exist. For instance, in equilibrium
theory there is both a zero-temperature as well as a finite-
temperature (Matsubara) formalism [164, 169, 170]. The
formulation of the more general nonequilibrium finite-
temperature theory which also applies to equilibrium situ-
ations as a special case is introduced next, and the kinetic
equations for this formalism are discussed. Applying Wick
theorem, a perturbation expansion of Green’s functions can
be achieved. Such expansions provide methods to approxi-
mate self-energies owing to various scattering mechanisms.
Finally, a comparison of Green’s function formalism with
other transport models is presented.

3.1. NEGFs

In this section, a general formalism for systems at finite
temperature under nonequilibrium conditions is presented.
First, the ensemble average of an operator for nonequilib-
riumis defined. Then the contour-ordered NEGF formalism
is introduced and the equation of motion for Green’s
function is presented.

3.1.1. Equilibrium Ensemble Average

In many-particle problems it is common to use the interac-
tion representation (see Appendix A)

H=Hot fA{mla (20)

where H is the noninteracting Hamiltonian and A™ is the
perturbation, which contains all the interactions, that is
Ry RIS Hei—pne At finite temperatures, one assumes
that the particle, either electron or phonon, is interacting

with a bath of other particles. The exact state of all these
other particles is not known, since they are fluctuating
between different configurations. At finite temperature
under thermodynamic equilibrium the state of a system is
described by the equilibrium density operator p [171]. In
treating such systems, it will be most convenient to use
the grand canonical ensemble, which allows for a variable
number of particles. Therefore, the system is considered
to be in contact with a heat bath of temperature 7 and a
particle reservoir characterized by the Fermi energy ..
With the definition K =H ~E N, where N is the particle
number operator, the statistical operator can be written as

. e BK 21
pzﬁfgy (1)

where the short-hand notation 8= 1/k,T is used. The oper-
ator K may be interpreted as a grand canonical Hamilto-
nian. Given the density operator, the ensemble average of
any operator O can be calculated as

(6) -n[40).

o] @)

Tr| e BK

3.1.2. Nonequilibrium Ensemble Average

We employ the standard device for obtaining a nonequilib-
rium state. At time f,, prior to which the system is assumed to
be in thermodynamic equilibrium with a reservoir, the system
is exposed to a disturbance represented by the contribution
;5 to the Hamiltonian. The external perturbation can, for
instance, be a time-varying electric field, a light excitation
pulse, and so forth. The total Hamiltonian is thus given by

,,»'/A'(l‘) - [f]O+]_A1i11t _l_]f[ext :}A]_!_]flext, (23)

where H®'=0 for t<ty. One is not restricted to using
the statistical equilibrium state at times prior to #, as the
initial condition. As shown by [172], a nonequilibrium situ-
ation can be maintained through contact with a reservoir.
A discussion of the coupling of a system to a reservoir has
been studied in [173]. Nonequilibrium statistical mechanics

is concerned with calculating average values <0,; (f)> of
physical observables for times ¢ > ¢, Given the density oper-
ator p, the average of any operator O is then defined as

(04 (1)) =17 5O (1)), (24)

where O (1) is an operator in the Heisenberg picture. The
time-ordered NEGF can be defined as

Gleor) ==ty (9t (o)) @)

1
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where 7 , is the field operator in the Heisenberg picture
evolving with the Hamiltonian .+ defined in (23), the
bracket ...} is the statistical average with the density oper-
ator defined in (24), and T is the time-ordering operator.

One can evaluate Green’s functions by using Wick’s theorem,
which enables us to decompose many-particle Green’s functions
into sums and products of single-particle Green’s functions
[169]. The restriction of the Wick theorem necessitates that the
field operators and the density operator have to be represented
in the interaction picture, or equivalently, their time evolution is
governed by the noninteracting Hamiltonian f7 .. The contour-
ordered Green’s function, which is introduced next, provides a
suitable framework for this purpose.

3.2. Contour-Ordered Green’s Function

To express the field operators in the interaction representation
an operator § is defined (see Appendix A.4). The time inte-
gral in the § operator can be written as two parts: one goes
from (—e»,f), while the second goes from (¢,— =) and one then
obtains the contour C, introduced by Keldysh [174]. The inte-
gration path is a contour, which starts and ends at —es . Instead
of the time-ordering operator (154), a contour-ordering oper-
ator can be employed. The contour-ordering operator T,
orders the time labels according to their order on the contour
C. Under equilibrium condition the contour-ordered method
gives results that are identical to the time-ordered method.
The main advantage of the contour-ordered method is in
describing nonequilibrium phenomena using Green’s func-
tions. Nonequilibrium theory is entirely based upon this
formalism, or equivalent methods [164].

Any operator O, in the Heisenberg picture can be trans-
formed into the interaction picture (see (146))

Oy () =Te {58 Ou
=1e{$8'58 6.} (26)
=1c {S"cOAI}y

|

where
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Therefore, Green’s function in (25) is given by

G(rnr,t) :_%<TC{§C‘/A/I("”)WT('/ )}>O> (28)

where (...); represents the statistical average with respect to
p, (noninteracting density operator). From here we assume
that all statistical averages are with respect to p, and drop
the 0 from the brackets {...),

3.3. Perturbation Expansion of
Green’s Function

It was shown that Green’s functions can be written in terms
of the § operator, see (28), where S includes the effects of
interactions and external peltmbdtions see (27). Unfor-
tunately, it is not possible to give an analytical solution for
G(r,t;r",t'), unless the interaction perturbation A™ is set
equal to zero. This gives the noninteracting Green’s function
(see Appendix B)

G() (l‘,f;l'/,f’) ==

el Cid ¢ 0))) @

which is central for any perturbation expansion.

Green’s function by expanding the S operator as series
of products of H‘“t in the numerator and the denominator.
By expanding thc S operator one obtains (see (153))

n!( )fdtl J.df”T mt (11)-. HIIH(n)l,l?ﬁl‘J)([/f(x",t’)}

G(r,t;x',t') =

(30)
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The expansion of the numerator of Green’s function in (30)
can be written as

G = (1 i ()i (.)})

a4

+<J;{ i ()i i )}>+”"(31>

Gy

where the superscript denotes the order of perturba-
tion. The zero-order perturbation leads to noninteracting

Green’s function Gy =iG, Wick’s theorem allows us to
write each of these brackets in terms of noninteracting
Green’s function and the interaction potential. The same
procedure can be applied to the denominator. The terms

o)
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Figure 7. Keldysh contour branches C, = (—eo, o) and C, = (oo, —o0).
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in the expansion of the denominator, <S(°°,—°°)>, are called
vacuum polarization terms [175].

Different expansion terms achieved from the Wick theorem
canbe translated into Feynman diagrams. Feynman introduced
the idea of representing different contributions obtained from
the Wick decomposition by drawings. These drawings, called
diagrams, are very useful for providing an insight into the
physical processes which these terms represent. The Feynman
diagrams provide an illustrative way to solve many-body prob-
lems and the perturbation expansion of Green’s functions.

3.3.1. Wick Theorem

The Wick decomposition allows a perturbation expansion
of Green’s functions. It always holds for zero-temperature
Green’s functions and only under the condition that
field operators must be given in the interaction picture
(Appendix A.2). Their time evolution is govelned by the
noninteracting Hamiltonian fr,, and g™ is treated as
a perturbation. If these conditions are fulfilled, Wick’s
theorem states that the expectation values of the products
of the field operators are equal to the sum of the expecta-
tion values of all the possible pairs of the operators and that
each of these pairs will be a noninteracting single-particle
Green’s function

(160,03 (oo ool

<;[{0,, 0, }> .

The sum runs over all P, distinct permutations of the r
indices. It should be noticed that brackets such as (32) vanish
if the number of creation and annihilation operators is not
the same. If the number of annihilated particles is not the
same as the number of created particles, then the system will
not come back to its ground state. As a result the expecta-
tion value over the ground state vanishes. With the same
reasoning one concludes that if both the operators appearing
in a bracket are annihilation or creation operators, the expec-
tation value disappears, otherwise one obtains an expression
proportional to the noninteracting Green’s function G . The
most general proof of this theorem is owing to [176].

3.4. Dyson Equation

The Dyson equation can be achieved by classifying the
various contributions in arbitrary Feynman diagrams.
Dyson’s equation summarizes the Feynman-Dyson pertur-
bation theory in a particularly compact form. The exact
Green’s function can be written as the noninteracting
Green’s function plus all connected terms with a nonin-
teracting Green’s function at cach end. By introducing the
concept of self-energy X, the Dyson equation takes the form
shown in Figure 8.

@) (r,h)

Figure 8. Feynman diagrams showing the general structure of G.
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The corresponding analytic expression is given by

G(r,;;x',t')= G, (r,5;0',1')

33
" j (11j512G0(1~,r;1)2(12)G0(2;r’,r’), )

where the abbreviations 1=(r,) and !’dlzjdqldq are
used. The self-energy 2. describes th¢ renormélization
of single-particle states owing to the interaction with the
surrounding many-particle system and the Dyson equation
determines the renormalized Green’s function.

Another important concept is the proper self-energy
insertion which is a self-energy inscrtion that cannot be sepa-
rated into two pieces by cutting a single-particle line. By def-
inition, the proper self-energy is the sum of all the proper
self-energy insertions, and will be denoted by X" Using the
perturbation expansion, one can define the proper self-
energy 2 as an irreducible part of Green’s function. Based
on this definition first-order proper self-energies, which are
resulted from the first-order expansion of Green’s function,
are shown i in Figure 9. These dlaglams are referred to as the
Hartree (X7) and the Fock (£F) self-energies.

The self-energy can also, in principle, be introduced
variationally [176]. It follows from these deﬁnitions that the
self-energy consists of a sum of all possible repetitions of
the proper self-energy

Z(rpr, )= X (r a0 (34)
a1 fa2x (n1)Gy(12)2" (2070 )+

Correspondingly, Green’s function in (33) can be

rewritten as
G(r,t0,t" )= Gy (r,50,1) 35)
+[ a1 26y ()3 (12) Gy (210 )+

which can be summed formally to yield an integral equation
(Dyson equation) for the exact Green's function

G(r,t;r7,t") = Gy (r,t51,1')

36
+[at[a2ay(rs1) (12)G(200), (o)
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Figure 9. Feynman diagrams of the first-order proper self-energies.
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In a similar manner, one can show that the Dyson equation
can also be written as

G(r,t;r", ") =Gy (r,t;0,1) (37)

+[ara26(r,61)5" (12)Gy (27,1,

3.5. Approximation of the Self-Energy

An exact evaluation of the self-energy is possible only for
some rather pathological cases. For real systems one has to
rely on approximation schemes. Hence, a natural approach
is to retain the single-particle picture and assume that each
particle moves in a single-particle potential that comes
from its average interaction with all of the other particles,
Thus, as a first-order approximation one can keep just the
first-order contribution to the proper self-energy 2 =~ X;
(see Fig. 9) . This approximation corresponds to summing
an infinite class of diagrams containing arbitrary iterations
of ;. Therefore, any approximation for X generates an
infinite-order series for Green’s function.

However, using noninteracting Green’s function in self-
energies, which is referred to as Born approximation, is not
fully consistent, since the background particles contributing
to the self-energy are treated as noninteracting. In reality,
of course, these particles also move in an average potential
coming from the presence of all the other particles. Thus,
instead of noninteracting Green’s functions (single lines),
one has to use the exact Green’s function (double line) in
the proper self-energy, as shown in Figure 10. Since the exact
Green’s function G both determines and is determined by
the proper self-energy X, this approximation is known as
the self-consistent Born approximation. The self-consistent
approach preserves conservation laws, for example, the
continuity equation holds valid (Section 3.8.4). Through-
out this work the self-consistent Born approximation is

applied.

