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Abstract—Due to extreme miniaturization of device di-
mensions the well established TCAD tools are pushed to the
limits of their applicability. Since conventional MOSFETSs
are already operating in the sub-100 nm range, new physical
effects and principles begin to determine the transport
characteristics and the validity of conventional current
transport models is in question. The classical drift-diffusion
model of carrier transport in electronic devices has been
widely employed in TCAD tools. However, it must be
generalized to include hot-carrier effects. This motivated
the development of higher-order moments transport models
such as the hydrodynamic transport model, the energy
transport model, and the six-moments model. With scaling
continuing quantum mechanical effects begin to affect the
transport properties. Parallel to the search for new tech-
nological solutions for MOSFET scaling, the development
of conceptually new devices and architectures is becoming
increasingly important. New nanoelectronic structures, such
as carbon nanotubes, nanowires, and even molecules, are
considered to be prominent candidates for the post-CMOS
era. At this small device size the geometrical spread of the
carrier wave packet in transport direction can no longer
be ignored. When the device size becomes shorter than
the coherence length, the complete information about the
carrier dynamics inside the device including the phase of
the wave function is needed and one has to resort to a
full quantum mechanical description including scattering.
Transport in advanced nanodevices is determined by the
interplay between coherent propagation and scattering. Nu-
merical methods for dissipative quantum transport based
on the non-equilibrium Green’s function formalism, the
Liouville/von-Neumann equation for the density matrix,
and the Kkinetic equation for the Wigner function are
attaining relevance. In this work we review semi-classical
and quantum mechanical modeling of carrier transport in
nanoscale semiconductor devices.

1. INTRODUCTION

For more than four decades the progress of integrated
circuit technology has been based upon the down-scaling
of Si MOSFETs. The number of devices contained on
a single chip has approximately doubled every three
years. The continued miniaturization of Si integrated
devices has approached the deca nanometer region. Novel
structures, such as multiple gate MOSFETs, and novel
materials beyond Si, such as graphene, are expected to be
utilized to meet the requirements for further scaling [1].
Rapid changes in technological solutions and device
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architectures can be anticipated by employing technology
computer-aided design (TCAD) tools which assist in
device development and engineering at practically all
stages from process definition to circuit optimization.

The classical drift-diffusion model of carrier transport
in electronic device has been widely employed in TCAD
tools. From an engineering point of view, semi-classical
models, such as the drift-diffusion transport model, have
enjoyed an amazing success due to their relative sim-
plicity, numerical robustness, and the ability to perform
two- and three-dimensional simulations on large unstruc-
tured meshes [2]. However, with device size dramatically
reduced TCAD tools based on semi-classical transport
description begin to show shortcomings. The problem is
two-fold. First, with the downscaling the driving field and
its gradient increase dramatically in short channels. As
a result the carrier distribution along the channel can no
longer be described by the shifted and heated Maxwellian
distribution. In order to properly account for hot-carrier
and non-local effects, the drift-diffusion and even the en-
ergy transport model have to be improved to incorporate
the substantial modifications in the distribution function.
The second, more fundamental reason for semi-classical
modeling tools to gradually loose their validity lies in
the particle-wave duality of carriers. When the device
dimensions are comparable to the carrier wave length,
the carriers can no longer be treated as classical point-
like particles, and effects originating from the quantum
mechanical nature of propagation begin to determine
transport.

In Sec. 2 semi-classical transport models are briefly
introduced and full-band Monte Carlo simulation results
for strained Si are presented. In Sec. 3 quantum transport
models are discussed in moderate detail and the role of
line-edge roughness in graphene nanoribbons (GNRs) is
investigated. Finally, conclusions are drawn in Sec. 4.

2. SEMI-CLASSICAL TRANSPORT MODELS

Table I sketches the hierarchy of different transport
models for device modeling. There are two fundamen-
tal equations for semi-classical device simulation, the
Poisson equation and the Boltzmann equation. While
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TABLE I
The hierarchy of semi-classical and quantum transport models.

Semi-classical

Transport Regime
L>> A\t

Quantum Mechanical
L~MY

Fundamental Equation Boltzmann

Schrodinger

Drift-Diffusion | Hydrodynamics
Transport Model

Boltzmann

(Monte Carlo)

Quantum Corrected Boltzmann Wigner Non-equlibrium

Quantum Hydrodynamics Green’s Function

Device Scaling

the Poisson equation takes care of the electrostatic de-
scription of any device structure, the Boltzmann equation
describes the propagation of particles with a distribution
function f(r,k,t) in the device. These two equations
have to be solved in a self-consistent manner and can
be exploited as a reference for numerous models which
are derived from the Boltzmann transport equation [3].
The distribution function f(r,k,t) is a classical concept
which holds, when the characteristic length of the device
is much larger than the De Broglie wavelength, L > A,
and the mean free path of carriers, L > /.

