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Abstract—In this work a comprehensive study of the

effect of line-edge roughness on the electronic proper-

ties of graphene nanoribbons is presented. The effect of

roughness parameters and the role of device geometry is

discussed. Depending on these parameters, carrier trans-

port can be in the quasi ballistic, diffusive, or localization

regime. Our results show the transport gap of nanoribbons

can increase due to the presence of line-edge roughness.

Graphene, a one-atomic carbon sheet with a honey-

comb structure, has attracted significant attention due to

its unique physical properties [1]. This material shows

an extraordinarily high carrier mobility of more than

100′000 cm2/Vs [2] and is considered a major candi-

date for a future channel material for high performance

transistors [3, 4].

To induce an electronic bandgap, a graphene sheet can

be patterned into narrow ribbons [5]. In order to obtain

an energy bandgap larger than 0.1eV, which is essential

for electronic applications, the width of the graphene

nanoribbon (GNR) must be scaled below 10nm [6].

In this regime line-edge roughness is the dominant

scattering mechanism [7].

Applying a tight-binding model for the electronic

structure, the effect of line-edge roughness is studied. We

have numerically investigated a large number of different

disorder configurations and investigated the diffusive and

the localization regime [8]. To model transport of carriers

in GNRs the non-equilibrium Green’s function (NEGF)

formalism is employed. The NEGF method appears to

be most appropriate for nanoscale devices [9–13]. This

formalism accounts quantum effects such as tunneling,

size quantization, and quantum interference of carriers.

Quantum mechanical effects in the scattering of carriers,

such as collisional energy broadening, are also properly

included.

The outline of the paper is as follows. In Section I,

the NEGF formalism is briefly described. The imple-

mentation of this method for GNRs is presented in

Section II. In Section III the role of line-edge roughness

is investigated. Finally, the conclusions are presented in

Section III-B.

I. NON-EQUILIBRIUM GREEN’S FUNCTION

FORMALISM

The NEGF formalism initiated by Schwinger,

Kadanoff, and Baym allows the study of many-particle

quantum system. The many-particle information about

the system is cast into self-energies, which are part of

the equations of motion for the Green’s functions. A

perturbation expansion of the Green’s functions is the

key to approximate the self-energies.

Four types of Green’s functions are defined as the non-

equilibrium statistical ensemble averages of the single

particle correlation operator [14]. The greater Green’s

function G> and the lesser Green’s function G< deal

with the statistics of carriers. The retarded Green’s func-

tion GR and the advanced Green’s function GA describe

the dynamics of carriers.

G>(1, 2) = −i~−1〈ψ̂(1)ψ̂†(2)〉

G<(1, 2) = +i~−1〈ψ̂†(2)ψ̂(1)〉

GR(1, 2) = θ(t1 − t2)[G
>(1, 2)−G<(1, 2)]

GA(1, 2) = θ(t2 − t1)[G
<(1, 2)−G>(1, 2)]

(1)

The abbreviation 1 ≡ (r1, t1) is used, 〈. . .〉 is the

statistical average with respect to the density operator,

θ(t) is the unit step function, ψ̂†(r1, t1) and ψ̂(r1, t1)
are the field operators creating or destroying a particle

at point (r1, t1) in space-time, respectively. The Green’s

functions are all correlation functions. For example, G>

relates the field operator ψ̂ of the particle at point
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(r1, t1) in space-time to the conjugate field operator ψ̂†

at another point (r2, t2).
Under steady state condition the Green’s functions

depend only on time differences. One usually Fourier

transforms with respect to the time difference coordi-

nate, τ = t1 − t2. For example, the lesser Green’s

function is transformed as G<(1, 2) ≡ G<(r1, r2;E) =
∫

(dτ/~)eiEτ/~G<(r1, r2; τ).
Under steady-state condition the equation of motion

for the Green’s functions can be written as [15]:

[E −H]GR,A(1, 2)−

∫

d3ΣR,A(1, 3)GR,A(3, 2) = δ1,2

(2)

G≶(1, 2) =

∫

d3

∫

d4GR(1, 3)Σ≶(3, 4)GA(4, 2)

(3)

where H is the single-particle Hamiltonian operator, and

ΣR, Σ<, and Σ> are the retarded, lesser, and greater self-

energies, respectively.

II. IMPLEMENTATION

This section describes the implementation of the

NEGF formalism for the numerical analysis of GNRs.

A tight-binding Hamiltonian is used to describe the

electronic structure in GNRs. The modeling of line-edge

roughness is discussed later.

A. Tight-Binding Model

The structure of graphene consists of two types of

sublattices A and B, see Fig. 1. In graphene three σ
bonds hybridize in an sp2 configuration, whereas the

other 2pz orbital which is perpendicular to the graphene

layer, forms π covalent bonds [16]. Each atom in an

sp2-coordination has three nearest neighbors, located

acc = 1.42Å away. It is well known that the electronic

and optical properties of carbon nanotubes (CNTs) and

GNRs are mainly determined by the π electrons [17].