Figure 10. Feynman diagrams of the self-consistent first-order proper
self-encrgies.
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3.5.1. Elecron—Electron Interaction

The self-consistent Hartree self-energy owing to electron—
electron interaction is given by [177]

Zel el ("1}1) = —ihjdf3jd"3 43V (1 =13)Glrst13573,15),
—in J' dry V(1 = 1) Gl t13,11)
= [ (ry = rs)n(rs.00)
_J'd,. ¢ o(rs11)

-l -

=—qo(r).

(38)
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where o(r,t)/ (—q) = n(x,t)= —ihG(x,t,1,1) (see Section 3.8.1).
The potential ¢ resulting from the Hartree self-energy is
in fact the solution of Poisson’s equation with the charge
density p. The Hartree self-energy is instantaneous.

3.5.2. Electron—-Phonon Interaction

The electron-phonon interaction Hamiltonian can be
written as [170]

ﬁel ph f1 J.dllwl 1,f1> Z eiqllanl/Alq]([l) I/}I<r1’tl)’
a4 (39)

~iw, 3 +iw,

where Aq (1) = (b, z¢ +blg e ’/‘f) by, and b g are
the annihilation and creation operators f01 phonons with
wave vector g, polarization A, and energy fiwg », and M ,
is the electron-phonon interaction matrix element. The zero-
order perturbation gives the noninteracting Green’s function.
The first-order term of the perturbation expansion must vanish
because it contains the factor (A4,,, ) which is zero since the
factors (b,,A) and (b’ ,5,» are zero [170]. Similarly, all the odd
terms Vamsh because their time-ordered bracket for phonons
contains an odd number of A  factors. Applying Wick’s
theorem (Section 3.3.1), only the even terms contribute to the
pertuxbatlon expansion for the electron-phonon interaction

where FN is the time-ordered products of electron operators.
Notice that, owing to the properties of the annihilation and
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creation operators for Bosons [170], (A, ;(#1)A4,, 1(5))=0
unless q, =—q;, therefore, one obtains

Kl = z eiql-(l.]—rz)Mél’;vihD)bo (a1.6.5), (41)
a4

where D (q;.f),5) is the noninteracting phonon Green’s
function (see Appendix B). The lowest-order self-energies
owing to electron-phonon interaction are also referred to
as Hartree and Fock self-energy by analogy to the treat-
ment of the electron-electron interaction. However, the
Hartree self-energy owing to electron-phonon interaction
is zero since it corresponds to phonons with q = 0, but such
phonon is either a translation of the crystal or a permanent
strain, and neither of these meant to be in the Hamiltonian.
The analytical expression regarding the contribution of the
self-consistent Fock self-energy (Fig. 10) is given by [95]

Zel_ph(r]’t];rz;fz):ihz giql‘(rl*rz) (42)

q;.4
Mél,)vG(l‘pfl;l'z,’z)Da CTRAY

3.6. Analytical Continuation

The contour representation is rather impractical in calculations,
and one prefers to work with real-time integrals. The procedure
of converting the contour into real-time integrals is called analytic
continuation [164]. We followed here the formulation by Langreth
[178]. In this section we are only concerned with temporal vari-
ables, therefore, spatial variables have been suppressed.

3.6.1. Real-Time Formalism

The contour C, depicted in Figure 7 consists of two
branches, C, and C,. Each of the time arguments of Green’s
function can 1es1de either on the first or second part of the
contour. Therefore, contour-ordered Green’s function thus
contains four different Green’s functions

G (") teCyt'eCy
G(1t') teCr'eC,

6(1e)= G(nr) el
(1)

(43)

Lt t,t'eC,

The greater (G), lesser (G~), time-ordered (G,), and
antitime-ordered ( G; ) Green’s functions can be defined as

G>(f,l‘,) =—in~! < t/ >’
G<(T>{/) =+if <l//H (t >’
Gler) e < {0 ()
o= (i () (1)
0 =) (G606,
)+ 6(t~1)G

=+0(1-1')G7 (1

G:(1t) :—ih“1<Tf{1,f/H ()i (f)}>
=—6(r'~ )i (i (1) ()
+0(e=2)in (9 (0 (1))

=+0(t'—1)G” (1,0')+ 0(t—1')G=(1,t'), (44)

where the time-ordering operator 7, is defined in (154)
The antitime-ordering operator 7 can be defined in a
similar manner. Since G +G;= G£+G< there are only
three linearly independent functions. The freedom of
choice reflects itself in the literature, where a number of
different conventions can be found. For our purpose the
most suitable functions are the G< and the retarded (G")
and advanced (G*) Green’s funcnons defined as

r’)[G> (t,t)-G* (tz)}
z’)[G< (t,v)-G~ (rr)] (43)

G*(1,1") =+0(r~

G (1,t') =+6(t-

It is straightforward to show that G' -G* =G~ - G~.

The next step is replacing contour by real-time integrals
in the Dyson equation. In that equation one encounters the
following contour integrals:

D(1,1)= jc drA(t7)B(z0), (46)

and their generalizations involving products of three or
more terms. For that purpose one can employ the Langreth
theorem [178] (see Table 2).

3.7. Quantum Kinetic Equations

In this section the equations of motion for the NEGFs
are introduced. There are two different, but equiva-
lent, formulations: the Kadanoff-Baym and the Keldysh

Table 2. Rules for analytic continuation derived from the Langreth
theorem.

Contour Real axis

D:j AB D<—J.i ATB< + A< B“}
c
Dr J rBl
t

D= :J [A“B“CZ + ATB<C? +AZBHCZ‘J
t

D:J. ABC
C

D' :J- A'B'C"
1

D(e.0)=A(e7)B(ET) D (1) ()5 (11)
D' 1,0y =A% (r,0")B" (1,t)+ A" (1,1")
xB<(1,')+ A (r,') B (1,1")
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formulation. These are treated in the following subsec-
tions. Finally, kinetic equations for steady-state condition
are presented.

3.7.1. The Kadanoff-Baym Formulation

The starting point of the derivation is the differen-
tial form of the Dyson equation. By assuming that
[ihd, = Ho(D]Gy(12)= 6,5, eqns (36) and (37) can be

rewritten as [176]
[+ind,, = £10(1)]G(12)= 6, 5 —zthjc d35(13)G(32), (47)
[~in,, - f14(2)|G(12) =5, —mjc d3G(13)2(32). (48)

Note that the singular part of the self-energy on the contour,
which corresponds to the Hartree self-energy (Section 3.5),
does not appear explicitly in the kinetic equations, but is
included in the potential energy of the single-particle
Hamiltonian g, .

Using the Langreth rules (Table 2) and fixing the time
arguments of Green’s functions in (47) and (48) at oppo-
site sides of the contour, one obtains the Kadanoff-Baym
equations [76, 176]

[+in0, - fr,(1)]G*(12) = j d33" (13)G+(32)
(49)

+stzZ (13)G*(32),

[-ind,, - F4(2) |G- (12) = f d3GF (13)2°(32)
+,[d3GZ (13)2%(32).

The Kadanoff-Baym equations determine the time evolu-
tion of Green’s functions, but they do not determine the
consistent initial values. This information is contained in
the original Dyson equations (36) and (37), and lost in the
derivation. To have a closed set of equations, the Kadanoff-
Baym equations must be supplemented with Dyson equa-
tions for G* and G*. By subtracting (50) from (49), one finds
the equation satisfied by G* [176]

(50)

[+ita, ~ Ay(1)]G" (12)- [a3x (B)C7 (32) =315, (1)

[<it,, - Ho(2) |6 (12)- [ d3%” (13) (32)=6,5, (52)
Similar relations hold for the advanced Green’s functions.

3.7.2. The Keldysh Formulation

For certain applications in classical transport theory it is
advantageous to write the Boltzmann equation as an integral
equation, rather than an integrodifferential equation. An
analogous situation holds in quantum kinetics. Instead of
working with the Kadanoff-Baym equations (49) and (50),
it may be useful to consider their integral forms. Histori-
cally, Keldysh [174] derived his alternative form almost

simultaneously and independently of Kadanoff and Baym.
However, the Keldysh and Kadanoff-Baym formalisms are

equivalent.
By applying Langreth’s rules to the Dyson equation (36)
one obtains

G =G5 +G TG +GL I G +Gi=*G*. (53)

For convenience, a notation where a product of two terms
is interpreted as a matrix product in the internal variables
(space, time, etc.) has been used. One can proceed by itera-
tion with respect to G . Iterating once and regrouping the
terms, one obtains

G*=(1+G5 2G5 (1437 G*)
HGr+ay Gg)fc;ﬂ (54)
+Gy Y G Y GR

The form of (54) suggests that infinite-order iterations
result in [164]

G =(1+G"Y G5 (1+3°G" |+ G'L°G*. (55)

Eqn (55) is equivalent to Keldysh’s results. In the original
work; however, it was written for another function,
Gg =G~ +G”. This difference is only of minor signifi-
cance [164].

The first term on the right-hand side of (55) accounts for
the initial conditions. One can show that this term vanishes
for steady-state systems, if the system was in a noninter-
acting state in the infinite past [164]. Thus, in many applica-
tions it is sufficient to only keep the second term.

Similar steps can be followed to obtain the kinetic
equation for G > . In integral form these equations can be
written as

G>(12)= fd3 f 4G (13)22 (34)G* (42). (56

The relation between the Keldysh equation and the
Kadanoff-Baym equation is analogous to the relation
between an ordinary differential equation plus a boundary
condition and the corresponding integral equation.

3.7.3. Steady-Stale Kinetic Equations

In the steady state, Green’s functions depend on time differ-
ences. One usually Fourier transforms the time difference
coordinate, T =¢—1t, to energy,

G(l‘1 ,l'z;E) - j%e[EﬂhG(rl ’1'2;7)' ©7)

Under steady-state condition the quantum kinetic equa-
tions, (51), (52), and (56), can be written as [165]:

[E - Hy(n )}Gr (r.13:E)
»J- dry 37 (r,133E) G (13,193 E) = S 1> (58)
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= (r.rpE)= Jdr3J.d1'4G" (r,13;E)

< (59)

27 (03,1 E) G (14,15 E),
where 2 is the total self-energy. A similar transformation
can be applied to self-energies. However, to obtain
self-energies one has to first apply Langreth’s rules and
then Fourier transform the time difference coordinate
to energy. We consider the self-energies discussed in
Section 3.5. The evaluation of the Hartree self-energy
owing to electron-electron interaction is straightfor-
ward, since it only includes the electron Green’s function.
However, the lowest-order self-energy owing to electron-
phonon interaction contains the products of the electron
and phonon Green’s functions. Using Langreth’s rules
(Table 2) and then Fourier transforming the self-energies
owing to electron-phonon interaction, (42) takes the
form

> . d(hw /1) (1 -1
Zéfph (1'191'2§E) _ ’Z j%elq (r 1‘)M§,}»
4. & (60)

GZ (rl,rz;E—ha)q’;‘)D% (q,ha)q,k).

To calculate the retarded self-energy, however, it is
more straightforward to Fourier transform the relation
THE) = 0(0)[X7 (1) - (1)), see (45). By defining the broa-
dening function I,

r(x‘l,l'z;E):i[z> (r,0;E) - X7 <"1"’2;E>]
= 23m X% (1,03 E), (61)

the retarded self-energy is given by the convolution of _,jr( E)
and the Fourier transform of the step function [21]

S (E)= _ir(E)®(5_(f_)+ ZLE] 62)

where ® denotes the convolution. Therefore, the retarded
self-energy is given by [98]

E' (fpl‘z;E): _%F(H,IQQE)-F]) @r(rl’rz;E )

, (63
2 E-FE’ (63)

where P stands for principal part.
3.8. Relation to Observables

Observables such as particle and current densities are
directly linked to the greater and lesser Green’s functions.