A direct solution of the Boltzmann equation is possible
only for a few rather special cases. In general the
Boltzmann equation can be numerically solved by using
the Monte Carlo method [4]. An approximate solution
can be obtained by expressing the distribution function as
a series expansion which leads to the spherical harmonics
approach [5].

The method of moments is also a very efficient way to
derive approximate solutions of the Boltzmann transport
equation [3]. By multiplying the Boltzmann transport
equation with a set of weight functions and integrating
over k-space one can deduce a set of balance and flux
equations coupled with the Poisson equation. Via this
formalism an infinite chain of coupled equations can be
generated. One has to truncate the equation system at a
certain point and complete the system by introducing an
additional condition [6]. For example, the drift-diffusion
model can be gained by assuming thermal equilibrium
between the charge carriers and the lattice [3]. However,
when the device size is scaled down, the carriers’ non-
equilibrium properties caused by a high electric field
become important. The hydrodynamic transport model
addresses this issue by assuming a heated Maxwellian
distribution for the carriers [7].

2.1. Application to Strained Si

In the mid 1970’s a physical model of Si has been
developed, capable of explaining major macroscopic
transport characteristics [8,9]. The used band-structure
models were represented by simple analytical expressions
accounting for non-parabolicity and anisotropicity. With
the increase of the carriers’ energy the need for accurate,

numerical energy band-structure models arose [10]. For
electrons in Si, the most thoroughly investigated case,
it is believed that a satisfactory understanding of the
basic scattering mechanisms gives rise to a new ‘“standard
model” [11]. With the introduction of strain to enhance
the performance of MOSFETs, however, the need for
accurate full-band transport analysis has regained con-
siderable interest [12, 13].

Fig. 1 shows simulation results for the electron mo-
bility of strained Si for the stress directions [100] and
[110] as well as predictions from a model based on
the linear piezoresistance coefficients [14]. Mobility is
plotted in three directions, one being parallel and two
being perpendicular to stress.

In Fig. 1(a) the results from analytical band and full-
band Monte Carlo simulations for stress along [100] are
compared and good agreement is obtained. The resulting
mobility is anisotropic in the (001) plane (i[100) #
Ho10])> and can be explained by strain induced X-valley
shifts [15]. Mobility saturates at approximately 1% strain,
regardless of the sign of strain. The saturated mobility
values are larger for compressive strain, since in this case
four X-valleys with unfavorable conductivity masses are
depopulated [15].

In Fig. 1(b) simulation results are shown for stress
along [110]. For tensile stress along [110], the mobility
behavior is remarkably different from the previous case.
First, mobilities along the directions [110], [110], and
[001] are different from each other, with the largest mo-
bility enhancement observed in [110] direction. Further-
more, no clear in-plane mobility saturation is observed
as stress increases. The mobility enhancement for tensile
stress is determined by the effective mass change induced
by the shear strain component in the primarily populated
valleys along [001] [15, 16].

It can be seen that the results from analytical band and
full-band Monte Carlo simulations agree well up to 0.5%
shear strain. At larger strain levels the band deformation
is so pronounced that the energy band description in
terms of an effective mass is no longer accurate, and
full-band Monte Carlo simulations must be used even
for the calculation of the low-field mobility.
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Fig. 1. Simulated bulk mobility of intrinsic Si as a function of strain for stress direction [100] (a) and [110] (b). Mobility is plotted along the stress
direction and along two orthogonal directions from full-band Monte Carlo simulations (solid lines) and analytical band Monte Carlo simulations
(dotted lines). Symbols indicate the change of mobility calculated using the piezoresistance coefficients [14].

3. QUANTUM MECHANICAL TRANSPORT MODELS

The Poisson equation and the Schrodinger equation
are the basis of all quantum transport models. However,
solving the Schrdodinger equation for a many particle
system is very difficult. To address this problem different
techniques and methods have been introduced. Among
them the non-equilibrium Green’s function (NEGF) for-
malism appears to be appropriate for nanoscale de-
vices [17, 18]. This method has been successfully applied
to study molecular devices [19-21], Si MOSFETs [22—
25], nanowires [26-29] CNTs [30-34], GNRs [35-38],
and spin transport [39—41]

In coordinate representation the Green’s function,
G(r1,t1;r2,t2), depends on two position arguments
ri,ro and two time arguments tj,%y, representing the
non-locality in space and time. Under steady state con-
dition the Green’s functions depend only on time differ-
ences. One usually Fourier transforms the time difference
coordinate, 7 = {; — o, to energy G(ri,ro;FE) =
[(d7/R)eET/"G(ry,ra;T).

