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Abstract—A number of recent publications explain NBTI to be
due to a recoverable and a more permanent component. While a lot
of information has been gathered on the recoverable component, the
permanent component has been somewhat elusive. We demonstrate that
oxide defects commonly linked to the recoverable component also form
an important contribution to the permanent component of NBTI. As
such, they can contribute to both the threshold voltage shift as well as
the charge pumping current. Under favorable conditions, the permanent
component can show recovery rates comparable to that of the recoverable
component.

I. INTRODUCTION

Recent research indicates that two components dominantly con-
tribute to the negative bias temperature instability (NBTI) [1–6]:
while one component dominates the recovery (R) the other one has
been suspected to be more or less permanent (P ). It has been recently
shown that the degradation can be annealed at higher temperatures
[6, 7], implying that P is recoverable as well, albeit at larger time-
scales compared to R. The most important aspect about P is that
it might determine the lifetime [6]. Unfortunately, the extraction
of P is challenging as it is normally overshadowed by R. As
such, our understanding of P is somewhat vague, also regarding
its constituents, be it interface and/or oxide defects [3, 6], or fixed
positive charges [6]. We show that considerable precautions have to
be taken for accurate extraction of P , as it suffers from similar issues
as typically related to the extraction of R, such as measurement delay,
measurement duration, as well as stress/recovery artifacts introduced
by the measurement procedure itself. Contrary to the work of Huard
[6], who links P to interface states and an equal amount of fixed
positive charge, our analysis demonstrates that a significant fraction
of P is due to switching oxide traps, which contribute to both the
threshold voltage shift ΔVth and to the frequency dependent fraction
of the charge pumping current.

II. ERRONEOUS EXTRACTION OF THE PERMANENT COMPONENT

The most straight-forward approach for the extraction of P would
be to wait until the recovery of ΔVth has leveled at a plateau,
thus directly exposing P , see for instance Fig. 1. However, the
fundamental problem here is the large timescales involved in the
recovery of R, as even a short stress of ts = 1 μs can lead to recovery
transients of up to 1 ks, not to mention the recovery of P itself. On
the other hand, P is created at a slower rate than R, making it difficult
to locate plateaus within reasonable measurement times (< 1 week).
As a consequence, plateaus in the recovery are rarely reported in
literature [6]. (The plateau reported in [8] was not reproducible.)

Using different test technologies, from thick SiO2 to SiON and
high-κ gate stacks, we begin our analysis by highlighting some
mistakes related to the extraction of P in Fig. 2:

M1: The recovery of ΔVth has to be plotted on a relative logarithmic
scale following the end of stress, otherwise a spurious plateau
appears. Such ‘plateaus’ are commonly found in literature but
are completely irrelevant and simply a consequence of the
inadequate presentation of the data.

M2: Temperature switches to a lower temperature temporarily freeze
recovery, resulting in a spurious plateau [9]. While the example
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Fig. 1. Typical plateau observed under medium stress conditions. After the
plateau has been reached, a positive bias was applied for a short time. For
P ∼ ΔNit, one would expect ΔVth to rapidly follow bias changes (within a
1ms). In fact, a pronounced reverse recovery is observed with time constants
as large as 10 ks, indicating that ΔNot can contribute to P .

temperature switch from 80 ◦C to 40 ◦C given in Fig. 2 may
appear pathological, a typical real-world case appears to be
given in [6]: The recovery of the devices was monitored at a
high temperature on a probe-station for a day. Then, they were
removed and stored at room temperature to be re-measured after
some weeks. The plateaus obtained from this method are thus
arbitrary.

M3: Application of a short positive bias partially removes oxide
charges, temporarily accelerating recovery. Back at the original
recovery voltage, these defects have already been annealed,
resulting in a spurious plateau until the original recovery con-
tinues.

M4: In order to minimize the recovery, short stress times and low
stress voltages can be chosen. This leads to relatively weak
stresses and relatively short recovery times. However, partic-
ularly in thin oxides, the difference between stress and recovery
voltage can be small, leading to notable degradation at the
recovery voltage, interfering with the actual recovery. As a
consequence, spurious plateaus can appear.

M5: Similarly to M4, charge pumping (CP) measurements can lead
to degradation of ΔICP when the charge pumping amplitude
is chosen too large. Balancing the recovery of ΔICP, this can
lead to spurious plateaus as well, just like M4. M5 already
highlights an important issue [10]: ΔICP is not constant, even
within conventional measurement windows, contradicting claims
[1, 6] that ΔICP is nearly constant and equal to P . In particular,
the resemblance between the recovery of ΔVth in M4 and ΔICP