In this section some of the most important observables and
their relations to Green’s functions are discussed.

3.8.1. Electron and Hole Density

The electron and hole concentration are, respectively,
given by

" (r,t) = <1[/T(r,r)1f/ (r,r)> = —ihG* (r,t;r,t), (64)
p(t)= (9 (r0g (00))=+inG> (rars).  (65)

In the steady state (see Section 3.7.3) these relations can be
written as [165]

n(r)=—i ;{—iG<(r,E), (66)
plr)=+i ;[—iG>(r,E) (67)

The total space charge density is given by

o(r)= g(p(x)-n(r)). (68)

3.8.2. Spectral Function and Local
Density of States
The spectral function is defined as

A0 xS E) =i G (003 E) -G (rx3E) | (69)

The spectral function provides information about the nature
of the allowed electronic states, regardless of whether they
are occupied or not, and can be considered as a general-
ized density of states. The diagonal elements of the spectral
function give the local density of states

R

3.8.3. Current Density

To derive an equation for the current density, one uses
the conservation law of quantum mechanical variables
[76]. The starting point is the subtraction of eqn (49)
from (50)

in(d, +9,, )G (12)+ 2—[(v,’ 9, )V, + ¥, )| (12)-[u()-v()]6*(12)=
+[d3[ 27 (13)G7(32)+ 25 (13)G* (32)+ G (13)2°(32)+ G* (13)2°(32) |, (71)

b
fl
1

77
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where H,(1)= _7‘72/2;77V13+U(1) has been assumed. By
taking the limit 1—-2 (r, -1, and#, —¢) and assuming
that the right-hand side of (71) approaches zero in this
limit, one obtains

i lim 2667 (12)+ 3,67 (12)]
R
hz

| 2m lim
12‘—)11

+V (v,, - V., JG°(12) |=0. (72)

By multiplying both sides by —q and recalling the defini-
tion of the charge density, one recovers the continuity
equation,

arlg(l‘l,tl)-l—V-J(FI,Z‘I)ZO, (73)

where the current density is defined as

in’q |,
Ieon)= JZZ;;? ,El—anil Vi _Vl'z,]G< (n.1imat). (74)

In the steady state the current density takes the form [165]

_ing [dE

J(r)= o lim (V, -V, )G*(r,0.E).  (75)

2r =31

3.8.4. Current Conservation

The current is conserved as long as the right-hand side of
(71) approaches zero as 2 — 1

lim
21

=0, (76)

de =7 (13)G(32)+ 2<(13)G*(32)
+G'(13)25(32)+ G*(13)£(32)

The current is obviously conserved if there is no interaction,
whereas the situation is different in the interacting case. As
described in Section 3.5, the interactions are described in
terms of appropriate self-energies. However, self-energies
can often be obtained approximately only. Therefore,
one could choose an approximation which violates the
continuity equation, which, of course, is not physical. It is
straightforward to show that the approximated self-energy
owing to electron-phonon interaction within the self-
consistent Born approximation (42) preserves the current
continuity.

4. IMPLEMENTATION

Novel structures and materials such as decananometer Si
bulk MOSFETSs, multiple-gate MOSFETs, CNT-FETs, and
molecular-based transistors are expected to be introduced to
meet the requirements for scaling. A deep understanding of
quantum effects in nanoelectronic devices helps to improve
their functionality and to develop new device types. For that
purpose extensive computer simulations are required.

A multipurpose quantum-mechanical solver, the Vienna
Schrédinger-Poisson (VSP) solver, with the aim to aid
theoretical as well as experimental research on nanoscale
electronic devices, has been developed [179]. VSP is a
quantum-mechanical solver for closed as well as open
boundary problems. The software is written in C** using
state-of-the-art software design techniques. The chosen
software architecture allows one to add new models easily.
Critical numerical calculations are performed with stable
numerical libraries such as BLAS, LAPACK, and ARPACK.
VSP holds a graphical user interface written in JAVA, as
well as an XML-based interface. Furthermore, VSP has an
open software application interface and can be used within
third party simulation environments.

This section describes the implementation of the outlined
NEGF formalism into VSP. For an accurate analysis it
is essential to solve the coupled system of transport and
Poisson equations self-consistently [142]. The discretization
of Poisson’s equation and the quantum transport equation
is studied.

A tight-binding Hamiltonian is used to describe transport
phenomena in CNT-FETs. The mode-space transformation
used in this work reduces the computational cost consid-
erably. The mode-space approach takes only a relatively
small number of transverse modes into consideration. To
reduce the computational cost even further, we used the
local scattering approximation [95]. In this approximation
the scattering self-energy terms are diagonal in coordi-
nate representation. We show that the local approximation
is well justified for electron-phonon scattering caused by
deformation potential interaction.

We investigate methods of generating adaptive energy
grids for the transport equations and their effect on the
convergence behavior of the self-consistent iteration. Our
results indicate that for accurate and fast convergent simu-
lations, the energy grid must be carefully adapted.

4,1. Electrostatic Potential and the Poisson
Equation

Planar CNT-FETSs constitute the majority of devices fabri-
cated to date, mostly owing to their relative simplicity and
moderate compatibility with existing manufacturing tech-
nologies. However, coaxial devices (see Fig. 11) are of
special interest because their geometry allows for better
electrostatic control than their planar counterparts. These
devices would exhibit wrap-around gates that maximize
capacitive coupling between the gate electrode and the

{

AN

Figure 11. Schematic of the coaxial CNT-FET.
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CNT channel. Presently, the closest approximations to this
geometry are the electrolyte-gated devices [180, 181]. Alter-
native structures that place CNTs vertically with respect
to the substrate have already been used for field-emission
applications {182, 183]. Coaxial CNT-FETs could be fash-
ioned by placing CNTs inside the cavities of a porous mate-
rial such as alumina, surrounding them by gate electrodes.

Appropriate treatment of the electrostatic potential in
the device is essential for accurately predicting the device
characteristics [184]. The electron~-electron interaction self-
energy of lowest order yields the Hartree potential, which is
the solution of the Poisson equation,

V.eVo = -0 (77)

where ¢ is the total charge density, given (in cylindrical
coordinates) by [185]

,e q[p(z)—n(z)]c?(r —Fenr) 8)

2 '

Here, n and p denote the electron and hole concentra-
tion per unit length, respectively, and 7., is the radius
of the CNT. In (78) &(r)/r is the Dirac delta function in
cylindrical coordinates, implying that the carrier density
is approximated by a sheet charge distributed along
the insulator-CNT interface [185]. Owing to azimuthal
symmetry in wrap-around gate devices, the carriers are
uniformly distributed as a function of the azimuthal
angle.

4.1.1. Discretization of the Poisson Equation

To solve partial differential equations numerically, they
are usually discretized. For that reason, the domain vwhere
the equations are posed has to be partitioned into a finite
number of subdomains v, which are usually obtained by a
Voronoi tessellation [186]. In order to obtain the solution
with a desired accuracy, the equation system is approxi-
mated in each of these subdomains by algebraic equa-
tions. The unknowns of this system are approximations of
the continuous solutions at the discrete grid points in the
domain [187]. Several approaches for the discretization
of the partial differential equations have been proposed.
It has been found to be advantageous to apply the finite
boxes discretization scheme for semiconductor device simu-
lation [187]. This method considers the integral form of the
equation for each subdomain, which is the so-called control
volume v, associated with the grid point p,. By applying
the Gauss integral theorem, the Poisson equation (77) is
integrated as

95 Vo . dA + j odV =0. (79)
av v

Finally, the discretized equation for point /i with neighbor
points j can be written implicitly as

~ 9=
F= ZS: = A+ gV =0, (80)
J

1 Q@
Fai
2
3 il
Fai
Box i Fai +

o4

Figure 12. Box for node /i with six neighbor nodes.

with d; the distance between grid point P; and P, 4; the
interface area between the domains v; and v;, and V; the
volume of the domain V;. For position-dependent €, one
can use here some average, for example g; =(¢; +¢;)/2.
Eqn (80) can be generally written as

where j runs over all neighboring grid points in the same
segment, I; is the flux between points jand i, and G; is the
source term (see Fig. 12) .

Grid points on the boundary dv are defined as having
neighbor grid points in other segments. Thus, for boundary
elements, (81) does not represent the complete control
function £}, since all the fluxes into the contact or the other
segment are missing. For that reason, the information for
these boxes has to be completed by taking the boundary
conditions into account.

4.1.2. Boundary Conditions

Dirichlet boundary conditions are introduced at the source,
drain, and gate contacts. Potentials are conveniently
measured relative to the source potential. The amount of
bending of the vacuum enegy level along the length of the
CNT is given by E,,.(z) = —q¢(z), since we assume that the
local electrostatic potential rigidly shifts the CNT band
structure. The conduction and valence band edges of the
CNT are given by

E (z)=-q¢(z)+qPg,, 0
E\f(Z):_q¢<Z)_qq)Bll~ (%2

The SB heights for electrons (q®yg,) and holes (q@y,,) at the
metal-CNT interface are given by (see Fig. 13)

qPp. = +9Py ~ XN
q®pp = —qPp. +E,, (83)
where q®,, is the work function of the metal contact,
dXent is the electron affinity of the CNT, and E, is the
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Figure 13. Band diagram at the metal-CNT interface with @, = @ .

band gap of the CNT. The work function of CNT 9Pcxr
is defined as the sum of the CNT electron affinity and half of
the band gap in the bulk. Figure 13 shows the band diagram
at the metal-CNT interface with @y = ®yr. The work
function of the CNT is assumed to be ®eyp =4.5¢V [3].
In an intrinsic CNT (undoped) the Fermi level of the CNT
is located in the middie of the band gap. Under these
conditions, equal SB heights for both electrons and holes
are achieved. If the work functions of metal and CNT
do not align, band bending near the contact occurs, and
the SB heights for electrons and holes will be different.
For example, if the work function of the metal contact is
larger than that of the CNT (@, > @yt ), the SB height
for holes is smaller than that for electrons. As a result, a
p-type CNT-FET is achieved, where holes are the majority
carriers.

4.1.3. Interface Conditions

To account for interface conditions, grid points located
at the boundary of the segments (see Fig. 14(a)) are assigned
three values, one for each segment (see Fig. 14(b)) and a
third value assigned directly to the interface, which can be
used to formulate more complicated interface conditions
such as, for example, interface charges.

As discussed in Section 4.1, charges on the CNT are
approximated as sheet charges at the CNT-insulator inter-
face. The boundary flux owing to interface charges is simply
added to the segment fluxes given by (81)

Segment 2

Segment 1
\

NN

559

E+F.; =0, 84
Fo+Frp =0, 59
with y
07 A;
Fp; = #
oAy (85)
By = 25,

where A4, = Ay and g is the interface charge density at some
point i” along the insulator-CNT interface given by (78).
This method satisfies the condition of the discontinuity
of the electric displacement in the presence of interface
charges. For the CNT, the free-space relative permittivity,
Ecnt = 1, is assumed [188].