The equation of motion for the Green’s function is
given by the integro-differential Dyson equation [42].
Starting from the Dyson equation, the quantum Boltz-
mann equation can be derived [43]. When independent
variables are changed to the center of mass coordinates
(r,t) = (r1 +ro,t1 +t2)/2 and the relative coordinates
(u,7) = (r1 — ro,t1 — t2), a quantum mechanical dis-
tribution function G(k,w,r,t) is defined as the Fourier
transform of G(u,7,r,t) with respect to the relative
coordinates. The quantum Boltzmann equation is in fact
a kinetic differential equation for the Green’s function
G(k,w,r,t) [43].

The Wigner distribution function is defined as the
energy integral of the Green’s function, f(k,r,t) =
J G(k,w,r,t)dw [44]. A transport equation for the
Wigner distribution function including scattering effects

can be obtained [45]. A practically used approxima-
tion to incorporate realistic scattering processes into the
Wigner equation is to utilize the Boltzmann scatter-
ing operator [46], or by an even simpler scheme such
as the relaxation time approximation[47]. Under this
approximation, quantum mechanical collisional effects,
for example, collisional energy broadening [48], are
neglected. One can rewrite the Wigner equation in the
form of a modified Boltzmann equation with additional
terms including quantum correction [44]. Based on this
equation the quantum corrected Boltzmann equation, the
quantum hydrodynamic approximation, and the density
gradient approximation can be devised [49].

3.1. Analysis of Graphene Nanoribbons

Graphene, a one-atomic carbon sheet with a honey-
comb structure, has attracted significant attention due to
its unique physical properties [50]. This material shows
an extraordinarily high carrier mobility of more than
2 X 1050m2/Vs [51] and is considered a major candi-
date for a future channel material for high performance
transistors [52,53]. To induce an electronic bandgap, a
graphene sheet can be patterned into narrow ribbons [54].
In order to obtain an energy bandgap larger than 0.1eV,
which is essential for electronic applications, the width
of the GNR must be scaled below 10nm [55]. In this
regime line-edge roughness is the dominant scattering
mechanism [56]. Applying an atomistic tight-binding
model [54] and the NEGF method the effect of line-edge
roughness in GNRs is studied. Employing an atomistic
tight-binding model one can capture the granularity of the
simulation domain, which is essential for narrow GNRs.

The line-edge roughness can be perturbatively
treated [56]. However, in a more accurate non-
perturbative approach one can consider the roughness as
a stochastic phenomenon and adapt it by removing or
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Fig. 2. Spatial distribution of the normalized current amplitude along

a GNR with line-edge roughness. The ribbon’s length is 19nm and the

width is 5nm. The roughness is described by a correlation length of
m = 3nm and an amplitude of A, = 2acc.

replacing specific carbon atoms located at the edges of
the ribbon. In order to model roughness, an exponential
auto-correlation function is defined as [57]:

c(n) = A% exp (_x) , x=nlAx (1
Ly,
A, is the roughness amplitude, L,, is the correlation
length, and Ax = a./2 is the sampling interval. The
stochastic roughness can be generated by applying a
random phase to the power spectrum of the rough-
ness auto-correlation in the Fourier domain and inverse
Fourier transforming in order to obtain roughness in
the real space domain [57]. Fig. 2 shows the spatial
distribution of the current amplitude along a GNR with
rough edges. Localization of carriers can be seen along
the ribbon. In case of strong localization, carriers tunnel
from one localized state to another one. In this regime
the resistance of the device increases exponentially with
its length [48]. However, with the aid of these analyses
one can obtain the required geometrical and roughness
parameters to avoid this phenomena in electronic devices.

4. CONCLUSION

A review of semi-classical and quantum mechanical
transport models for the analysis of semiconductor de-
vices is presented. The approximations and the limita-
tions of each model are discussed. As a case study full-
band Monte Carlo simulation results for strained Si are
given. The results indicate the need for accurate band-
structure models to study strained devices. The non-
equilibrium Green’s function formalism provides a self-
consistent approach for the analysis of nanoscale de-
vices. In this formalism scattering processes and quantum
mechanical phenomena can be rigorously modeled. We
investigated the effect of line-edge roughness on the
electronic properties of GNRs. An atomistic tight-binding
model, which captures the granularity of the simulation
domain, has been used. The results indicate the impor-
tance of employing non-continuum quantum mechanical
simulations for the accurate analysis of nanoscale de-
vices.
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