in M5 is indeed striking.
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Fig. 2. Potential mistakes that have been encountered while trying to locate plateaus in ΔVth recovery traces. The top figures show apparent plateaus, which
have nothing to do with permanent degradation. The reasons for the occurrence of these plateaus are illustrated in the bottom figures. From left to right: (M1)
The recovery of ΔVth is plotted as a function of the total time, rather than the recovery time tr. Even if the recovery perfectly follows log(tr), a spurious
plateau will appear if the data is plotted this way, which has nothing whatsoever to do with P . Similar considerations relate to plotting the data on a linear
scale, where the spurious plateau depends solely on the measurement time. (M2) Due to the large recovery time required, the device is only kept at stress
temperature for a short amount of time [6] and, to ease measurement, recovery is continued at a lower temperature. This, however, is pointless, as a switch
to a lower temperature freezes the recovery [9], which results in a spurious plateau. (M3) In order to remove R, which is due to trapped holes in the oxide
[6, 11–13], a positive bias could be applied [14]. However, since the trap sites are switching traps, this has basically the same effect as a temperature switch,
because such a bias switch only removes a few decades from the recovery trace, which continues after that. (M4) Relaxation gate voltages only slightly
larger than the threshold voltage can already lead to degradation, in this example Vrelax = −0.5V, with Vth = −0.3V . As a result, degradation overlaps
with the ‘normal’ recovery, resulting in a spurious plateau for a certain amount of time. The signature of this plateau is that it disappears when either stress
or relaxation voltages are changed. (M5) If the charge pumping amplitude is chosen too large, for this 1.5 nm high-k device for example from ±0.75V,
degradation is observed during the CP measurement, again resulting in a spurious plateau as in (M4). Note the strong relaxation of ΔICP, which is anything
but constant.
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Fig. 3. Plateaus in the recovery of ΔVth for three different stress voltages.
After short application of a positive bias pulse, again considerable reverse
recovery is observed which indicates a significant contribution of slow
switching oxide traps to the plateau.

III. EXTRACTION-ATTEMPTS OF THE PERMANENT COMPONENT

We proceed by analyzing ΔVth recovery traces recorded after
carefully selecting stress/recovery voltages, stress/recovery times, and
temperature. A typical plateau at the end of the recovery is shown in
Fig. 1. According to Huard [6], this plateau is due to semi-permanent
interface states ΔNit and fixed oxide charges. Interface states are fast
and can quickly follow changes in the bias (< 1 ms). Thus, a change
of the interfacial Fermi-level would result in a change of the charge
stored in these interface states, ΔQit(EF), according to their density-
of-states. Such a change would occur rapidly, since interface states
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Fig. 4. The same effect as in Fig. 1 is observed on thick SiO2 devices. The
reverse recovery time constants are either somewhat larger or the application
of positive bias anneals a fraction of the oxide defects, this being more
pronounced at lower T . Continuous CP for 10 ks removes a further fraction,
cf. Fig. 8.

are very fast. In particular, after a temporary bias change, the same
ΔVth would be expected back at the original bias. This is clearly
not the case. In fact, ΔVth only slowly goes back to its original
value, an apparent degradation during the recovery phase [14]. This
reverse recovery thus indicates that a significant part of P is due to
slow oxide defects, ΔNot, such as those observed previously [11,
13, 15]. Fig. 3 shows the bias dependence of these plateaus. Fig. 4
demonstrates this procedure on thick SiO2 devices: application of a
positive bias after having reached the plateau reduces ΔVth by about
40%, part of which is restored in the reverse recovery phase.
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Fig. 5. Plateaus are occasionally also observed after ultra-short stress times,
shown for a 1.8 nm PNO device. The plateau is not permanent and strongly
depends on the stress bias. Particularly after such weak stresses, it is important
that ΔVth at the readout voltage is stable in order to avoid mistake M4 of
Fig. 2.

Fig. 6. The field dependence of the ‘permanent’ part. For the 1.8 nm PNO
device from Fig. 5 we take P ∼ ΔVth(tr = 1 s), for the ones of Figs. 3
and 4 P ∼ ΔVth(tr = 10 ks) was chosen. In addition, for the thick SiO2

devices, the last value at the end of the second and third relaxation cycle are
shown (10 ks after the bias switch and 10 ks after the 10 ks CP measurement).
In any case, P can be fit by a power-law ∼ E

γ

ox.

For lifetime back-extrapolation, the bias dependence of P is
crucial. Huard [6] observed P ∼ Eγ

ox with a technology-independent
γ = 4, without giving details on the extraction scheme for P .
Fig. 5 shows plateaus appearing after a ts = 100 μs stress. The Eox

dependence of these detected plateaus is shown in Fig. 6. Contrary
to the single exponent 4 given by Huard, a wider range is observed,
with values smaller and larger than 4. In contrast, the bias dependence
of the plateaus in the thick SiO2 devices (Fig. 4) shows exponents
around 3.2 at 200 ◦C and in the range 4.2—5.6 at 125 ◦C. The
latter is insofar interesting as the initial plateau has γ = 4.2, which
increases to 5.2 after application of +2V for 1 s, and even to 5.6
after continuous CP measurements for 10 ks. This again demonstrates
that P , by what ever means it is extracted, is not really permanent.

IV. CORRELATION WITH CHARGE-PUMPING DATA

It has been occasionally suggested [6, 17] that P is correlated to
the CP current, ΔICP. In that context, ΔICP has been interpreted
as being proportional to the number of interface states. Particularly
at lower frequencies it has been observed, however, that ΔICP also
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technologies.
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contains considerable contributions from oxide traps [18]. This issue
has been commonly neglected in the context of NBTI [19].