4.2, Basis Functions and Matrix
Representation

For the purpose of discretization, one can expand the
Hamiltonian, self-energies, and Green’s functions in terms
of some basis functions to obtain the corresponding matrices.
In the tight-binding method one can take the basis functions to
be any set of localized functions, such as atomic s and p orbitals
[98, 103], Wannier functions [189], and so forth. A common
approximation used to describe the Hamiltonian of layered
structures consists of nonvanishing interactions only between
the nearest-neighbor layers. That is, each layer i interacts only
with itself and its nearest-neighbor layers i—1 and i+1.
Then the single-particle Hamiltonian of the layered structure
is a block tridiagonal matrix, where diagonal blocks H; repre-
sent the Hamiltonian of layer / and off-diagonal blocks ¢; ;
represent the interaction between layers ¢ and i+1

® © @
° I-L—I‘l L
tlyHytps
® © o

(860)
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Figure 14. Interface points as given in (a) are split into three different points having the same geometrical coordinates (b).
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Figure 15. Partitioning of the simulation domain into device region and left and right contacts. Each point corresponds to a layer.

where ¢, ;= ijm . The matrix representation of the kinetic
equations (58) and (59) are

[Er-H-3 |G =1, (87)
> g
G<=0 15, G (88)

where Zg., is the self-energy owing to scattering processes
and G*=[G"] [165]. One can partition the layered struc-
ture into left contact with index L, device region with
index D, and right contact with index R (Fig. 15). The
device corresponds to the region where one solves the
transport equations and the contacts are the highly
conducting regions connected to the device. While the
device region consists of only N layers, the matrix equa-
tion corresponding to {87) is infinitely dimensional owing
to the semiinfinite contacts. As shown in Appendix C
the influence of the semiinfinite contacts can be folded
into the device region by adding a self-energy to the
device region. This can be viewed as an additional self-
energy owing to the transitions between the device and
the contacts. In the next sections the matrix representa-
tions of the Hamiltonian and self-energies are discussed
in detail.

4.3. Tight-Binding Hamiltonian

The general form of the tight-binding Hamiltonian for
electrons in a CNT can be written as

o Pt p.q..t
H= Z Ui S pCip + Z ri,j i pCig:
iLp i,],p:q

(89)

The sum is taken over all the rings i, j along the trans-
port direction, which is assumed to be the z-direction of
the cylindrical coordinate system, and over all the atomic
locations p, g in a ring. We use a nearest-neighbor tight-
binding n-bond model [9, 190]. Each atom in an sp“-coor-
dinated CNT has three nearest neighbors, located a._.
away. The band structure consists of 7 orbitals only, with
the hopping parameter 1 =V, = =277 ¢V and zero on-site
potential. Furthermore, it is assumed that the electrostatic
potential U rigidly shifts the on-site potentials. Such a tight-
binding model is adequate to model transport properties in
undeformed CNTs.

In this work we consider zig-zag CNTs. However, this
method can be readily extended to armchair or chiral

CNTs. Within the nearest-neighbor approximation, only
the following parameters are nonzero [9]:

Pa _ pd _
GiZ = 4= 0,00, Vi=2K, (90)
Pa _ P _ _

G = 11 =16,, Vi=2k

Figure 16 shows that a zig-zag CNT is composed of rings
(layers) of A- and B-type carbon atoms, where 4 and B
represent the two carbon atoms in a unit cell of graphene.
Each A-type ring is adjacent to a B-type ring. Within
nearest-neighbor tight-binding approximation, the total
Hamiltonian matrix is block tridiagonal [190]

(11 1
££ Hy 1
;
H= n Hi n (91)
tp Hy 1
7 Hs o
L] o

where the diagonal blocks, H,;, describe the coupling within
an A- or B-type carbon ring and off-diagonal blocks, ¢, and
t,,describe the couplingbetween the adjacentrings. It should

L

AB AB Z

Figure 16. Layer layout of a (n, 0) zig-zag CNT. Circles are rings of
A-type carbon atoms and squares rings of B-type carbon atoms. The
coupling coefficient between nearest-neighbor carbon atoms is 7. The
coupling matrices between rings are denoted by £, and ¢,, where ¢, is a
diagonal matrix and £, is nondiagonal.
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be noted that the odd-numbered Hamiltonians H, refer to
A-type rings and the even numbered ones to B-type rings.
Each A-type ring couples to the next B-type ring according
to ¢, and to the previous B-type ring according to ¢; Each
B-type ring couples to the next A-type ring according to ¢,
and to the previous A-type ring according to £,. In a (n,0)
zig-zag CNT, there are n carbon atoms in each ring, thus,
all the submatrices in (91) have a size of n xn.

In the necarest-neighbor tight-binding approximation,
carbon atoms within a ring are not coupled to each other
so that H, is a diagonal matrix. The value of a diagonal
entry is the potential at that carbon atom site. In the case
of a coaxially gated CNT, the potential is constant along
the CNT circumference. As a result, the submatrices H,
are given by the potential at the respective carbon ring
times the identity matrix,

1_{1‘ = gi = Uii» (92)

There are two types of coupling matrices between the nearest
carbon rings, ¢, and ¢, . As shown in Figure 16, the first type,
) only couples an A(B) carbon atom to its B(A) counter-
part in the neighboring ring. The coupling matrix is just the
tight-binding coupling parameter times an identity matrix,

=11, (93)

The second type of coupling matrix, ¢,, couples an A(B)
atom to two B(A) neighbors in the adjacent ring. The
coupling matrix is

(94)
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The period of the zig-zag CNT in the longitudinal direction
contains four rings, ABAB, and has a length of 3ac_c.
Therefore, the average distance between the rings is

3ac.c
P

Az = (95)

4.4, Mode-Space Transformation

A mode-space approach significantly reduces the size
of the Hamiltonian matrix [8]. Owing to the quantum
confinement along the CNT circumference, circumfer-
ential modes appear, and transport can be described
in terms of these modes. If M modes contribute to
transports, and if M <n, then the size of the problem is
reduced from nxN to M xN, where N is the number
of carbon rings along the CNT. If the potential profile
does not vary sharply along the CNT, subbands are
decoupled [8], and one can solve M one-dimensional
problems of size N.

Mathematically, one performs a basis transformation on
the Hamiltonian of the (1,0) zig-zag CNT to decouple the
problem into n one-dimensional mode-space lattices [190]

s’ Uy o ]
s’ f% Up 11
, T T
H = ) ) 1 Us 1
3! th Uy 1§y
§0 !1 QS )
° °© o
(96)
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with
u; = s'us,
L= §’§1§> o7)
C_ i
L, = S1,9S,
where S is the transformation matrix from the real-

space basis to the mode-space basis. The purpose is to
decouple the modes after the basis transformation, that
is, to make the Hamiltonian matrix blocks between the
different modes equal to zero. This requires that after
the transformation, the matrices U,, ¢,, and f, become
diagonal. Since U, and ty are 1dent1ty matrices multlphed
by a constant, they remain unchanged and diagonal after
any basis transformation, U; =U; and t1 =1, . To diago-
nalize f,, elements of the; tlansfoxmatlon matrix § have
to be the eigenvectors of =2. These eigenvectors are plane
waves with wave vectors satisfying the periodic boundary
condition around the CNT. The eigenvalues are

£y =2te” ™" cos(mv/n), (98)

where v=1,2,...,n [190]. The phase factor in (98) has no
effect on the results such as charge and current density,
thus it can be omitted and # =2tcos(nv/n) can be used
instead.

After the basis transformation all submatrices, U, , #;,
and ¢, are diagonal. By reordering the basis according to
the modes, the Hamiltonian matrix takes the form

H'= . , (99)
HY




562 Numerical Study of Quantum Transport in Carbon Nanotube-Based Transistors

A
vt L
AB ARB

Figure 17. Zig-zag CNT and the corresponding one-dimensional chain
with two sites per unit cell with hopping parameters ¢ and t%’ =2
cos(rmv/n).

where H" is the Hamiltonian matrix for the v th mode [190]
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The one-dimensional tight-binding Hamiltonian H"”
describes a chain of atoms with two sites per unit cell and
on-sitc potential U and hopping parameters ¢ and #
(Fig. 17) . The spatial grid used for device simulation corre-
sponds to the circumferential rings of carbon atoms. There-
fore, the ranks of the matrices for each subband are equal
to the total number of these rings N . Self-energies can
also be transformed into mode-space XV, see Sections 4.5
and 4.6. Green’s functions can therefore be defined for each
subband (mode) and one can solve the system of transport
equations for each subband independently

(101)

(102)

4.5. Contact Self-Energies

Boundary conditions have to be specified to model the
contacts, which act as a source or drain for electrons. While
the matrix representing the Hamiltonian of the device has
a finite dimension, the total Hamiltonian matrix is infinite
dimensional owing to the semi-infinite contacts.

The influence of the contacts can be folded into the device
region. Owing to the transitions between the device and the
contacts, the influence of the contacts can be demonstrated
by adding contact self-energies to the total self-energy

[165]. The self-energy matrices for the contacts and the
Hamiltonian matrix for the device have the same rank, but
the self-energy matrices are highly sparse. For example, only
one carbon ring at the source end of the channel couples to
the source, thus only one submatrix is nonzero for the source
self-energy. Similarly, only one submatrix is nonzero for the
drain self-energy. As shown in Appendix C, nonzero blocks
of the contact self-energies are given by:

4 i o
I, = 1.8, tip

r . (103)
Ip = LRD8 R, | LRD?

IS = +il,f

L e (104)

Xp = +l£13fR=
L, = —iL(1-£), (105)
S o= g1~ fz),

where subscripts L and R denote the left (source) and right
(drain) contacts, respectively, f; p the Fermi factor of the
contacts, &  the surface Green’s function of the contacts,
and finally the broadening functions are defined as

il
il

r, = ifzi-z) = 29wz

i(zh-2)

Surface Green’s functions can be calculated using a recur-
sive relation described in Appendix C.3. In this section two
types of contacts are discussed: semi-infinite CNTs acting as
the source and drain contacts and Schottky-type metal~-CNT
contacts. The respective surface Green’s functions and self-
energies for the both contact types are derived next,

In mode-space representation (see Section 4.4), the
matrices in (103)-(106) become one-dimensional. Thus, the
respective quantities for each mode can be treated as numbers,
and the computational cost decreases considerably.

(106)

I
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4.5.1. Semi-Infinite CNT Contacts

Figure 18 shows carbon rings of A or B type coupled to a
semi-infinite CNT acting as a contact. Each circle (rectangle)
represents a carbon ring consisting of A- or B-type carbon
atoms. The carbon ring couples to the nearest ring, with a
coupling matrix of ¢, or t,, and §L” is the surface Green’s
function for the i th ring in the left extension, ordered from
the channel-contact interface. The recursive relation (196)
can be applied to the CNT in Figure 18 and gives

T T r _
[41‘1 _Z_‘2§L fz]gLu - .1_>
Iy + I[‘
l:él/“) - fﬁg}ﬁ}élﬂ l’

where _Af_L[ =Fl,-U, ~ > (see Appendix C.1), and

i =Scat;;
¢, and 1, are givgn by (93) and (94), respectively. Since the
potential is invariant inside the contact, ﬁLl = A, . Further-

(107)

It
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Figure 18. Computing the surface Green’s function for the left contact.
The surface Green’s function for the ith ring inside the contact is g,.

more, g = g owmg to the periodicity of the CNT lattice.

Using these lelatlons (107) lcpzesents two coupled matrix

equations with two unknowns, g and g* , which can be
1 =Ly,

solved by iteration. However, in mode-space representation
matrices, t; and ¢, are replaced by the numbers # =7 and
1y, respectively. As a result, the surface Green’s function
for each mode can be calculated analytically by solving a
quadratic equation,

2 2 2
22 20,2 WP 2.2
o AL F-n —\/[ALl +h -ty ] —4AL G
ngl = 2

(108)

The self-energy of the left contact for the vth mode is
therefore given by

Sy =rer, (109)

A similar relation holds for the right contact self-energy.

4.5.2. Schottky-Type Metal-CNT Contacts
At the metal-CNT interface, a Schottky barrier (SB) forms,
which governs the operation of CNT-FETs (Section 2.4.2).
The metal region acts as a source and a sink of electrons
in the device region. In this work Pd contacts are assumed.
For transport calculation based on a simplified tight-binding
Hamiltonian, describing only the interaction between d,
orbitals of Pd and p, orbitals of the carbon atoms, the self-
energy for this SB contact can be written as
2gp = lr%pcé’ii,,l (110)
where fy;_c isthe hopping parameter between the metal and
the carbon atoms and gy, is the surface Green’s function

of the metal contact. The contact model in (110) assumes
injection from the contact into all the CNT subbands.