To model those π electrons, a nearest neighbor tight-

binding approximation has been widely used. Using this

approximation the Hamiltonian can be written as:

H = t
∑

〈p,q〉

(|Ap〉〈Bq|+ |Bq〉〈Ap|) , (4)

where |Ap〉 and |Bq〉 are the atomic wave functions of the

2pz orbitals which are centered at lattice sites labeled as

Ap and Bq, respectively. 〈p, q〉 represents pairs of nearest
neighbor sites p and q, t = −2.7 eV is the transfer inte-

gral, and the on-site potential is assumed to be zero. For

the structure shown in Fig. 1 the matrix elements of the

Hamiltonian are non-zero for p = q and p = q± 1. This
atomistic model produces a matrix whose rank is the total

Fig. 1. The structure of a GNR with armchair edges along the

transport direction. Each unit cell consists of N numbers of A and

B sublattices.

number of carbon atoms [18]. In this method the effect

of lattice vacancies [19], roughness [20], impurities [21],

and disorder [22] can be rigorously included by changing

the hopping parameter at respective atomic sites.

B. Line-Edge Roughness

The line-edge roughness can be treated perturbatively

treated [7]. However, in a more accurate non-perturbative

approach one can consider the roughness as a stochastic

phenomenon and model it by removing or replacing

specific carbon atoms located at the edges of the rib-

bon. In order to model roughness, an exponential auto-

correlation function is defined as [23]:

c(n) = ∆2
m exp

(

−
x

Lm

)

, x = n∆x (5)

where ∆m is the roughness amplitude, Lm is the corre-

lation length, and ∆x = acc/2 is the sampling interval.

The stochastic roughness can be generated by applying

a random phase to the power spectrum of the roughness

auto-correlation in the Fourier domain and a subsequent

inverse Fourier transformation in order to obtain rough-

ness in the real space domain [23].

III. LINE-EDGE ROUGHNESS IN GNRS

Fig. 2 shows the spatial distribution of the current

amplitude along a GNR with rough edges. The atomistic

tight-binding model can capture the granularity of the

simulation domain, which is essential for narrow GNRs.
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Fig. 2. Spatial distribution of the normalized current amplitude along

a GNR with line-edge roughness. The ribbon’s length is L = 19nm

and the width W = 5nm. The roughness parameters are Lm = 3nm

and the amplitude ∆m = 0.3nm.

A. Quasi Ballistic and Diffusive Transport Regime

Fig. 3 shows the transmission probability, which is

averaged over many samples with the same geometrical

and roughness parameters, as a function of energy and

length of the sample. As this length increases the trans-

mission probability decreases. In the quasi-ballistic and

the diffusive regime the average transmission probability

〈T (E)〉 can be characterized by [15]:

〈T (E)〉 =
Nchannel(E)

1 + L/λ
(6)

where Nchannel(E) is the number of active subbands

(conduction channels) at some energy E, L is the length

of the disordered sample, and λ is the mean free path.

Fig. 4 shows a fitted curve to the average transmission

probability at E = 0.4eV. Fitting Eq. 6 one obtains the

elastic mean free path as λ ≈ 3nm.
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Fig. 3. The average transmission probability as a function of energy

and sample length. The solid line at L = 0 shows the transmis-

sion probability for a perfect GNR. Each peak in the transmission

probability denotes the contribution of a new subband. Roughness

parameters are Lm = 3nm and ∆m = 0.3nm. The width of all

devices is W = 5nm.

B. Localization Regime

For very narrow or very long GNRs line-edge rough-

ness results in the localization of carriers. In this regime,

transport takes place by tunneling though localized states

and the transmission fluctuates considerably between

very small values and values close to 1. In this case, a

suitable statistical quantity is provided by ln (T (E)) [8,
15],

〈ln (T (E))〉 ∝ −L/ξ (7)

where ξ is the localization length. In the diffusive regime

the resistance increases linearly, whereas in the localiza-

tion regime it increases exponentially with the length of

the device.

Fig. 5 shows a fitted curve to the average of ln (T (E)).
Using Eq. 7 the localization length can be estimated as

ξ ≈ 6nm. It can be shown that the ratio of the localiza-

tion length to the mean free path is proportional to the

number of available subbands: ξ/λ ∝ Nchannel(E). For
the discussed sample at E = 0.4eV this ratio is 2 which

is exactly equal to the number of available subbands at

this energy. At low energies there are few subbands only

and the localization length is short, whereas at higher

energies due to the increased number of the subbands

the localization length increases. Therefore, the effective

transport energy gap increases for GNRs with line-edge

roughness. As shown in Fig. 3 the transport gap increases

from 0.2eV, for a perfect GNR, to more than 1eV for

a GNR with a length of 60nm and given roughness

parameters.
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Fig. 4. Small dots show the transmission probability for different

samples. The big dots show the average transmission probability over

different samples with the same length. The solid line shows the

fitted curve to the average transmission probability. E = 0.4eV and

Nchannel = 2. The extracted mean free path is λ ≈ 3nm
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Fig. 5. Small dots show the logarithm of the transmission probability

for different samples. The big dots show the average values. The

solid line shows the fitted curve to average values. E = 0.4eV and

Nchannel = 2. The extracted localization length is ξ = 6nm.

CONCLUSIONS

We applied the NEGF formalism to study line-edge

roughness in GNRs. An atomistic tight-binding model,

which captures the granularity of the simulation domain,

has been used. In the presence of line-edge roughness

the transport gap of GNRs is found to increase. Our

results indicate that in order to employ GNRs for future

electronic devices a comprehensive understanding of line

edge roughness on the carrier transport properties is

required.
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