The bias dependence of ΔICP as a function of the measurement
time is given in Fig. 7. While for fast CP experiments (41 ms) we
obtain γ = 4, we observe a strong dependence of the extracted
exponent on the duration of the CP measurement, quite similar to
what is known from ΔVth measurements [20], with the exponent
increasing with the CP duration. This is because ΔICP shows similar
recovery rates as ΔVth which is contrary to Huard’s work, but
consistent with the observation of Rangan et al. [10].

Remarkably, recovery is accelerated by the CP measurement, see
Fig. 8. However, in contrast to ΔVth recovery, which is sensitive to
bias alone [3, 20], ΔICP recovery is accelerated by the pulsing event
itself. This accelerated recovery could be due to the large number
of recombination events happening in a CP measurement, where
each event releases an energy of the order of the bandgap. With 106

cycles per second, this accumulates to an enormous amount of energy
which has to be dissipated via phonons. In due course, reactions
near the defect site can be dramatically enhanced, a phenomenon
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known as recombination enhanced defect reaction (REDR) [21, 22].
Fig. 9 shows that ΔICP at the beginning of delayed CP measurements
follows the recovery of ΔVth. Also, the amount of recovery induced
by the CP measurement is mirrored in the recovery of ΔVth. This
data strongly suggests that both ΔVth and ΔICP are at least partially
related to the same microscopic defect, namely switching oxide traps
[13, 23–25]. This is confirmed by the frequency dependence of the
ΔICP recovery shown in Fig. 10 which disappears after long CP
times, indicating that it is oxide defects which can be ‘pumped-away’.
Confirmation that defects visible in ΔVth react to CP measurements
is given in Fig. 11: following a CP cycle, ΔVth shows slow oxide
defects reaching their equilibrium occupancy after long times. The
reason why these switching traps can contribute to both ΔVth and
ΔICP is given in Fig. 12: once created, these defects can be either
positive (state 2) or neutral (state 1′), depending on the Fermi-level,
the former contributing to ΔVth. Transitions to state 1′ show a wide
distribution in time constants [13], with fast transitions contributing
to ΔICP and slow ones responsible for the reverse recovery effect.
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V. SPECIAL CASE: HYDROGEN-RICH WAFER

The log-like recovery of ΔICP is clearly incompatible with the
recovery predicted by the reaction-diffusion (RD) model [26], (1 +p

ts/tr)
−1, not depending on anything [27]. A peculiar exception

has been observed on a hydrogen-rich 30 nm SiO2 split-wafer.
Measuring ΔICP only once per decade results in ΔICP ∼ const.
By contrast, a continuous CP measurement produces recovery traces
which bear a striking resemblance to the RD prediction, particularly
for ts = 10 ks, see Fig. 13. After different stress times, however,
the measured recovery is practically independent of the stress-time,
and does not scale universally over ts/tr. Still, under continuous
CP conditions, recovery seems to be a diffusion-limited process in
this particular wafer. An intriguing feature is that after longer stress
times the devices continue to degrade after the end of stress. This is
consistent with the idea that hydrogen is released during stress which
then depassivates interface states and creates oxide defects [28, 29].
Otherwise, degradation after termination of the stress would not be
possible. We remark that this is the standard model of irradiation
damage [30].
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VI. CONCLUSIONS

We have demonstrated that the plateaus occasionally observed in
carefully tuned stress/recovery experiments consist of contributions
from interface states as well as slower donor-like switching oxide
traps. These plateaus are not permanent and normally not too well
developed. In particular, they can be annealed by applying short pos-
itive bias pulses or more effectively by continuous CP measurements.
Particularly the latter provides an efficient means for annealing NBTI
degradation, likely due to a recombination enhanced defect reaction
mechanism. Under normal recovery conditions, the recovery of ΔVth

determines the starting level of ΔICP, which starts recovering quickly
once CP measurements are performed. The latter demonstrates that
oxide defects contribute to both ΔVth and ΔICP. While the recovery
rate of P is smaller than that of R, considering P as permanent
will lead to serious errors, even within conventional measurement
windows.
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QUESTIONS AND ANSWERS

Q1: What do you think about waiting long enough to make recoverable
portion negligible?
A1: Unfortunately, this is only possible in special circumstances as
was shown for a few cases.  Normally, when a device is stress under
higher stress conditions, recovery will not stop within a week, making
this approach unfeasible.

Q2: What are the properties of the metastable neutral state?
A2: The metastable neutral state is characteristic feature of a switching
trap: most importantly, it is responsible for the strong bias dependence
during recovery as it allows defect annealing via an alternative pathway.
The metastable neutral state is also responsible for the temporary RTN
(see Grasser et al., IRPS '10)

Q3: What percentage are oxide defects?
A3: Unfortunately, this is hard to say. At the moment it seems to us
that most of the degradation is due to oxide defects.higher stress condi-
tions, recovery will not stop within a week, making this approach
unfeasible.
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