Based on ab initio calculations, it has been shown that
the electronic band structure of the Pd-graphene system
near the Fermi level can be reproduced by considering
the hybridization between the graphene and the Pd bands,
using fpg = 0.15eV [191].

The surface Green’s function contains information about
the band structure of the metal contact. To calculate the
surface Green’s function, one has to specify an appropriate
Hamiltonian for the contacts, for example, one can employ
the tight-binding method [135], density functional theory
[191], or extended Hiickel theory [192]. Contacts can be
approximated as semi-infinite leads along the transport
axis and infinite in the transverse direction. Therefore, the
surface Green’s function can be calculated iteratively along
the transport direction (Section C.3).

4.6. Scattering Self-Energies

The lowest-order electron-phonon self-energies are intro-
duced in Section 3.5, and the steady-state form of these self-
energies has been derived in Section 3.7.3. By transforming
the self-energies (60) into mode-space, one obtains [9]

f?(l) iglz, —z;
C] ph ( )“_ IEJ. [ J)M[i)x.,\/

foj (E—Tza)q,) 7(qhw ).

(111)

where z; is the position of some lattice point i along the
CNT axis. Note that owing to the one-dimensional nature
of CNTs, the coordinate and wave vector variables are all
one-dimensional. In (111) only intrasubband scattering
processes are considered (see Section 2.3.3). To include
intersubband scattering processes, the summation in
(111) would have to run over all the subbands v’ with the
electron—-phonon matrix elements M[ Ay

The electron-phonon self-energies in the self-consistent
Born approximation are expressed in terms of the full electron
and phonon Green’s functions. One should therefore study the
influence of the bare electron states on the phonons first and
then calculate the effect on the electrons of the renormalized
phonon states [170]. In this work we assume that the phonon
renormalization can be neglected. By doing so, we miss to
capture a possible reduction of the phonon lifetime. The above
considerations also appeal to the Migdal theorem [193], which
states that the phonon-induced renormalization of the elec-
tron—-phonon vertex scales with the ratio of the electron mass to
the ion mass [169]. Therefore, one can assume that the phonon
bath is in thermal equilibrium so that the full phonon Green’s
function D, can be replaced by the noninteracting Green’s
functions Dy from (173). As a result (111) can be written as

<V iq(z,' —Zj) 2
Zd ph ( ) Z ¢ ]w(])c
(],)\,

x (nB(hcuq_,.\)Jrl)(‘i (L+ha)[l,) (112)
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where the first term on the right-hand side is owing to the
phonon emission and the second term owing to the phonon
absorption. The summation over wave vector ¢ in (112)
and (113) can be generally transformed into an integral
over the first Brillouin zone,

L
; - af aq,

where L is the normalization length and the limits of the
integral are *3a._ which is the period of the carbon rings,
see (4.3). To calculate electron-phonon self-energies, the
integral in (114) must be evaluated.

(114)

4.6.1. Scattering with OP

In this section the self-energies owing to the interaction of elec-
trons with optical phonons (OPs) are evaluated. As discussed
in Section 2.3.3, the phonon energy and the reduced electron—
phonon matrix elements for OP phonons are approximately
constant and independent of the phonon wave vector. Under this
assumption all the terms except the exponential term in (112) and
(113) can be taken out of the integral (114), and one obtains [41]

—m/(3acc) Z P (iq(Zi il >)

J~7r/(3acc) dg

1
R z;i—z;=0
=13acc t ; 115
0, Z-zj= kx3a._ ( )

3aa

where k is aninteger number. One has to multiply the above
result by a factor of 4, for the number of rings in the lattice
period [41]. Eqn (115) justifies the approximation which
only considers diagonal elements of the electron~phonon
self-energy. As discussed in Section 4.3, by employing the
nearest-neighbor tight-binding method (block), tridiagonal
matrices are achieved. Keeping only diagonal elements
of the electron~phonon seif-energy, the matrices remain
(block) tridiagonal. Therefore, an efficient recursive
method [7] can be used to calculate the inverse matrices.
This implies considerable reduction of the computational
cost and memory requirement.

Using the result of (115) and the relations (15) and (19),
the self-energy owing to scattering with OP can be written as

5, ()= Ml o Kl
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z;;’i,}_ (E)=6, ;Do {(ng(moop )+1)G<‘; (E+hao)
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(116)
Vv - ) v
52 (E)=6, Doy HHB(MOP )+1JGZ (E=T20s]
+"B(hwop)G’>:/(E+ﬁa)OP)J, (117)
where Dgp is given by

h 2 L

Dop =iy ©

2pentLoop ™ op Az
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= (118)
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where Az =3a. /4 (see (4.3)). In the second line in (118),

the mass density of a (r, 0) zig-zag CNT has been replaced

Pent = Wi [ Az, where m is the mass of a carbon atom.
The retarded self-energy can be calculated as (63)

: i dE’ Top, (£)
Zop,, (E)=~5Top,, (E)* Pjg—E—_iE,—-«, (119)
where
Top,, (E)=i[ 25, (E)-Z5p, ()]
= zsm[zgplyj (E)]. (120)

Since the lesser and greater self-energies are assumed to be
diagonal, the retarded self-energy is also diagonal.

4.6.2. Scattering with Acoustic Phonons

Interaction with acoustic phonons (APs) can be approximated as
elastic scattering, £ hwap = E . As discussed in Section 2.3.3,
near the I' point a linear dispersion relation for acoustic
phonons is assumed, @,p(g)=Uap|g|, where v,p is the
acoustic phonon velocity. Furthermore, at room temperature
low-energy phonons have an appreciable occupation, such that

kT

——>> 1.
AV

ng = ng +1= (121)

>
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With eqn (121) and the elastic approximation, the contri-
butions owing to phonon emission and absorption become
equal and can be lumped into one term. As a result, by
using the relations (15) and (19), the self-energies owing to
acoustic-phonon interaction are written as

()= &) KL 6 e). )

7 pPontL Vap
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With the exception of the exponential term, all terms in
(122) can be taken out of the sum and one can convert the
sum into an integral over ¢, see (114) and (115). The self-
energies simplify to

2,%;,,, (E)=8;, jDAPGSV (E), (123)
where similar to (118), Dup is given by
Dyp = kgT 2 £
pentL vip M AP Az
- tol (124)

2
MV ap M ap

A discussion similar to that in Section 4.6.1 gives a justi-
fication to keep only diagonal elements of the self-energy
owing to the interaction of electrons with acoustic phonons,

By substituting (123) in (63), the retarded self-energy is
obtained as

XP,( ) 5 DAPG (E)’

(125)
Owing to the approximations made, the retarded self-
energy for scattering with acoustic phonons is simplified and
directly related to the retarded Green’s function. Therefore,
one does not need to evaluate the integrals such as (119),
which implies a considerable saving of computational cost.

4.7. Evaluation of Observables

To solve the Poisson equation in a self-consistent scheme,
one has to know the carrier density profile in the device.
To study the device characteristics, the current through the
device needs to be calculated. In this section the numerical
evaluation of these two observables is discussed.

4.7.1. Carrier Density

v
Green’s function matrices G< are defined in the basis set
N

of ring numbers i, and subbands v . Thus, the diagonal
elements correspond to the spectrum of carrier occupation
(66) of those basis sites with a given energy E . So the total
electron and hole density (per unit length) at a site ¢ is

given by [41]
dE G
T RNt
H; 12 ey

v

(126)

(127)

where the summation runs over all the subbands contrib-
uting to transport and Az is the average distance between
the rings (4.3). The factor 4 in (126) and (127) is owing to
double spin and double subband degeneracy (Section 2.2.2).
To evaluate these integrals numerically, the energy grid
should be selected such that the numerical error of the

calculation can be controlled. This issue is discussed in
Section 4.8.

4.7.2. Current

By expanding Green’s function in terms of the basis
functions, the continuity equation (73) can be derived as

_9 i (8,67 (1,24 9,G (11,1)
AZ f’g%[} 1 i 2 id

9,0
. J )= () _
Az
v-J

(128)

where J;,,, represents the current passing through a point
between i+1 and . Note that J hasaunitof A rather than
A/m? owing to the one-dimensional nature of CNTs. The
time derivative of Green’s functions can be replaced by the
relation (49),

9,0, = ~fZ~Z{[H] G (tt)-G (tn)H | }
J

+ J.d[/l:zj] (l‘,t’)G; (t/f,) + Z,<] (f,l»/)GjaJ (f/[,) (]29)
G (005, (0067 () ()]
J1+IJZ (t) B J,,l/q_ (f)

= e ,
where the term inside the integral is zero owing to the
condition stated in (76).

The next step is separating J__
posing eqn (128). Caroli proposed the following ansatz
in {79]. The current J is the difference between the flow of
particles from left to right and from right to left. This leads
to the following expression for J; [79]:

H=-q E{H G (10)-G5 (L0)H, ] (130)
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from J_ by decom-

:+1/7

It is straightforward to show that (130) along with an
expression for J;_; satisfies (129).

Under steady-state condition, one can transform the time
difference coordinate to energy to obtain

Je= LY S [

]>n+1 k<n

=) EjdEm[H G (B)],

/>n+1 k<n

(E)-G (F)Hk_j),
(131)

Based on the nearest-neighbor tight-binding method in
mode-space (see Section 4.4), eqn (131) can be simplified to

1] , = ZJ——29¥3[ G<I}
where the summation runs over all the subbands contrib-

uting to transport. The factor 4 in (132) is owing to double
spin and double subband degeneracy.

(132)
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4.7.3. Discussion

The carrier concentration is related to the diagonal elements
of Green’s function. The calculation of the current requires
only the nearest off-diagonal elements of Green’s func-
tion. Furthermore, the Hamiltonian matrix is tridiagonal.
Considering these factors one can employ an efficient
method, such as the recursive Green’s method, to calculate
only the required elements of Green’s functions.

The recursive method has been proposed in [7, 98]. The
operations required to solve for all elements of G' with a
size of Nx N scales as N°. However, the required opera-
tions for the recursive method scale linearly with N [7].

4.8. Selection of the Energy Grid

For a numerical solution of the transport equations, one
has to discretize Green’s functions in the energy domain.
However, owing to the presence of the narrow resonances
at some energies, one has to be careful about the selection
of the energy grid.

4.8.1. Nonadaptive Energy Grid

One can straightforwardly divide the integration domain
into Ng equidistant intervals AE =(E, . — Epnin)/ N
A disadvantage of this method is that the numerical error
cannot be predefined. This problem is more pronounced
when the integrand is not smooth. For accurate results,
a grid spacing smaller than T" has to be employed. For
example, to resolve a resonance of I'=1 ueV width in an
energy range of 1 eV, more than 10° energy grid points are
required, which would severely increase the computational
cost. For even narrower resonances, (e.g., I'=1neV),
an equidistant grid is no longer feasible. To avoid these
problems an adaptive method needs to be employed.

4.8.2. Adaptive Energy Grid

There is a variety of methods available for numerical adap-
tive integration [194]. Adaptive strategies divide the inte-
gration interval into subintervals and, typically, employ a
progressive formula in each subinterval with some fixed
upper limit on the number of points. If the required accu-
racy is not achieved by the progressive formula, the subin-
terval is bisected and a similar procedure carried out on
each half. This subdivision process is carried out recur-
sively until the desired accuracy is achieved. An obvious
way to obtain an error estimate is based on the compar-
ison between the two quadrature approximations [195].
However, owing to the dependence of such procedures on
the underlying integration formulae, this method may not
be reliable [196]. Error estimation with sequences of null
rules has been proposed as a simple solution [197]. In adap-
tive quadrature algorithms the error estimate governs the
decision on whether to accept the current approximation
and terminate or to continue. Therefore, both the efficiency
and the reliability depend on the error estimation algorithm.
The decision to further subdivide a region may be based on
either local or global information. Local information refers
only to the region being currently processed, while global
information refers obviously to data concerning all regions.

Integration programs based on global subdivision strategies
are more efficient and reliable [198]. In this work a global
error estimator based on the null rules method has been
employed [196].

4.9. Self-Consistent Simulations

For an accurate analysis it is essential to solve the coupled
system of transport and Poisson equations self-consistently
[142]. The iterative method for solving this coupled system
is presented.

4.9.1. Self-Consistent lteration Scheme

Figure 19 depicts the block diagram of the iterative proce-
dure employed to solve the coupled system of transport and
Poisson equations. All the procedures are discussed in the
following. We solve the kinetic equations in mode space,
(101) and (102), to obtain Green’s functions. The required
elements for calculating Green’s functions are the Hamil-
tonian, and the electron-phonon and contact self-energies.
As discussed in Section 4.4, diagonal elements of the Hamil-
tonian are potential energies, which can be obtained from
the solution of the Poisson equation, and off-diagonal
elements represent the coupling between the adjacent rings
of the carbon atoms in the CNT. Given the contact proper-
ties and the contact-device coupling parameters, the contact

self-energy ZIC can be calculated once at the start of the

simulation (see Section 4.5).

The calculation of the electron-phonon self-energy
is presented in Section 4.6. Within the self-consistent
Born approximation of the electron-phonon self-energy
(Section 3.5), the noninteracting Green’s function G, is
replaced by the full Green’s function G. However, the full
Green’s is not known and has to be calculated. As a result,
a coupled system of equations is achieved which can be
solved by the iteration,

(133)
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where m denotes the iteration number. For the first step
the electron-phonon self-energy is assumed to be zero
and Green’s function is calculated from the kinetic equa-
tion. The next iteration starts with the calculation of the
electron-phonon self-energy based on Green’s function
from the previous iteration. The updated electron-phonon
self-energy is then used for the calculation of Green’s func-
tion. This iteration continues till a convergence criterion is
satisfied. The mentioned procedure should be followed for
each subband (mode), and finally the total charge density
is calculated.

In semiclassical simulations, the coupled system of the
transport and Poisson equations is solved by Gummel’s or
Newton’s method [187]. Both Gummel’s method [199] and
a variation of Newton’s method [200] can be employed in
self-consistent quantum mechanical simulations. While
Gummel’s method has a fast initial error reduction, for
Newton’s method it is very important that the initial guess
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Figure 19. Block diagram of the iterative procedure employed to solve the coupled system of transport and Poisson equations. For the first step an
initial guess for the electron-phonon self-energy is required; here we assumed > =0.

is close to the solution. The computational cost per itera-
tion of Newton’s method can be much higher than that for
Gummel’s method.

We employed Gummel’s method, where after conver-
gence of the electron-phonon self-energy, the Poisson

e—~ph

equation is solved once. Based on the updated electrostatic
potential, Green’s functions and the electron~phonon self-
energy are iterated again. These two iterations continue
until a convergence criterion is satisfied. Finally, the total

current through the device is calculated.
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4.9.2. Convergence of the Self-Consistant
Simulations

The coupled system of transport and Poisson equation can
be solved by iteration with appropriate numerical damping,
which terminates if a convergence criterion is satisfied
[201]. In this work, the maximum element of the potential
update, corresponding to L., =|¢* —¢* 1|, is considered as
a measure of convergence.

One of the reasons causing convergence problems [202,
203} is the exponential dependence of the carrier concen-
tration on the electrostatic potential, ne<exp(q¢/kgTl)
. A small potential variation causes large variation in the
carrier concentration. As a result, a strong damping is
required in many cases, which increases the simulation
time. To avoid this problem a nonlinear Poisson equa-
tion is generally employed [204]. Solving a nonlinear
Poisson equation takes that exponential dependence
into account. Compared to the linear Poisson equation,
it leads to faster convergence in both semiclassical [204]
and quantum mechanical [203, 205] transport simulations.
In this work the Gummel method along with a nonlinear
Poisson equation is employed.

However, we show that an inappropriate energy grid for
the discretization of the transport equations can be another
reason of convergence problems in quantum transport simu-
lations [206]. It is demonstrated that with adaptive energy
grids the iterative solution can converge very fast, and the
simulation time can decrease considerably.

5. APPLICATION

Based on the quantum transport model outlined in
Section 4, both the static and dynamic response of CNT-
FETs are investigated. The effect of electron—-phonon inter-
actions on the device characteristics is discussed in detail. In
agreement with the experimental data, our results indicate
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that electron—-phonon interactions can affect the switching
response of CNT-FETs significantly, while the effect on the
DC characteristics is small.

5.1. The Effect of the Electron—-Phonon
Interaction

The electron-phonon coupling strength and the phonon
energy depend on the chirality and the diameter of the CNT
(see Section 2.3.4). In this section the device response of a
CNT-FET with a channel length of 50 nm is studied for a
wide range of electron-phonon interaction parameters.

5.1.1. Electron-Phonon Coupling Strength

Figure 20(a) shows the ballisticity as a function of the
electron-phonon coupling strength. The ballisticity is defined
as Ig. /Iy, the ratio of the on-current in the presence of
electron-phonon interaction to the current in the ballistic
case [207].

The left part of Figure 20(b) illustrates an electron losing
its kinetic energy by emitting a phonon. The electron will be
scattered either forward or backward. In the case of backward
scattering, the electron faces a thick barrier near the source
contact and will be reflected with high probability, such that its
momentum will again be directed toward the drain contact.

Elastic scattering conserves the energy of carriers, but
the current decreases owing to clastic backscattering of
carriers. Figure 21(a) shows the current spectra at the
source and drain contact. For elastic scattering the spectra
are symmetric. As the electron-phonon coupling strength
increases, resonances in the current spectrum are washed
out, and the total current decreases owing to elastic backscat-
tering. In the case of inelastic scattering, carriers acquiring
enough kinetic energy can emit a phonon and scatter into
lower-energy states. Therefore, as shown in Figure 21(b), the
source and drain current spectra are not symmetric.
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Figure 20. (a) Ballisticity versus electron-phonon coupling strength for a CNT of 50 nm length. Results for both elastic and inelastic scattering with
different phonon energies are shown. The operating point is V. = I/ = 1 V. (b) Sketch of phonon emission and absorption processes in the channel.
Reprinted with permission from [208], M. Pourfath et al., Nanotechnology 18, 424036 (2007). © 2007, IOP Publishing.
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Figure 21. The spectra of the source and drain currents: (a) The effect of elastic phonon scattering with different coupling strengths is shown. As the
coupling strength increases resonances in the current spectrum wash out and the total current decreases owing to elastic backscattering. (b) The effect
of inelastic phonon scattering with different coupling strengths is shown. The phonon energy is /i®=100 meV. Carriers acquiring enough kinetic
energy can emit phonons and scatter into lower energy states. Since the energy of electrons is not conserved in this process, the source and drain cur-
rent spectrum are not symmetric. As the coupling strength increases more electrons are scattered into lower energy states. Reprinted with permission
from [208], M. Pourfath et al., Nanotechnology 18, 424036 (2007). © 2007, IOP Publishing.

5.1.2. Phonon Energy

Figure 22(a) shows the dependence of the ballisticity with
respect to the phonon energy. With increasing phonon
energy the effect of phonon scattering on the current is
reduced, because scattered electrons lose more kinetic
energy, and the probability for traveling back to the source
contact decreases. The considerable decrease of ballisticity
for low-energy phonons is owing to the phonon absorption
process.
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The right part of Figure 20(b) shows an electron-absorbing
energy from a phonon and scattering into a higher-energy state.
In this case, the probability for arriving at the source contact
increases. This process can severely reduce the total current.

Figure 22(b) separately shows the effects of the phonon
emission and absorption processes on the ballisticity. As the
phonon energy decreases, the phonon occupation number
increases exponentially, and the self-energy contributions of
these two components increase. However, owing to the higher
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Figure 22. (a) Ballisticity versus phonon energy for a CNT of 50 nm length. Results for inelastic scattering with different electron—phonon couplings
are shown. ¥/, = V) = 1 V. (b) Ballisticity versus phonon energy with D = 10~1 eV? at the bias point IV, = I, = 1 V. The contributions owing to
phonon absorption and emission are shown. Reprinted with permission from [208], M. Pourfath et al., Nanotechnology 18, 424036 (2007). © 2007,

IOP Publishing.
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Figure 23. (a) The ratio of the gate-delay time in the presence of electron~phonon interaction to the gate-delay time in the ballistic case, 7,/7,, as
a function of the electron-phonon coupling strength. For comparison, the ratio I, /I, is also shown. As the phonon energy increases the gate-delay

Se’ "B

time increases. This behavior is owing to the reduction of the electron velocity in the channel and the resulting charge pile up. (b) The spectra of
the source and drain currents. The effect of inelastic scattering with different phonon energies is shown. The electron~phonon coupling strength
is D =2 x10-' eV= The figure shows a considerable increase of the electron population close to the conduction band edge as the phonon energy
increases. Reprinted with permission from [208], M. Pourfath et al., Nanorechnology 18, 424036 (2007). © 2007, IOP Publishing.

probability for backscattering of electrons in the case of
phonon absorption, this component reduces the total current
more effectively than the phonon emission process does.

Figure 23(a) shows the ratio of the gate-delay time in
the presence of electron-phonon interaction to that in the
ballistic case, 7g. / Tp; , as a function of the electron-phonon
coupling strength. As the phonon energy increases, the gate-
delay time increases. This behavior can be attributed to the
average electron velocity in the channel, which is high for
ballistic electrons and low for electrons scattered to lower
energy states.

Figure 23(b) shows the spectra of the source and drain
currents for different inelastic phonon energies. Electrons
can emit a single phonon or a couple of phonons to reach
lower-energy states. The probability of multiple-phonon
emissions decreases as the number of interactions increases.
Therefore, as the phonon energy increases, the occupation
of electrons at lower energy states increases.

As shown in Figure 23(b) , the electron population close
to the conduction band edge considerably increases as the
phonon energy increases. Therefore, as the phonon energy
increases the mean velocity of electrons decreases and the
carrier concentration in the channel increases (Fig. 24).
The increased charge in the channel results in an increased
gate-delay time.

5.1.3. Diffusive Limit

All the above-discussed results were calculated for a device
with a CNT length of 50 nm . In the case of ballistic trans-
port the current is independent of the device length, but in
the presence of scattering it decreases as the device length
increases. Figure 25(a) shows the ballisticity as a function
of the CNT length in the presence of elastic and inelastic
electron-phonon interaction. An artificially large value for the

electron-phonon coupling strength and a small value for the
phonon energy are chosen to simulate the diffusive limit (see
Fig. 25(b)) . In this case, the current is expected to be inversely
proportional to the device Jength according to Ohm’s law.

5.1.4. Discussion

In general the electron-phonon interaction parameters
depend on the diameter and the chirality of the CNT (see
Section 2.3.4). CNTs with a diameter dewp >2nm have a
band gap Eg <0.4eV (10), which render them unsuitable
as channel for transistors. Since the fabrication of devices
with a diameter deyr <1nm is very difficult, we limit
our study to zig-zag CNTs with diameters in the range of
dent =1-2nm.

Scattering with acoustic phonons is treated as an elastic
process. The electron-phonon coupling is also weak
for acoustic phonons (Djp < 107 eV?), which implies
that elastic backscattering of carriers is weak. Inelastic
scattering is induced by OP, RBM, and K -point
phonons (Section 2.3.2). Considering the class of CNTs
discussed above, the energies of the these phonons are
hoop =200 meV , hogpy ~25meV , and vy ~160meV
and hwy =180 meV [207,210]. The corresponding coupling
coefficients are Dgp =40x10 Sa?, Dppv =10 Sev?, and
Dy, =107%e*, and Dy, =107 eV? [207).

As discussed in Section 5.1.2, high-energy phonons
such as OP and K -point phonons reduce the on-current
only weakly, but can increase the gate-delay time consid-
erably owing to charge pileup in the channel. Low-energy
phonons such as the RBM phonon can reduce the on-
current more effectively, but have a weaker effect on the
gate-delay time. However, owing to strong coupling, scat-
tering processes are mostly owing to electron-phonon
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Figure 24. (a) The profile of the electron velocity near the source contact. (b) The profile of the electron concentration along the device. The results
for the ballistic case and for electron~phonon interaction are shown. As the phonon energy increases the electrons scatter to lower energy states.
Therefore, the electron velocity decreases and the carrier concentration increases. The electron—phonon coupling strength is D = 10 eV2 and the bias
pointis I, = V= 1 V. Reprinted with permission from [208], M. Pourfath et al., Nanotechnology 18, 424036 (2007). © 2007, IOP Publishing.

interaction with high-energy phonons. Therefore, the on-
current of short CNT-FETSs can be close to the ballistic
limit [211] (see Fig. 26) , whereas the gate-delay time can
be significantly below that limit [72, 73, 212]. The intrinsic
(without parasitic capacitances) gate-delay time for the
ballistic case can be approximated as 7=1.7ps/um,
or equivalently fr =100 GHz/um [213]. The highest re-
ported intrinsic cut-off frequency for a device with a
length of 300 nm is fr =30 GHz [214], which is far below
the ballistic limit. Inelastic electron-phonon interaction
with high-energy phonon has to be considered to explain
the results.
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6. SUMMARY AND CONCLUSIONS

Ever since the first demonstration of CNT-FETs, their
performance is improving very rapidly and the understanding
of such devices is evolving. The one-dimensional nature
of CNTs severely reduces the phase space for scattering,
allowing CNTs to operate close to the ballistic limit even at
room temperature. The low-scattering probability and high
mobility are responsible for high on-current of CNT-FETs.
Furthermore, the chemical stability and perfection of
the CNT structure suggests that the carrier mobility at high
gate fields may not be affected by processing and roughness
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Figure 25. (a) Ballisticity versus CNT length. The electron—phonon coupling strength for both elastic and inelastic scattering is D = 107" eV?, and A
fi= 25 meV for inelastic scattering. These scattering parameters simulate the diffusive regime. In this case the ballisticity is inversely proportional to
the device length [209]. (b) Ballisticity as a function of the electron—phonon coupling strength and phonon energy for inelastic scattering. The scale of
the ballisticity is shown in the color bar. The regions of ballistic and diffusive transport are shown. As the strength of the electron-phonon interaction
increases, the transport of carriers deviates from the ballistic limit and becomes more diffusive.
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Figure 26. Comparison of the simulation results and experimental data for the (a) output and (b) transfer characteristics. Lines show the simulation
results and symbols show experimental data. The result for V,, = —1.3 V is compared with the ballistic limit. Experimental data have been adopted
from [211]. Reprinted with permission from [215], M. Pourfath et al., J. Phys.. Conf. Ser. 38, 29 (2006). © 2006, IOP Publishing.

scattering as it is the case in the conventional semiconductor
channel. Electrostatic control is improved as well. The fact
that there are no dangling bond states at the surface of CNTs
allows for a much wider choice of gate insulators beyond the
conventional SiO, . Also, the strong one-dimensional elec-
tron confinement of the SW-CNTs (typically 1-2nm diam-
eter) should lead to a suppression of short-channel effects
in transistor devices [4].

As far as integration is concerned, semiconducting CNTs
benefit from their band structure which gives essentially the
same effective mass for electrons and holes. This should
enable similar mobilities and performances of n- and p- type
transistors, which are necessary for a CMOS-like tech-
nology. The most important appeal of this approach is the
ability to fabricate one of the critical device dimensions (the
CNT diameter) reproducibly using synthetic chemistry.

The purposes of this work are to develop a simulation
approach and tools for CNT-FETSs and apply them to under-
stand device physics and explore device issues, which are
crucial for improving device performance. We employed the
NEGF technique for modeling transport phenomena in CNT-
FETs. The NEGF technique allows one to study the time
evolution of a many-particle quantum system. Knowledge
of the single-particle Green’s function provides properties
of the system and the excitation energies of the system. The
many-particle information about the system is cast into self-
energies, parts of the equations of motion for Green’s func-
tions. Green’s functions can be expressed as a perturbation
expansion, which is the key to approximate the self-energies.
Green’s functions provide a very powerful technique for eval-
uating properties of many-particle systems both in thermody-
namic equilibrium and also in nonequilibrium situations.

We solve the coupled system of transport and Poisson
equations self-consistently. A tight-binding Hamiltonian is
used to describe transport phenomena in CNT-FETs. The
mode-space transformation used in this work reduces the
computational cost considerably. The mode-space approach

takes only a relatively small number of transverse modes
into consideration. To reduce the computational cost even
further, we used the local scattering approximation [95].
In this approximation the scattering self-energy terms are
diagonal in coordinate representation. We show that the
local approximation is well justified for electron-phonon
scattering caused by deformation potential interaction.

The carrier concentrationisrelated to the diagonal elements
of Green’s function. The calculation of the current requires
only the nearest off-diagonal elements of Green’s function.
Furthermore, by using a nearest tight-binding Hamiltonian
and assuming the local scattering approximation, the achieved
matrix is tridiagonal. Considering these factors we employed
the efficient recursive Green’s function method to calculate
only the required elements of Green’s functions.

We also investigated methods of generating energy grids
for numerical integration and their effects on the convergence
behavior of the self-consistent iteration. Our results indicate
that for accurate and fast convergent simulations the energy
grid must be carefully adapted. All methods were implemented
into the multipurpose quantum-mechanical solver VSP.

Employing the described model, we investigated both the
static and dynamic response of CNT-FETs. The effect of
electron-phonon interaction on the device characteristics is
discussed in detail. In agreement with the experimental data,
our resultsindicate that electron~-phonon interaction affects the
DC current of CNT-FETs only weakly, whereas the switching
response of such devices can be significantly degraded.

APPENDICES
A. TIME-EVOLUTION PICTURES

The time evolution of operators and state vectors in
quantum mechanics can be expressed in different repre-
sentations. The Schrodinger, the interaction, and the
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Heisenberg representations are useful in analyzing the
second-quantized form of the Schrodinger equation. The
Hamiltonian is assumed to be of the form (see (20))

H=H,+H™, (134)
where 77, is the noninteracting part, which is assumed to
be exactly solvable. ™™ contains all the interactions, such

as carrier—carrier, carrier-phonon, impurity scattering, and
so forth.

A.1. Schrédinger Picture
In the Schrédinger picture the operators ()¢ are time
independent

O,(t)=04(t,) = Oy, (135)
where 1, is assumed to be the time reference point. The

time dependence of the state vector W (r) is obtained from
the Schrodinger equation

matl\{"s (t)>:I:[‘\Ps ([)>’ (136)
which has the formal solution
e () = e M0 e (1) (137)

A.2. Interaction Picture

In the interaction representation both the state vectors and
the operators are time dependent. The state vector in the
interaction representation is given by

¥, (1)) = o [ (1) (138)

which is merely a unitary transformation at the time ¢. The
equation of motion of this state vector is found by taking
the time derivative,

]ﬁat {TI (f H e’HO[/h‘\IJ +61H0f/7llha ‘\_PS >
_ zHor/hI:_HO _’_H()_!_Hlm]xeﬂHol/h#\yl )>

(139)

Therefore, one obtains the following set of equations in the
interaction picture:

ind, | Py (1)) = & (6)] ¥y (1)),

A t/r ~dnt_—i frotih
Hmt([) = e’H(J 1[{““(3 LHy 7.

(140)

An arbitrary matrix element in the Schrédinger picture can
be written as

(%5 (1)1 6515 (1)) = (1 (1)1 e~ 10, (1)), 141
which suggests the following definition of an operator in the

interaction picture:

Ol(t) - eiﬁot/h (A)SeAi].}or/fz. (142)

A.3. Heisenberg Picture

In the Heisenberg representation, state vectors are defined as
[, (1)) = ™ w (1))

Its time derivative may be combined with (136) to yield
ihd, | Wy (1))=0, which shows that | Wy (¢)) is time indepen-
dent. Since an arbitrary matrix element in the Schrédinger
picture can be written as

<\P/S(t) s(t)>:

, Bl s ifin
(™ 0 (), 10

a general operator in the Heisenberg picture is given by

(143)

OH( £)= i és o~ iHim (145)

Eqn (145) can be rewritten in terms of the interaction
picture operators,

OAH(ZL)M eIHI/TI *lHuf/hO (1)e IHUf/I‘z —IHI/h (146)

or in terms of the operator S derived in the next section

Oy(1) = 5(0,004(1)8(1,0). (147)

A.4. The Evolution Operator S

To solve the equations of motion in the interaction picture
(140), a unitary operator S(t fy) that determines the state
vector at time ¢ in terms of the state vector at time %, is
introduced,

t\yl (t)>:‘§(“"t0)!\y1 (“0)>’

S satisfies the initial condition S(ro,ro) 1. For finite times
S(l fy) can be constructed explicitly by employing the
Schrédinger picture,

(148)

19,(0) =" 1)
= oMot Ih,=iH(=1g)/ ‘\PS ([O)>’

_ ez‘]—l()t //'1641'1(I—IU)//'zele(,/O /h |\PI(’0 )>’

(149)

which therefore identifies
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o Hotlh, ~iH(t~ t)/h ~{Hot o/h

S(tt)

Since H and Hg do not commute with each other, the order
of the operators must be carefully maintained. Eqn (150)
immediately yields several general properties of S [169]:

(150)

. Sj(t’to)bﬁ(f’fg):§(;,;0)§'i'(t,r0)=1, implying that Sis
unitary ﬁT(f,’o): §"](f fo)

o S(11,13)8(t3.15) = S(11.15), which shows that § has the
group property, and

o S(I,ZO)§(t0,t):1, implying that §(t0,t)=§1'(f,z‘0).

Although (150) is the formal solution to the problem
posed by (148), it is not very useful for computational
purposes. Instead, one can construct an integral equation

for §, which can then be solved by iteration. It follows from
(140) and (148) that § satisfies the differential equation,

ind,S(t.1y) = Hi™ (1)S (1,1 )- (151)

Integrating both sides of (151) with respect to time with the
initial condition S(fy,7,) =1 yields

J dt] ol 1111

_?7-,;0 drlﬁ;“t(tl)ﬁ(rl,ro).

S(r fo)= ZO e t1 1g)

(152)

By iterating this equation repeatedly, one gets

\2 ! t
S(t.10) 1——JA d, ”’“(rl)+(h]J; dr, | dt,

[0 fo

XH;nt(tl)Hllnt( S ) +

-l " d fh d fay int
+H — t It dt, [
(ﬁ j J; 1 o 2 J: nH1 ( )

0 0

X[:]int( 2) [:[im( n)

S (Gl [ e
o

0

Xﬁi‘“(v) Hi“‘(n)-

(152)

Eqn (153) has the characteristic feature that the operator
containing the latest time stands farthest to the left. At
this point it i3 convenient to introduce the time-ordering
operator denoted by the symbol 7]

ﬂ{ﬁ(il)é(rz)}:

01, —12) A(n) B(12)
+6(t ~1) Bt ().

where 6(t) is the step function. The step function is defined as

(154)

1 >0
0(t)=4% =0
0 r<0.

Each time two Fermi ons are interchanged, the resulting
expression changes its sign. By rearranging the integral
using T,

"a, f doT [P () (1)
fo

s dfl f At () B () (155)

dbj At H™ (0)Hi™ (1)),

ly
The second term on the right-hand side is equal to the

first, which is easy to see by just redefining the integration
variables t; — 5, t, — ;. Thus, one gets

2“[’ dr, J' dt, T {H (1) HI™ (1)}

J d, | ", Hm (156)
(1)HI”lt BNENE
Thus, for the expansion of the S (t, 1,), one obtains
. 1= Y f
S(ttp) = 2}—1'(}7] J.z(, d, dfszro a,T,
AR

;! .
=T, {exp(—%f[ dt’ﬁ}“‘(r’)]}
0

B. NONINTERACTING GREEN’S
FUNCTIONS

The noninteracting or free Green’s function is used in the
perturbation expansions described in Section 3.3. In this
appendix real-time Green’s functions for both electrons
and phonons are derived.

B.1. Noninteracting Fermions

The Hamiltonian for noninteracting electrons (Fermions)
in momentum representation is

H,= 2 fkcick, (158)
k

where § = Ey — Ep is the single-particle energy measured
with respect to the Fermi energy ¢, and ¢, are the Fermion
annihilation and creation opCIdtms respectively. The time
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evolution of the annihilation operator in the Heisenberg
picture is (Appendix A)

o (t)zeiHOl/l‘zCke~iH0r/h’ (159)
so the operator obeys the equation,
ind,ey (1) = [ (6), Hy ] = &eere (1) (160)
which has the solution,
e (t)= e 5, (161)

The creation operator for Fermions is just the Hermitian
conjugate of ¢, that is

of (f)=e

The noninteracting real-time Green'’s functions (Section 3.6.1)
for Fermions in momentum representation are now given by

i«fkf/hclf(. (162)

Gy (kK1) =+in™ <cl’( (e (r)>0,
= +ih_] ﬁiék(r_[l)m"l 51( K’

Gy (l.tsk',t') = =it (e (1) (1)),
= —ip LTy 8, K

Gy (koK t7) = =in0( = ) e (1) () ()i 1)),
= —in”'O(r - 1)U,

Gie. iz, = +in 01 = 1) (¢) el (¢) . (f’)ck(f)>0,
= +ino(r = 1) S

(163)

where 1, =(clc, ) is the average occupation number of the
state k. Green’s functions depend only on time differences.
One usually Fourier transforms the time difference coor-
dinate, ¢ - ¢, to energy

Gs (k,E)=+2min 8(E - &),
Gy (k,E)= +2m[1—nk]5(E &),
r 3 (164)
G (k. )_E §k+z77
a B 1
Gl E)= E-& —in’

where 1=0" is a small positive number. Assuming that the
particles are in thermal equilibrium, one obtains i, = np (&, ),
where .. is the Fermi-Dirac distribution function. The result
(164) shows that G* and G~ provide information about the
statistics, such as occupation n,_ or unoccupation 1-rny of
the states, and G" and G* provide information about the
states regardless of their occupation. The spectral function
Ag(k, E) for Fermions is therefore defined as

Ay (K,E) = +i] G
=-23m
=+278

KE)-G (K E))

Gh (1. 5)].
-&),

|

(165)

t

where the following relation is used:

L —77(' j+l7r5( ()

166
xxin (166)

where P indicates the principal value. Under equilibrium
the lesser and greater Green’s functions can be rewritten as

Gy (k,E)=inpdy(k,E),

G; (k,E)=i[1-ng |4y (k,E). (167)

B.2. Noninteracting Bosons

The Hamiltonian for noninteracting phonons (Bosons) in
momentum representation is

Hy=3 mq,,(b Wbyn+ 1) (168)
q,4 2

where ha, ; is the energy of mode q with the polarization
A, by s, and by ; are the Bosons annihilation and creation
operators The time evolution of the annihilation operator
in the Heisenberg picture is

bqj\' (f) :efHOI/ﬁ bq‘ke—iHUr/h, (169)
so the operator obeys the equation,
110,y 5 (f):[bq,x(f)’Ho]: g 30,7 (1)s (170)
which has the solution
bq,l(t) = €_iwq’;‘rbq,x- (171)

The creation operator for Bosons is the just the Hermitian
conjugate of b, that is,

b;,x (t)=

The noninteracting real-time Green’s functions for Bosons
in momentum representation are now given by

+1a)q/1[ ,

(172)

D5, (st ) =™ (G0, 0
=it~ <b4} ()b (1)
b ()bl (7)>0’
:~iﬁ‘1{ st )<b$ qu,x>0
+6~( il wq)[)<b~~q’,7uqu)7»>0}5Q~q" (173)
=—ih" [ wq/(hﬂ)”q,k
el )]s
= D5, (g;1.0"),

q.q"
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D5 (@n.t)= D5 (g1',0),

=iy [e”w‘“([_'l)nq ) e @ar(171) (nq at 1)},
Df, (i) = =700 =) Al () a0+ 0,43, (1)

q
=—in"'o(r - t')[e_iw‘“(’_ﬂ) —e ™t (1 - z’)],

D (gt.1)==in""0(r' ~ f)[e”%-x(’*”> —e P (- '),

0

(173)

where /]M(f) = lvq:é(t)-# b_‘q’;n(t), /21(’1’7&(0 = /leq,;»(r), W_g 5=
@ 2, and ng 5 =(by 3bq) s the occupation number of the
state (q,4), where under thermal equilibrium, one obtains
R 5 = nglhwy 5 ), with 7 denoting the Bose-Einstein distri-
a7 a, 5 '8 .
bution function. Green’s functions depend only on time
differences. One usually Fourier transforms the time differ-

ence coordinate, ,f’, to energy
D (q.E) = —zm[nq,ka (E~hog, )+ (g +1)
><6(E + ha)q:k)}
D} (q.E) = —Zm‘{nq’)ﬁ(E +harg; )+ (ngs +1)
X 6(E - hwq,x)],

Dl () = e (79
w0 E-nhwg, +in E+hog, +in

D (qE)s—t !

WV T E —hw,, —in E+hog, —in

C. TREATMENT OF CONTACTS

In order to solve the transport equations, boundary
conditions have to be specified. An important point is the
treatment of contacts, which act as a source or drain for
the carriers {7, 80, 98, 160, 216, 217]. Here, the method
described in [217] is followed.

One can partition the layered structure into left contact
with index L, device with index D, and right contact with
index R (Fig. 27) . The device corresponds to the region
where one solves the transport equations and the contacts
are the highly conducting regions connected to the device.

While the device region consists of only N layers, the
matrices corresponding to Green’s functions (87) and (88)
are infinite dimensional owing to the semiinfinite contacts.

A
]
I Ay —1h;
@ ® -]
ADD - ©

’

Numerical Study of Quantum Transport in Carbon Nanotube-Based Transistors

It is shown next that the influence of the semiinfinite contacts
can be folded into the device region, where the semiinfinite
contacts only affect layers 1 and N of the device region.

As shown next, the influence of the semiinfinite contacts can
be folded into the device region by adding a self-energy to the
device region, This can be viewed as an additional self-energy,
owing to the transitions between the device and the contacts.

C.1. Matrix Truncation

By defining
A=[El-H~Zg., ], (175)
eqn (87) (AG" =1 ) can be written as
A Arp G Gip Gir I
Apy App Apg|Cp Gpp Gpr|=| L | (176)
Arp Arr)|GL, G%y Ghre L
where
”. ® ® )
L [ L
__[% A —
A= e S T L a7
wz’Lm éb _zlm
L _'22,1 4L1
corresponds to the left semiinfinite contact,
éRl HIRIZ
—ﬁexz éR: _-an
e L] e
L] L] L]

corresponds to the right semiinfinite contact, and
corresponds to the device region.

The coupling between the left and right contacts and
device are, respectively, given by

° ° > (179)
7
“Iyoon-1 Ana TIyaw
:
“Inan Ay
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(vl an S an ]

(180)

jon i an i e BN o B e
[ ]
L]
o O O o O
o OO O O

~“lrp

and

Arp= (181)

S O O O O
jonii an B e BN an SR wn
-]

@

O o O O O

It should be noted that Ay, = A; ), App=App, and A4,
and Ap; (Agp, and Ap) are sparse matrices. Their only
nonzero entry represents the coupling of the left (right)
contact and device. From (176), one obtains

Glp=-A114;5G s (182)
Q;?D = _ﬁ;elRﬁRDC_;IbD’ (183)
ApGrp+ AppGppt AprGrp =1L (184)

Substituting (182) and (183) in (184), one obtains a matrix
equation with a dimension corresponding to the total
number of grid points in device layers,

-1 -1 3
[ App=ApLAlL AL~ AprArkAr |G =L (185)

The second and third terms of (185) are self-energies
owing to the coupling of the device region to left and right
contacts, respectively.

Green’s functions of the isolated semiinfinite contacts
are defined as

A,8 =1,
sHeL s (186)

.
ﬁRRgR =1

The surface Green’s function of the left and right contacts
are Green’s function elements corresponding to the first-
edge layer of the respective contact,

v
fu, Ay (187)
g,  =Ay
2R, - ——RRH'

C.2. Contact Self-Energies

The surface Green’s functions defined in (187) enable us to
rewrite (185) in a form very similar to (87),

[El —H =g~ _E,E}C_?}bp =1, (188)
where
5! _ r _ 3
=G, zDLéTL] 1L‘LD =7 X
lf (189)
T v
ey T lor8g trp T Ik

All the other elements of I are zero. ¥; and X} are self-
energies owing to the left and right contacts, respectively,
and 1, =t;p and gDR:g}i,D‘. By following the same proce-
dure, one obtains the equation of motion for the lesser and
greater Green'’s functions as [98]

Ghp= Qb])[zécat + ;E]QaDD’ (190)

where

ZZU =ipL Ezu I1p=2} (191)

> > >
< — < — <
2¢, =Lor 8, Lro =1y

Since the contacts are, by definition, in equilibrium, one
obtains (Appendix B.1)

g, =iay fi (192)
§i1:if_71,1 frs
where a=i(8 —g")=-23m[g'] is the spectral function

and f; gy is the Fermi factor of the left (right) contact. By
defining the broadening function as

Lo, = (Z,-2) = e, = L
e . (193)
Le,, = z(_Z_“~ )= torGtrp = Lps
eqn (191) can be rewritten as
< . ;
z;, = +"£1JL, (194)
i = +lpfe.
In a similar manner, one can show that
I o= 001, (195)
o= —LR(1-fr)-
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C.3. Surface Green’s Function

The main information needed to solve (188) are the surface
Green’s functions of § " and g; . Using the recursive
relation [7], eqn (186) can be written as

Il
I~

r + r
[41‘1’ £Li.:-i-l§L,+]','+1ELHI./:IgL

[Ag ~ g g;g g ]g;

i Fiet =R g~ =R

(196)

If
I~

If the potential does not vary in the left and right contacts, and
if the coupling between the different layers are equal, then
A, ; and Ap, become semiinfinite periodic matrices with

ﬁLl :ﬁzq :4L3 :"':ﬁL:
Ap =dAg, =Ag = =4p,
t, =t =t, ==t (197)
SLiy TRl T ilay, T T RL
ERL: :[:Rz,s :£R3,4 ==l
Under this condition, one obtains
T r T
ng h ng.z o T gL’
r r 1. (198)
Sr, = 8r, ~ = &

Therefore, the surface Green’s functions can be obtained
by solving the quadratic matrix equations,

[
[ﬁL—ZLgLE‘L:[gL =1,

(199)
“or T
[Ar- Zj’?ngR]gR =L
These equations can be solved iteratively by
Am=1) . ],
{AL _{LglLOn )E,L}EILOH) _ _]:,
s {m-1) - (m) (200)
{41{‘5@; ZR]_g; =1,

where m represents the iteration number. It should be
noted that the solution to (199) is analytic if the dimension
of Ay isone.
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